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Chapter 1

Introduction1

1.1 Motivation

This course focuses on algorithms in signal processing and communications. When training data is available
in such systems, we can process the data by �rst training on historical data and then running a Bayesian
scheme, which relies on the statistics being known. A similar Bayesian approach can also be used when the
statistics are approximately known.

For example, consider lossy image compression. It is well known that wavelet coe�cients of images have
a distribution that resembles Laplace,

fx (x) = c1xe
−c2|x|, (1.1)

and the coe�cients are approximately independent and identically distributed (i.i.d.). A well-known ap-
proach to lossy image compression is to �rst compute the wavelet coe�cients and then compress them using
a lossy compressor that is designed for Laplace i.i.d. coe�cients [34]. In this approach, the training consists
of the body of art that realizes that wavelet coe�cients are approximately Laplace i.i.d., and the Bayesan
algorithm is a lossy compressor that is designed for this distribution.

However, sometimes the statistics of the input (often called the source) are completely unknown, there is
no training data, or there is great uncertainty in the statistics. For example, in lossless data compression, we
do not know whether a �le is an executable, source code, a DNA sequence, contains �nancial transactions,
is text, etc. And even if we know that the �le contains text, it has been noted that even di�erent chapters
that appear in the same book that is written by the same author may contain di�erent statistics.

For this latter set of problems, the Bayesian approach is useless, because there is no training data. A
good alternative approach to Bayesian algorithms is to use universal algorithms [55], [40]. These algorithms
have good performance irrespective of statistics. In fact, in some cases, these algorithms can achieve (with
equality) the theoretically optimum performance in an appropriate asymptotic framework.

In lossless compression, universal algorithms have had great impact. For example, the Lempel-Ziv family
of algorithms [55], [57] asymptotically achieve the entropy rate [20], [12], which is the best possible com-
pression ratio achievable in lossless compression, despite not knowing the input statistics. Additionally, the
Lempel-Ziv algorithms allow e�cient implementation.

1.2 Overview

The goal of this course is to study universal algorithms, starting from the well-trodden material in lossless
compression, and later discussing universal algorithms in other areas of communications and signal process-
ing. Let us overview the material studied during the course. We begin in Chapter 2 with a review of some

1This content is available online at <http://cnx.org/content/m46221/1.3/>.
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2 CHAPTER 1. INTRODUCTION

information theory material, including typical sequences and source coding, in order to provide su�cient
background. Next, Chapter 3 statistical models for data will be described. Chapter 4 then presents tech-
niques for universal lossless compression of parametric sources. One approach to universal compression of
parametric sources is minimum description length, which compresses the data in order to minimize for the
sum of the complexity of the model and the complexity of the data given the parameters of the model.
Minimum description length has been used with context tree models to provide universal contextual pre-
diction; context tree approaches are detailed in Chapter 5. We then switch gears in Chapter 5 and move
beyond lossless compression; universal lossy compression and signal reconstruction are described in detail.
Finally, Chapter 7 describes Lempel-Ziv algorithms for universal lossless compression based on parsing an
input sequence. For convenienve, notation is summarized in Chapter 8.

This manuscript is a work in progress, and we expect to expand and improve it during future teachings
of the course.

Available for free at Connexions <http://cnx.org/content/col11524/1.1>



Chapter 2

Background1

2.1 Convergence of random variables

We include some background material for the course. Let us recall some notions of convergence of random
variables (RV's).

• A sequence of RV's {xn}n≥1 converges in probability if ∀ε ≥ 0, limn→∞supPr (|xn − x| > ε) = 0. We

denote this by xn
P.→ x.

• A sequence of RV's {xn}n≥1 converges to x with probability 1 if Pr{x1, x2, ... : limn→∞xn = x} = 1.

We denote this by xn
w.p.1→ x or xn

a.s.→ x.
• A sequence of RV's {xn}n≥1 converges to x in the `p sense if E [|xn − x|p] → 0. We denote this by

xn
`p→ x.

For example, for p = 2 we have mean square convergence, xn
m.s.→ x. For p ≥ 2,

E|xn,−, x|p−1 = E(|xn,−, x|p)
p−1
p ≤ (E|xn − x|p)

p−1
p . (2.1)

Therefore, xn
`p→ x yields xn

`p−1→ x. Note that for convergence in `1 sense, we have

Pr (|xn − x| > ε) ≤ E|xn − x|
ε

→ 0. (2.2)

2.2 Typical Sequences

The following material appears in most textbooks on information theory (c.f., Cover and Thomas [13] and
references therein). We include the highlights in order to make these notes self contained, but skip some
details and the proofs. Consider a sequence x = xn = (x1, x2, ..., xn), where xi ∈ α, α is the alphabet, and
the cardinality of α is r, i.e., |α| = r.

De�nition 1 The type of x consists of the empirical probabilities of symbols in x,

Px (a) =
nx (a)
n

, a ∈ α, (2.3)

where nx (a) is the empirical symbol count, which is the the number of times that a ∈ α appears in x.
De�nition 2 The set of all possible types is de�ned as Pn.

1This content is available online at <http://cnx.org/content/m46240/1.3/>.
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4 CHAPTER 2. BACKGROUND

Example 2.1
For an alphabet α = {0, 1} we have Pn = {

(
0
n ,

n
n

)
,
(

1
n ,

n−1
n

)
, ...,

(
n
n ,

0
n

)
}. In this case, |Pn| = n+ 1.

De�nition 3 A type class Tx contains all x' ∈ αn, such that Px=Px' ,

Tx = T (Px) = {x' ∈ αn : Px' = Px}. (2.4)

Example 2.2
Consider α = 1, 2, 3 and x = 11321. We have n = 5 and the empirical counts are nx = (3, 1, 1).
Therefore, the type is Px =

(
3
5 ,

1
5 ,

1
5

)
, and the type class Tx contains all length-5 sequences with

3 ones, 1 two, and 1 three. That is, Tx = {11123, 11132, ..., 32111}. It is easy to see that |Tx| =
5!

3!1!1! = 20.

Theorem 1 The cardinality of the set of all types satis�es |Pn| ≤ (n+ 1)r−1
.

The proof is simple, and was given in class. We note in passing that this bound is loose, but it is good
enough for our discussion.

Next, consider an i.i.d. source with the following prior,

Q (x) =
n∏
i=1

Q (xi) . (2.5)

We note in passing that i.i.d. sources are sometimes called memoryless. Let the entropy be

H (Px) = −Σa∈α
nx (a)
n

log

(
nx (a)
n

)
, (2.6)

where we use base-two logarithms throughout. We are studying the entropy H (Px) in order to show that
it is the fundamental performance limit in lossless compression. Σ �nd me

We also de�ne the divergence as

D (Px ‖ Qx) = Σa∈αPxlog
(
Px
Qx

)
. (2.7)

It is well known that the divergence is non-negative,

D (Px ‖ Qx) ≥ 0. (2.8)

Moreover, D (P ‖ Q) = 0 only if the distributions are identical.
Claim 1 The following relation holds,

Q (x) = 2−n[H(Px)+D(Px‖Q(x))]. (2.9)

The derivation is straightforward,

Q (x) = Πa∈αQ(a)nx(a)

= 2Σa∈αnx(a)logQ(a)

= 2nΣPx(a)(logQP +logP)

= 2−n[H(Px)+D(Px‖Q(x))].

(2.10)

Seeing that the divergence is non-negative (2.8), and zero only if the distributions are equal, we have Q (x) ≤
Px (x). When Px = Q the divergence between them is zero, and we have that Px (x) = Qx = 2−nH(Px).

The proof of the following theorem was discussed in class.
Theorem 2 The cardinality of the type class T (Px) obeys,

(n+ 1)−(r−1) · 2nH(Px) ≤ |T (Px) | ≤ 2nH(Px). (2.11)

Available for free at Connexions <http://cnx.org/content/col11524/1.1>



5

Having computed the probability of x and cardinality of its type class, we can easily compute the probability
of the type class.

Claim 2 The probability Q (T (Px) of the type class T (Px) obeys,

(n+ 1)−(r−1) · 2−nD(Px‖Qx) ≤ Q (T (Px)) ≤ 2−nD(Px‖Qx). (2.12)

Consider now an event A that is a union over T (Px). Suppose T (Q) * A, then A is rare with respect to
(w.r.t) the prior Q. and we have limn→∞Q (A) = 0. That is, the probability is concentrated around Q. In
general, the probability assigned by the prior Q to an event A satis�es

Q (A) = Σx∈AQ (x) = ΣT (Px)⊆AQ (T (Px))

=̇ ΣT (Px)⊆A2−nD(Px‖Q)

=̇ 2−n·minp∈AD(P‖Q),

(2.13)

where we denote an=̇bn when 1
n log

(
an
bn

)
→ 0.

2.3 Fixed and Variable Length Coding

Fixed to �xed length source coding: As before, we have a sequence x of length n, and each element of x
is from the alphabet α. A source code maps the input xn ∈ rn to a set of 2Rn bit vectors, each of length Rn.
The rate R quanti�es the number of output bits of the code per input element of x.2 That is, the output of
the code consists of nR bits. If n and R is �xed, then we call this a �xed to �xed length source code.

The decoder processes the nR bits and yields
Θ
x ∈ αn. Ideally we have that

Θ
x = x, but if 2nR < rn then

there are inputs that are not mapped to any output, and
Θ
x may di�er from x. Therefore, we want Pr

(
Θ
x 6= x

)
to be small. If R is too small, then the error probability will go to 1. On the other hand, su�ciently large
R will drive this error probability to 0 as n is increased.

If log (r) > R and Pr
(

Θ
x 6= x

)
is vanishing as n is increased, then we are compressing, because 2log(r)n =

rn > 2Rn, where rn is the number of possible inputs x and there are 2Rn possible outputs.
What is a good �xed to �xed length source code? One option is to map 2Rn − 1 outputs to inputs

with high probabilities, and the last output can be mapped to a �don't care" input. We will discuss the
performance of this style of code.

An input x ∈ rn is called δ-typical if Q (x) > 2−(H+δ)n. We denote the set of δ-typical inputs by
TQ (δ), this set includes the type classes whose empirical probabilities are equal (or closest) to the true prior
Q (x). Note that for each type class Tx, all inputs x

' ∈ Tx in the type class have the same probability, i.e.,
Q
(
x'
)

= Q (x). Therefore, the set TQ (δ) is a union of type classes, and can be thought of as an event
A (Section 2.2 (Typical Sequences)) that contains type classes consisting of high-probability sequences. It
is easily seen that the event A contains the true i.i.d. distribution Q, because sequences whose empirical
probabilities satisfy Px = Q also satisfy

Q (x) = 2−Hn > 2−(H+δ)n. (2.14)

Using the principles discussed in Section 2.2 (Typical Sequences), it is readily seen that the probability
under the prior Q of the inputs in TQ (δ) satis�es Q (Tp (δ)) = Q (A) → 1 when n → ∞. Therefore, a code
C that enumerates TQ (δ) will encode x correctly with high probability.

The key question is the size of C, or the cardinality of TQ (δ). Because each x ∈ TQ (δ) satis�es Q (x) >
2(−H+δ)n, and

∑
x∈TQ(δ)Q (x) ≤ 1, we have |TQ (δ) | < 2(H+δ)n. Therefore, a rate R ≥ H + δ allows near-

lossless coding, because the probability of error vanishes (recall that Q
(

(Tp (δ))C
)
→ 0, where (·)C denotes

the complement).

2We assume without loss of generality that Rn ∈ Z. If not, then we can round Rn up to dRne, where d·e denotes rounding
up.

Available for free at Connexions <http://cnx.org/content/col11524/1.1>



6 CHAPTER 2. BACKGROUND

On the other hand, a rate R ≤ H − δ will not allow lossless coding, and the probability of error will
go to 1. We will see this intuitively. Because the type class whose empirical probability is Q dominates, a
type class Tx whose sequences have larger probability, e.g., Q (x) > 2−(H−δ)n, will have small probability in
aggregate. That is, ∑

x:Q(x)>2−n(H−δ)

Q (x) n→∞→ 0. (2.15)

In words, choosing a code C with rate R = H − δ that contains the words x with highest probability will
fail, it will not cover enough probabilistic mass. We conclude that near-lossless coding is possible at rates
above H and impossible below H.

To see things from a more intuitive angle, consider the de�nition of entropy, H (Q) =
−
∑
a∈αQ (a) log (Q (a)). If we consider each bit as reducing uncertainty by a factor of 2, then the aver-

age log-likelihood of a length-n input x generated by Q satis�es

E [−log (Pr (x))] = E [−log (
∏n
i=1 Pr (xi))]

= −
∑n
i=1E [log (Q (xi))]

= −
∑n
i=1

∑
a∈αQ (a) · log (Q (a))

= nH.

(2.16)

Because the expected log-likelihood of x is nH, it will take nH bits to reduce the uncertainty by this factor.
Fixed to variable length source coding: The near-lossless coding above relies on enumerating a

collection of high-probability codewords TQ (δ). However, this approach su�ers from a troubling failure for
x /∈ TQ (δ). To solve this problem, we incorporate a code that maps x to an output consisting of a variable
number of bits. That is, the length of the code will be approximately nH on average, but could be greater
or lesser.

One possible variable length code is due to Shannon. Consider all possible x ∈ αn. For each x, allocate
d−log (Q (x))e bits to x. It can be shown that it is possible to construct an invertible (uniquely decodable)
code as long as the length of the code l (x) in bits allocated to each x satis�es∑

x

2−l(x) ≤ 1. (2.17)

This result is known as the Kraft Inequality. Seeing that∑
x 2−l(x) =

∑
x 2−d−log(Q(x))e

≤
∑
x 2−(−log(Q(x)))

=
∑
xQ (x) = 1,

(2.18)

we see that the length allocation we suggested satis�es the Kraft Inequality. Therefore, it is possible to
construct an invertible (and hence lossless) code with lengths upper bounded by

lx = d−log (Q (x))e ≤ −log (Q (x)) + 1, (2.19)

and we have

E [l (x)] ≤ E [−log (Q (x))] + 1 = nH + 1. (2.20)

This simple construction approaches the entropy up to 1 bit.
Unfortunately, a Shannon code is impractical, because it requires to construct a code book of exponential

size |α|n. Instead, arithmetic codes [42] are used; we discussed arithmetic codes in detail in class, but they
appear in all standard text books and so we do not describe them here.

Available for free at Connexions <http://cnx.org/content/col11524/1.1>



Chapter 3

Source models1

For i.i.d. sources, D (P1 (xn) ||P2 (xn)) = nD (P1 (xi) ||P2 (xi)), which means that the divergence increases
linearly with n. Not only does the divergence increase, but it does so by a constant per symbol. Therefore,
based on typical sequence concepts that we have seen, for an xn generated by P1, its probability under P2

vanishes. However, we can construct a distribution Q whose divergence with both P1 abd P2 is small,

Q (xn) =
1
2
P1 (xn) +

1
2
P2 (xn) . (3.1)

We now have for P1,

1
nD (Pn1 ||Q) = 1

nE
[
log P1(xn)

1
2P1(xn)+ 1

2P2(xn)

]
≤ 1

n log (2) = 1
n .

(3.2)

On the other hand, 1
nD (P1 (xn1 ) ||Q (xn1 )) ≥ 0 (2.8), and so

1
n
≥ 1
n
D (P1 (xn1 ) ||Q (xn1 )) ≥ 0. (3.3)

By symmetry, we see that Q is also close to P2 in the divergence sense.
Intuitively, it might seem peculiar that Q is close to both P1 and P2 but they are far away from each

other (in divergence terms). This intuition stems from the triangle inequality, which holds for all metrics.
The contradiction is resolved by realizing that the divergence is not a metric, and it does not satisfy the
triangle inequality.

Note also that for two i.i.d. distributions P1 and P2, the divergence

D (P1 (xn) ||P2 (xn)) = nD (P1||P2) (3.4)

is linear in n. If Q were i.i.d., then D (P1 (xn) ‖ Q (xn1 )) must also be linear in n. But the divergence is
not increasing linearly in n, it is upper bounded by 1. Therefore, we conclude that Q (·) is not an i.i.d.
distribution. Instead, Q is a distribution that contains memory, and there is dependence in Q between
collections of di�erent symbols of x in the sense that they are either all drawn from P1 or all drawn from
P2. To take this one step further, consider K sources with

Q (xn) =
K∑
i=1

1
K
Pi (xn) , (3.5)

1This content is available online at <http://cnx.org/content/m46231/1.4/>.
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8 CHAPTER 3. SOURCE MODELS

then in an analogous manner to before it can be shown that

D (Pi (xn1 ) ||Q (xn1 )) ≤ 1
n
log (K) . (3.6)

Sources with memory: Instead of the memoryless (i.i.d.) source,

P (xn) =
n∏
i=1

P (xi) , (3.7)

let us now put forward a statistical model with memory,

P (xn) =
n∏
i=1

P
(
xi|xi−1

1

)
. (3.8)

Stationary source: To understand the notion of a stationary source, consider an in�nite stream of symbols,
..., x−1, x0, x1, .... A complete probabilistic description of a stationary distribution is given by the collection
of all marginal distribution of the following form for all t and n,

PXt,Xt+1,...,Xt+n−1 (xt, xt+1, ..., xt+n−1) . (3.9)

For a stationary source, this distribution is independent of t.
Entropy rate: We have de�ned the �rst order entropy of an i.i.d. random variable (2.6), and let

us discuss more advanced concepts for sources with memory. Such de�nitions appear in many standard
textbooks, for example that by Gallager [21].

1. The order-n entropy is de�ned,

Hn =
1
n
H (x1, ..., xn) = − 1

n
E [log (P (x1, ..., xn))] . (3.10)

2. The entropy rate is the limit of order-n entropy, H = limn→∞Hn. The existence of this limit will be
shown soon.

3. Conditional entropy is de�ned similarly to entropy as the expectation of the log of the conditional
probability,

H (xn|x1, ..., xn−1) = − 1
n
E [log (P (xn|x1, ..., xn−1))] , (3.11)

where expectation is taken over the joint probability space, P (x1, ..., xn).

The entropy rate also satis�es H = limn→∞H (xn|x1, ..., xn).
Theorem 3 For a stationary source with bounded �rst order entropy, H1 (x) <∞, the following hold.

1. The conditional entropy H (xn|x1, ..., xn−1) is monotone non-increasing in n.
2. The order-n entropy is not smaller than the conditional entropy,

Hn (x) ≥ H (xn|x1, ..., xn−1) . (3.12)

3. The order-n entropy Hn (x) is monotone non-increasing.
4. H (x) = limn→∞Hn (x) = limn→∞H (xn|x1, ..., xn−1).

Proof. Part (1):

H (xn|x1, ..., xn−1) ≤ H (xn|x2, ..., xn−1)

= H (xn−1|x1, ..., xn−2)

≤ ... ≤ H (x2|x1) ≤ H (x1) .

(3.13)

Available for free at Connexions <http://cnx.org/content/col11524/1.1>
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Part (2):

Hn (x) = 1
n [H (x1) +H (x2|x1) + ...+H (xn|x1, ..., xn−1)]

≥ 1
n [H (xn|x1, ..., xn−1) + ...+H (xn|x1, ..., xn−1)]

= H (xn|x1, ..., xn−1) .

(3.14)

Part (3): This comes from the �st equality in the proof of (2), because we have the average of a monotonely
non-increasing sequence.

Part (4): Both sequences are monotone non-increasing (parts (1) and (3)) and bounded below (by zero).
Therefore, they both have a limit. Denote H (x) = limn→∞Hn (x) and H̃ (x) = limn→∞H (xn|x1, ..., xn−1).

Owing to part(2), H ≥ H̃. Therefore, it su�ces to prove H̃ ≥ H.

Hn+m (x) = 1
n+m

[
H
(
xn−1

1

)
+
∑n+m
i=n H (xi|x1, ..., xi−1)

]
≤ H(xn−1

1 )
n+m + m+1

n+mH (xi|x1, ..., xi−1) .
(3.15)

Now �x n and take the limit for large m. The inequality H ≤ H̃ appears, which proves that both limits are
equal.

Coding theorem: Theorem 3 (p. 8) yields for �xed to variable length coding that for a stationary
source, there exists a lossless code such that the compression rate ρn obeys,

ρn =
E [l (x1, ..., xn)]

n
≤ Hn (x) +

1
n
. (3.16)

This can be proved, for example, by choosing l (x1, ..., xn) = d−logP (x1, ..., xn)e, which is a Shannon code.
As n is increased, the compression rate ρn converges to the entropy rate.

We also have a converse theorem for lossless coding of stationary sources. That is, ρn ≥ Hn (x) ≥ H.

3.1 Stationary Ergodic Sources

Consider the sequence x = (..., x−1, x0, x1, ...). Let x' = Sx denote a step ∀n ∈ Z, x'n = xn+1, where S
i
x

takes i steps. Let fk (x) be a function that operates on coordinates (x0, ..., xk−1). An ergodic source has the
property that empirical averages converge to statistical averages,

1
n

n−1∑
i=0

fk
(
Six
) a.s.,n→∞→ Efk (x) . (3.17)

In block codes we want

1
nN

n−1∑
i=0

l
(
xiN+1, ..., x(i+1)N

) a.s.= H. (3.18)

We will be content with convergence in probability, and a.s. convergence is better.
Theorem 4 Let X be a stationary ergodic source with H1 (x) < ∞, then for every ε > 0, δ > 0, there

exists n0 (δ, ε) such that ∀n ≥ n0 (δ, ε),

Pr{| 1
n
I (x1, ..., xn)−H|} ≤ ε, (3.19)

where I (x1, ..., xn) = −log (Pr (x1, ..., xn)).
The proof of this result is quite lengthy. We discussed it in detail, but skip it here.
Theorem 4 (p. 9) is called the ergodic theorem of information theory or the ergodic theorem of entropy.

Shannon (48') proved convergence in probability for stationary ergodic Markov sources. McMillan (53')
proved L1 convergence for stationary ergodic sources. Brieman (57'/60') proved convergence with probability
1 for stationary ergodic sources.
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3.2 Parametric Models of Information Sources

In this section, we will discuss several parametric models and see what their entropy rate is.
Memoryless sources: We have seen for memoryless sources,

p (x) =
n∏
i=1

p (xi) , (3.20)

where there are r − 1 parameters in total,

θ = {p (a) , a = 1, 2, ..., r − 1}, (3.21)

the parameters are denoted by θ, and α = {1, 2, ..., r} is the alphabet.
Markov sources: The distribution of a Markov source is de�ned as

p (x1, x2, ..., xn) = p (x1, ..., xk)
n∏

i=k+1

p
(
xi|xi−1

i−k
)
, (3.22)

where n ≥ k. We must de�ne {p (a1, a2, ..., ak)}(a1,a2,...ak)∈αk initial probabilities and transition probabilities,

{p
(
ak+1|ak1

)
}. There are rk − 1 initial probabilities and (r − 1) rk transition probabilities, giving a total of

rk+1 − 1 parameters. Note that

E{−logp
(
xi|xi−1

i−k
)
} = H

(
Xi|Xi−1

i−k
) k→∞→ H (X) . (3.23)

Therefore, the space of Markov sources covers the stationary ergodic sources in the limit of large k.
Uni�lar sources: For uni�lar sources, it is possible to reconstruct the set of states that a source went

through by looking at the output sequence. In the Markov case we have Si =
(
Xi−1
i−k
)
, but in general it may

be more complicated to determine the state.
To put us on a concrete basis for analysis of uni�lar sources, consider a source with M states, S =

{1, 2, ...,M}, and an alphabet α = {1, 2, ..., r}. In each time step, the source outputs a symbol and moves
to a new state. Denote the output sequence by x = x1x2 · · ·xn, and the state sequence by s = s1s2 · · · sn,
where si ∈ S and xi ∈ α. Denote also

q
(
s|s'
)

= Pr{St = s|St−1 = s'}
= Pr{St = s|St−1 = s', St−2, · · · }.

(3.24)

This is a �rst-order time-homogeneous Markov source. The probability that the next symbol is a follows,

p (a|s) = Pr{Xt = a|St = s}
= Pr{Xt = a|St = s,Xt−1, St−1, · · · }.

(3.25)

There exists a deterministic function,

St = g (St−1, Xt−1) , (3.26)

this is called the next state function. Given that we start at some state S1 = s1, the probability for the
sequence of states s1, ..., sn is given by

p (Xn
1 |S1) =

n∏
t=1

p (Xt|St) . (3.27)

Note the relation

q
(
s|s'
)

=
∑

a:g(s',a)=s

p
(
a|s'
)
. (3.28)
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To summarize, uni�lar sources can be described by a state machine style of diagram as illustrated in
Figure 3.1.

Figure 3.1: State machine for selecting the state of a uni�lar source.

Given that an initial state was �xed, a uni�lar source with M states and an alphabet of size r can
be expressed with M (r − 1) parameters. If the initial state is a random variable, then there are M − 1
parameters that de�ne probabilities for the initial state, giving M (r − 1) +M − 1 = Mr − 1 parameters in
total. In the Markov case, we have M = rk, it is a special type of uni�lar source.

Example 3.1
For the uni�lar source that appears in Figure 3.2, the states can be discerned from the output
sequence. Let us follow up on this example while discussing more properties of uni�lar sources.
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