
Teaching and classroom laboratories based
on the “eZ430” and "Experimenter’s board"

MSP430 microcontroller platforms and
Code Composer Essentials

Collection Editors:
Pedro Dinis

António Espírito Santo

Teaching and classroom laboratories based
on the “eZ430” and "Experimenter’s board"

MSP430 microcontroller platforms and
Code Composer Essentials

Collection Editors:
Pedro Dinis

António Espírito Santo

Authors:
Pedro Dinis

António Espírito Santo
Bruno Ribeiro

Online:
< http://cnx.org/content/col10706/1.3/ >

C O N N E X I O N S

Rice University, Houston, Texas

This selection and arrangement of content as a collection is copyrighted by Pedro Dinis, António Espírito Santo. It

is licensed under the Creative Commons Attribution 3.0 license (http://creativecommons.org/licenses/by/3.0/).

Collection structure revised: May 19, 2009

PDF generated: October 26, 2012

For copyright and attribution information for the modules contained in this collection, see p. 165.

Table of Contents

1 MSP430 Overview
1.1 Introduction . 1
1.2 MSP430 Main characteristics . 2
1.3 Address space . 3
1.4 Central Processing Unit (MSP430 CPU) . 8
1.5 Central Processing Unit (MSP430X CPU) . 12
1.6 Addressing modes . 21
1.7 MSP430 instruction set . 26

2 Code Composer Essentials

2.1 Code Composer Essentials . 35
2.2 Introduction to CCE IDE . 36
2.3 Creating a Project 40
2.4 Code Editor . 48
2.5 File history . 54
2.6 Import and Export functionality . 54
2.7 Project Con�guration details . 57
2.8 Introduction to Debug with CCE . 65

3 General purpose Input/Output

3.1 Laboratory GPIO: Lab1 - Blinking the LED . 72
3.2 Laboratory GPIO: Lab2 - Blinking the LED half the speed . 74
3.3 Laboratory GPIO: Lab3 - Toggle the LED state by pressing the push button 75
3.4 Laboratory GPIO: Lab4 - Enable/disable LED blinking by push button press 77

4 Timers
4.1 Laboratory Timers: Lab1 - Memory clock with Basic Timer1 . 80
4.2 Laboratory Timers: Lab2 - Real Time Clock with Basic Timer1 . 84
4.3 Laboratory Timers: Lab3 - Memory Clock with Timer_A . 86
4.4 Laboratory Timers: Lab4 - Buzzer tone generator . 90
4.5 Laboratory Timers: Lab5 - Frequency measurement . 95

5 LCD Controller
5.1 Laboratory LCD controller: Lab1 - LCD message display . 100

6 Data Acquisition

6.1 Laboratory Signal Acquisition: Lab1 - SAR ADC10 conversion . 104
6.2 Laboratory Signal Acquisition: Lab2 - SAR ADC12 conversion . 108
6.3 Laboratory Signal Acquisition: Lab3 - SD16_A ADC conversion 113
6.4 Laboratory Signal Acquisition: Lab4 - Voltage signal comparison with Compara-

tor_A . 117

7 Digital-to-Analog Converter (DAC)

7.1 Laboratory DAC: Lab1 - Voltage ramp generator . 122

8 Direct Memory Access (DMA)

8.1 Laboratory DMA: Lab1 - Data Memory transfer triggered by software . 128
8.2 Laboratory DMA: Lab2 - Sinusoidal waveform generator 130

9 Hardware Multiplier

9.1 Laboratory Hardware Multiplier: Lab1 - Multiplication without hardware multi-
plier . 134

9.2 Laboratory Hardware Multiplier: Lab2 - Multiplication with hardware multiplier 136

iv

9.3 Laboratory Hardware Multiplier: Lab3 - RMS and active power calculation 138

10 Flash Programming

10.1 Laboratory Flash memory: Lab1 - Flash memory programming with the CPU
executing the code from �ash memory . 142

10.2 Laboratory Flash memory: Lab2 - Flash memory programming with the CPU
executing the code in RAM . 145

11 Communication
11.1 Laboratory Communications: Lab1 - Echo test using the UART mode of the

USCI module . 150
11.2 Laboratory Communications: Lab2 - Echo test using SPI . 154
11.3 Laboratory Communications: Lab3 - Echo test using I2C . 158

Index . 164
Attributions .165

Available for free at Connexions <http://cnx.org/content/col10706/1.3>

Chapter 1

MSP430 Overview

1.1 Introduction1

Introduction
The types of devices such as microprocessor, microcontroller, processor, digital signal processor (DSP),

amongst others, in a certain manner, are related to the same device � the ASIC (Application Speci�c
Integrated Circuit). Each processing device executes instructions, following a determined program applied
to the inputs and shares architectural characteristics developed from the �rst microprocessors created in 1971.
In the three decades after the development of the �rst microprocessor, huge developments and innovations
have been made in this engineering �eld. Any of the terms used at the beginning of this section are correct
to de�ne a microprocessor, although each one has di�erent characteristics and applications.

The de�nition of a microcontroller is somewhat di�cult due to the constantly changing nature of the
silicon industry. What we today consider a microcontroller with medium capabilities is several orders of
magnitude more powerful, than the computer used on the �rst space missions. Nevertheless, some gener-
alizations can be made as to what characterizes a microcontroller. Typically, microcontrollers are selected
for embedded systems projects, i.e., control systems with a limited number of inputs and outputs where the
controller is embedded into the system.

The programmable SoC (system-on-chip) concept started in 1972 with the 4-bit TMS1000 microcomputer
developed by Texas Instruments (TI), and in those days it was ideal for applications such as calculators and
ovens. This term was changed to Microcontroller Unit (MCU), which was more descriptive of a typical
application. Nowadays, MCUs are at the heart of many physical systems, with higher levels of integration
and processing power at lower power consumption.

The following list presents several qualities that de�ne a microcontroller:
- Cost: Usually, the microcontrollers are high-volume, low cost devices;
- Clock frequency: Compared with other devices (microprocessors and DSPs), microcontrollers use a low

clock frequency. Microcontrollers today can run up to 100 MHz/ 100 Million Instructions Per Second (MIPS)
- Power consumption: orders of magnitude lower than their DSP and MPU cousins;
- Bits: 4 bits (older devices) to 32 bits devices;
- Memory: Limited available memory, usually less than 1 MByte;
- Input/Output (I/O): Low to high (8-150) pin-out count.
Request the MSP430 Teaching ROM Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp2

1This content is available online at <http://cnx.org/content/m23492/1.1/>.
2https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp

Available for free at Connexions <http://cnx.org/content/col10706/1.3>

1

2 CHAPTER 1. MSP430 OVERVIEW

1.2 MSP430 Main characteristics3

MSP430 Main characteristics
Although there are variants in devices in the family, a MSP430 microcontroller can be characterized by:
- Low power consumption:

• 0.1 µA for RAM data retention;
• 0.8 µA for real time clock mode operation;
• 250 µA/MIPS at active operation.

Low operation voltage (from 1.8 V to 3.6 V).
< 1 µs clock start-up.
< 50 nA port leakage.
Zero-power Brown-Out Reset (BOR).
On-chip analogue devices:

• 10/12/16-bit Analogue-to-Digital Converter (ADC);
• 12-bit dual Digital-to-Analogue Converter (DAC);
• Comparator-gated timers;
• Operational Ampli�ers (OP Amps);
• Supply Voltage Supervisor (SVS).

16 bit RISC CPU:

• Instructions processing on either bits, bytes or words;
• Compact core design reduces power consumption and cost;
• Compiler e�cient;
• 27 core instructions;
• 7 addressing modes;
• Extensive vectored-interrupt capability.

Flexibility:

• Up to 256 kB In-System Programmable (ISP) Flash;
• Up to 100 pin options;
• USART, I2C, Timers;
• LCD driver;
• Embedded emulation.

The microcontroller's performance is directly related to the 16-bit data bus, the 7 addressing modes and the
reduced instructions set, which allows a shorter, denser programming code for fast execution. These micro-
controller families share a 16-bit CPU (Central Processing Unit) core, RISC type, intelligent peripherals,
and �exible clock system that interconnects using a Von Neumanncommon memory address bus (MAB) and
memory data bus (MDB) architecture.

3This content is available online at <http://cnx.org/content/m23490/1.2/>.

Available for free at Connexions <http://cnx.org/content/col10706/1.3>

3

MSP430 architecture.

Figure 1.1

Request the MSP430 Teaching ROM Materials here https://www-
a.ti.com/apps/dspuniv/teaching_rom_request.asp4

1.3 Address space5

Address space
All memory, including RAM, Flash/ROM, information memory, special function registers (SFRs), and

peripheral registers are mapped into a single, contiguous address space.
Note: See the device-speci�c datasheets for speci�c memory maps. Code access is always performed on

even addresses. Data can be accessed as bytes or words.
The MSP430 is available with either Flash or ROM memory types. The memory type is identi�ed by

the letter immediately following �MSP430� in the part numbers.
Flash devices: Identi�ed by the letter �F� in the part numbers, having the advantage that the code

space can be erased and reprogrammed.

4https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp
5This content is available online at <http://cnx.org/content/m23495/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10706/1.3>

4 CHAPTER 1. MSP430 OVERVIEW

ROM devices: Identi�ed by the letter �C� in the part numbers. They have the advantage of being very
inexpensive because they are shipped pre-programmed, which is the best solution for high-volume designs.

Figure 1.2

* Depending on device family.
For all devices, each memory location is formed by 1 data byte. The CPU is capable of addressing data

values either as bytes (8 bits) or words (16 bits). Words are always addressed at an even address, which
contain the least signi�cant byte, followed by the next odd address, which contains the most signi�cant byte.
For 8-bit operations, the data can be accessed from either odd or even addresses, but for 16-bit operations,
the data values can only be accessed from even addresses.

1.3.1 Interrupt vector table

The interrupt vector table is mapped at the very end of memory space (upper 16 words of Flash/ROM),
in locations 0FFE0h through to 0FFFEh (see the device-speci�c datasheets). The priority of the interrupt
vector increases with the word address.

Interrupt vector table for MSP430 families.

Available for free at Connexions <http://cnx.org/content/col10706/1.3>

5

Vector Ad-
dress

Priority ' 11xx and
' 12xx

' 13x and '
14x

`2xx ' 3xx ' 4xx

0xFFFE 31, Highest Hard Reset/
Watchdog

Hard Reset/
Watchdog

Hard Reset/
Watchdog

Hard Reset/
Watchdog

Hard Reset/
Watchdog

0xFFFC 30 Oscillator/
Flash/NMI

Oscillator/
Flash/NMI

Oscillator/
Flash/NMI

Oscillator/
Flash/NMI

Oscillator/
Flash/NMI

0xFFFA 29 Unused Timer_B Timer_B
(22x2, 22x4,
23x, 24x,
26x only)

Dedicated
I/O

Timer_B('43x
and'44x
only)

0xFFF8 28 Unused Timer_B Timer_B
(22x2, 22x4,
23x, 24x
only)

Dedicated
I/O

Timer_B('43x
and'44x
only)

0xFFF6 27 Comparator Comparator Comparator_A+
(20x1 only,
21x1, 23x,
24x, 26x)

Unused Comparator

0xFFF4 26 Watchdog
Timer

Watchdog
Timer

Watchdog
Timer+

Watchdog
Timer

Watchdog
Timer

0xFFF2 25 Timer_A USART Rx Timer_A Timer_A USART0
Rx('43x
and'44x
only)

0xFFF0 24 Timer_A USART0 Tx Timer_A Timer_A USART0
Tx('43x
and'44x
only)

0xFFEE 23 USART0 Rx
('12xx only)

ADC USCI
Rx(22x2,
22x4, 23x,
24x, 26x
only)I2C
status (23x,
24x)

USART Rx ADC('43x
and'44x
only)

continued on next page

Available for free at Connexions <http://cnx.org/content/col10706/1.3>

6 CHAPTER 1. MSP430 OVERVIEW

0xFFEC 22 USART0 Tx
('12xx only)

Timer_A USCI
Tx(22x2,
22x4, 23x,
24x, 26x
only)I2C
Rx/Tx (23x,
24x, 26x
only)

USART Tx Timer_A

0xFFEA 21 ADC10 Timer_A ADC10
(20x2
22x2, 22x4
only)ADC12
(23x,
24x, 26x
only)SD16_A
(20x3 only)

ADC('32x
and '33x)
Timer/Port
('31x)

Timer_A

0xFFE8 20 Unused Port 1 USI(20x2,
20x3 only)

Timer/Port('32x
and '33x)

Port 1

0xFFE6 19 Port 2 USART1 Rx Port P2 Port 2 USART1
Rx('44x
only)

0xFFE4 18 Port 1 USART1 Tx Port P1 Port 1 USART1
Tx('44x
only)

0xFFE2 17 Unused Port 2 USCI
Rx (23x,
24x, 26x
only)I2C
status
(241x, 261x
only)

Basic Timer Port 2

0xFFE0 16 Unused Unused USCI Tx
(23x,24x
only)I2C
Rx/Tx
(241x, 261x
only)

Port 0 Basic Timer

continued on next page

Available for free at Connexions <http://cnx.org/content/col10706/1.3>

7

15 DMA (241x,
261x only)

14 DAC12
(241x, 261
only)

13 to 0Low-
est

Reserved

Table 1.1

1.3.2 Flash/ROM

The start address of Flash/ROM depends on the amount of Flash/ROM present on the device. The start
address varies between 01100h (60k devices) to 0F800h (2k devices) and always runs to the end of the address
space at location 0FFFFh. Flash can be used for both code and data. Word or byte tables can also be stored
and read by the program from Flash/ROM.

All code, tables, and hard-coded constants reside in this memory space.

1.3.3 Information memory (Flash devices only)

The MSP430 �ash devices contain an address space for information memory. It is like an onboard EEPROM,
where variables needed for the next power up can be stored during power down. It can also be used as code
memory. Flash memory may be written one byte or word at a time, but must be erased in segments. The
information memory is divided into two 128-byte segments. The �rst of these segments is located at addresses
01000h through to 0107Fh (Segment B), and the second is at address 01080h through to 010FFh (Segment
A). This is the case in 4xx devices. It is 256 bytes (4 segments of 64 bytes each) in 2xx devices.

1.3.4 Boot memory (Flash devices only)

The MSP430 �ash devices contain an address space for boot memory, located between addresses 0C00h
through to 0FFFh. The �bootstrap loader� is located in this memory space, which is an external interface
that can be used to program the �ash memory in addition to the JTAG. This memory region is not accessible
by other applications, so it cannot be overwritten accidentally. The bootstrap loader performs some of the
same functions as the JTAG interface (excepting the security fuse programming), using the TI data structure
protocol for UART communication at a �xed data rate of 9600 baud.

1.3.5 RAM

RAM always starts at address 0200h. The end address of RAM depends on the amount of RAM present on
the device. RAM is used for both code and data.

1.3.6 Peripheral Modules

Peripheral modules consist of all on-chip peripheral registers that are mapped into the address space. These
modules can be accessed with byte or word instructions, depending if the peripheral module is 8-bit or 16-bit
respectively. The 16-bit peripheral modules are located in the address space from addresses 0100 through to
01FFh and the 8-bit peripheral modules are mapped into memory from addresses 0010h through to 00FFh.

Available for free at Connexions <http://cnx.org/content/col10706/1.3>

8 CHAPTER 1. MSP430 OVERVIEW

1.3.7 Special Function Registers (SFRs)

Some peripheral functions are mapped into memory with special dedicated functions. The Special Function
Registers (SFRs) are located at memory addresses from 0000h to 000Fh, and are the speci�c registers for:

- Interrupt enables (locations 0000h and 0001h);
- Interrupt �ags (locations 0002h and 0003h);
- Enable �ags (locations 0004h and 0005h).
SFRs must be accessed using byte instructions only. See the device-speci�c data sheets for the applicable

SFR bits.
Request the MSP430 Teaching ROM Materials here https://www-

a.ti.com/apps/dspuniv/teaching_rom_request.asp6

1.4 Central Processing Unit (MSP430 CPU)7

1.4.1 Central Processing Unit (MSP430 CPU)

The RISC type architecture of the CPU is based on a short instruction set (27 instructions), interconnected
by a 3-stage instruction pipeline for instruction decoding. The CPU has a 16-bit ALU, four dedicated
registers and twelve working registers, which makes the MSP430 a high performance microcontroller suitable
for low power applications. The addition of twelve working general purpose registers saves CPU cycles by
allowing the storage of frequently used values and variables instead of using RAM.

The orthogonal instruction set allows the use of any addressing mode for any instruction, which makes
programming clear and consistent, with few exceptions, increasing the compiler e�ciency for high-level
languages such as C.

6https://www-a.ti.com/apps/dspuniv/teaching_rom_request.asp
7This content is available online at <http://cnx.org/content/m23497/1.1/>.

Available for free at Connexions <http://cnx.org/content/col10706/1.3>

9

MSP430 CPU block diagram.

Figure 1.3

Available for free at Connexions <http://cnx.org/content/col10706/1.3>

10 CHAPTER 1. MSP430 OVERVIEW

1.4.1.1 Arithmetic Logic Unit (ALU)

The MSP430 CPU includes an arithmetic logic unit (ALU) that handles addition, subtraction, comparison
and logical (AND, OR, XOR) operations. ALU operations can a�ect the over�ow, zero, negative, and carry
�ags in the status register.

1.4.1.2 MSP430 CPU registers

The CPU incorporates sixteen 16-bit registers:
- Four registers (R0, R1, R2 and R3) have dedicated functions;
- There are 12 working registers (R4 to R15) for general use.

1.4.1.2.1 R0: Program Counter (PC)

The 16-bit Program Counter (PC/R0) points to the next instruction to be read from memory and executed
by the CPU. The Program counter is implemented by the number of bytes used by the instruction (2, 4, or
6 bytes, always even). It is important to remember that the PC is aligned at even addresses, because the
instructions are 16 bits, even though the individual memory addresses contain 8-bit values.

1.4.1.2.2 R1: Stack Pointer (SP)

The Stack Pointer (SP/R1) is located in R1.
1st: stack can be used by user to store data for later use (instructions: store by PUSH, retrieve by POP);
2nd: stack can be used by user or by compiler for subroutine parameters (PUSH, POP in calling routine;

addressed via o�set calculation on stack pointer (SP) in called subroutine);
3rd: used by subroutine calls to store the program counter value for return at subroutine's end (RET);
4th: used by interrupt - system stores the actual PC value �rst, then the actual status register content

(on top of stack) on return from interrupt (RETI) the system get the same status as just before the interrupt
happened (as long as none has changed the value on TOS) and the same program counter value from stack.

1.4.1.2.3 R2: Status Register (SR)

The Status Register (SR/R2) stores the state and control bits. The system �ags are changed automatically
by the CPU depending on the result of an operation in a register. The reserved bits of the SR are used to
support the constants generator. See the device-speci�c data sheets for more details.

SR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved for CG1 V SCG1 SCG0 OSCOFF CPUOFF GIE N Z C

Table 1.2

Bit Description

8 V Over�ow bit.V = 1 ⇒ Result of
an arithmetic operation over�ows
the signed-variable range.

continued on next page

Available for free at Connexions <http://cnx.org/content/col10706/1.3>

11

7 SCG1 System clock generator 0.SCG1
= 1 ⇒ DCO generator is turned
o� � if not used for MCLK or SM-
CLK.

6 SCG0 System clock generator 1.SCG0
= 1 ⇒ FLL+ loop control is
turned o�.

5 OSCOFF Oscillator O�.OSCOFF = 1 ⇒
turns o� LFXT1 when it is not
used for MCLK or SMCLK.

4 CPUOFF CPU o�.CPUOFF = 1⇒ disable
CPU core.

3 GIE General interrupt enable.GIE =
1⇒ enables maskable interrupts.

2 N Negative �ag.N = 1 ⇒ result of
a byte or word operation is nega-
tive.

1 Z Zero �ag.Z = 1⇒ result of a byte
or word operation is 0.

0 C Carry �ag.C = 1 ⇒ result of a
byte or word operation produced
a carry.

Table 1.3

R2/R3: Constant Generator Registers (CG1/CG2)
Depending of the source-register addressing modes (As) value, six commonly used constants can be

generated without a code word or code memory access to retrieve them.
This is a very powerful feature, which allows the implementation of emulated instructions, for example,

instead of implementing a core instruction for an increment, the constant generator is used.

Register As Constant Remarks

R2 00 - Register mode

R2 01 (0) Absolute mode

R2 10 00004h +4, bit processing

R2 11 00008h +8, bit processing

R3 00 00000h 0, word processing

R3 01 00001h +1

R3 10 00002h +2, bit processing

R3 11 0FFFFh -1, word processing

Table 1.4

Available for free at Connexions <http://cnx.org/content/col10706/1.3>

Thank You for previewing this eBook
You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can
access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

