The Second Internet HTML version

Most things in computer technology evolve through various releases or generations, with significant
new features and capabilities in the newer generations. For example, 2G, 2.5G and 3G cell phones. The
Internet is no exception. The remarkable thing though, is that the first generation of the Internet has
lasted for 27 years already, and we are only now coming to the second generation of it. There are a
number of technology trends going on right now, and some of them have been hyped heavily in the
press. Some of them sound a lot like they might be the next generation of the Internet. Let’s see if we
can narrow down what I mean by “the Second Internet” by discussing some the things that it is not.
1.6.1 – Is the Next Generation Network (NGN) that Telcos Talk About, the Second Internet?
Telcos around the world have been moving towards something they call NGN for some time. Is that the
same thing as the Second Internet? Well, there is certainly a lot of overlap, but no, NGN is something
quite different.
Historically, telephone networks have been based on a variety of technologies, mostly circuit switched,
with call setup handled by SS7 (Signaling System 7). The core of the networks might be digital, but
almost the entire last mile (the part of the telco system reaching from the local telco office into your
homes and businesses) is still analog today. There was some effort at upgrading this last mile to digital
with ISDN (Integrated Services Digital Networks), but some terrible decisions regarding tariffs (the cost
of services) pretty much killed ISDN in many countries, including the U.S.
The ITU (International Telecommunication Union), an agency of the United Nations that has historically
overseen telephone systems worldwide, defines NGN as packet-switched networks able to provide
services, including telecommunications, over broadband, with Quality of Service enabled transport
technologies, and in which service-related functions are independent from underlying transport-related
technologies. It offers unrestricted access by users to different telecommunication service providers. It
supports generalized mobility which will allow consistent and ubiquitous service to users.
In practice, telco NGN has three main aspects:
In telco core networks, there is a consolidation (or convergence) of legacy transport networks
based on X.25 and Frame Relay into the data networks based on TCP/IP (still, alas, mostly
TCP/IPv4 so far). It also involves moving from circuit switched (mostly analog) voice technology
(the Public Switched Telephone Network, or PSTN) to Voice over Internet Protocol (VoIP). So far,
the move to VoIP is mostly internal to the telcos. What is in your house and company is good old
POTS (Plain Old Telephone Service).
In the “last mile”, NGN involves migration from legacy split voice and data networks to Digital
Subscriber Line (DSL), making it possible to finally remove the legacy voice switching
In cable access networks, NGN involves migration of constant bit rate voice to Packet Cable
standards that provide VoIP and SIP services. These are provided over DOCSIS (Data Over Cable
Service Interface Specification) as the cable data layer standard. DOCSIS 3.0 does include good
support for IPv6, though it requires major upgrades to existing infrastructure. There is also a
“DOCSIS 2.0 + IPv6” standard which supports IPv6 even over the older DOCSIS 2.0 framework,
typically requiring only a firmware upgrade in equipment. That will likely get rolled out before
DOCSIS 3.0 can be (DOCSIS 3.0 requires hardware upgrades).