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Chapter 1

Introduction to Continuous-Time Signals

1.1 Continuous-Time Signals: Introduction1

The Merrian-Webster dictionary de�nes a signal as:

A detectable physical quantity or impulse (as a voltage, current, or magnetic �eld strength) by
which messages or information can be transmitted.

These are the types of signals which will be of interest in this book. Indeed, signals are not only the means
by which we perceive the world around us, they also enable individuals to communicate with one another on
a massive scale. So while our primary emphasis in this book will be on the theoretical foundations of signal
processing, we will also try to give examples of the tremendous impact that signals and systems have on
society. We will focus on two broad classes of signals, discrete-time and continuous-time. We will consider
discrete-time signals later on in this book. For now, we will focus our attention on continuous-time signals.
Fortunately, continuous-time signals have a very convenient mathematical representation. We represent a
continuous-time signal as a function x (t) of the real variable t. Here, t represents continuous time and we
can assign to t any unit of time we deem appropriate (seconds, hours, years, etc.). We do not have to make
any particular assumptions about x (t) such as boundedness (a signal is bounded if it has a �nite value).
Some of the signals we will work with are in fact, not bounded (i.e. they take on an in�nite value). However
most of the continuous-time signals we will deal with in the real world are bounded.

1This content is available online at <http://cnx.org/content/m32862/1.2/>.
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2 CHAPTER 1. INTRODUCTION TO CONTINUOUS-TIME SIGNALS
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Figure 1.1: Temperature signal recorded in Dallas, Texas from Aug. 16 to Aug. 22, 2002.

We actually encounter signals every day. Suppose we sketch a graph of the temperature outside the
Jerry Junkins Electrical Engineering Building on the SMU campus as a function of time. The graph might
look something like in Figure 1.1. This is an example of a signal which represents the physical quantity
temperature as it changes with time during the course of a week. Figure 1.2 shows another common signal,
the speech signal. Human speech signals are often measured by converting sound (pressure) waves into an
electrical potential using a microphone. The speech signal therefore corresponds to the air pressure measured
at the point in space where the microphone was located when the speech was recorded. The large deviations
which the speech signal undergoes corresponds to vowel sounds such as �ahhh" or �eeeeh" (voiced sounds)
while the smaller portions correspond to sounds such as �th" or �sh" (unvoiced sounds). In Figure 1.3, we
see yet another signal called an electrocardiogram (EKG). The EKG is a voltage which is generated by the
heart and measured by subtracting the voltage recorded from two points on the human body as seen in
Figure 1.4. Since the heart generates very low-level voltages, the di�erence signal must be ampli�ed by a
high-gain ampli�er.

Available for free at Connexions <http://cnx.org/content/col10965/1.15>
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Figure 1.2: Speech signal.
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Figure 1.3: Human electrocardiogram (EKG) signal.
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4 CHAPTER 1. INTRODUCTION TO CONTINUOUS-TIME SIGNALS
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Figure 1.4: Measurement of the electrocardiogram (EKG).

1.2 Signal Power, Energy, and Frequency2

Signals can be characterized in several di�erent ways. Audio signals (music, speech, and really, any kind of
sound we can hear) are particularly useful because we can use our existing notion of �loudness" and �pitch"
which we normally associate with an audio signal to develop ways of characterizing any kind of signal. In
terms of audio signals, we use �power" to characterize the loudness of a sound. Audio signals which have
greater power sound �louder" than signals which have lower power (assuming the pitch of the sounds are
within the range of human hearing). Of course, power is related to the amplitude, or size of the signal. We
can develop a more precise de�nition of power. The signal power is de�ned as:

px = lim
T→∞

1
T

∫ T/2

−T/2
x2 (t) dt (1.1)

The energy of this signal is similarly de�ned

ex =
∫ ∞
−∞

x2 (t) dt (1.2)

We can see that power has units of energy per unit time. Strictly speaking, the units for energy depend on
the units assigned to the signal. If x (t) is a voltage, than the units for ex would be volts2-seconds. Notice
also that some signals may not have �nite energy. As we will see shortly, periodic signals do not have �nite

2This content is available online at <http://cnx.org/content/m32864/1.3/>.
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5

energy. Signals having a �nite energy are sometimes called energy signals. Some signals that have in�nite
energy however can have �nite power. Such signals are sometimes called power signals.

We use the concept of �frequency" to characterize the pitch of audio signals. The frequency of a signal is
closely related to the variation of the signal with time. Signals which change rapidly with time have higher
frequencies than signals which are changing slowly with time as seen Figure 1.5. As we shall see, signals can
also be represented in terms of their frequencies, X (jΩ), where Ω is a frequency variable. Devices which
enable us to view the frequency content of a signal in real-time are called spectrum analyzers.

0 2 4 6 8 10
−0.2

0

0.2

x(
t)

t (sec)

0 2 4 6 8 10
−0.1

0

0.1

t (sec)

y(
t)

Figure 1.5: The signal y (t) contains a greater amount of high frequencies than x (t).

Something to keep in mind is that the signals shown in Figures Figure 1.1, Figure 1.2, and Figure 1.3
each have di�erent units (degrees Fahrenheit, pressure, and voltage, respectively). So while we can compare
relative frequencies between these signals, it doesn't make much sense to compare their power since each
signal has di�erent units. We will take a more formal look at the frequency of signals starting in Chapter 2.

1.3 Basic Signal Operations3

We will be considering the following basic operations on signals:

• Time shifting:
y (t) = x (t− τ) (1.3)

The e�ect that a time shift has on the appearance of a signal is seen in Figure 1.6. If τ is a positive
number, the time shifted signal, x (t− τ) gets shifted to the right, otherwise it gets shifted left.

• Time reversal:
y (t) = x (−t) (1.4)

3This content is available online at <http://cnx.org/content/m32866/1.2/>.
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6 CHAPTER 1. INTRODUCTION TO CONTINUOUS-TIME SIGNALS

Time reversal �ips the signal about t = 0 as seen in Figure 1.6.
• Addition: any two signals can be added to form a third signal,

z (t) = x (t) + y (t) (1.5)

• Time scaling:
y (t) = x (Ωt) (1.6)

Time scaling �compresses" the signal if Ω > 1 or �stretches" it if Ω < 1 (see Figure 1.7).
• Multiplication by a constant, α:

y (t) = αx (t) (1.7)

• Multiplication of two signals, their product is also a signal.

z (t) = x (t) y (t) (1.8)

Multiplication of signals has many useful applications in wireless communications.
• Di�erentiation:

y (t) =
dx (t)
dt

(1.9)

• Integration:

y (t) =
∫
x (t) dt (1.10)

There is another very important signal operation called convolution which we will look at in detail in Chapter
3. As we shall see, convolution is a combination of several of the above operations.

Available for free at Connexions <http://cnx.org/content/col10965/1.15>
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Figure 1.6: (a) original signal, (b) time-shift, (c) time-reversal.
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Figure 1.7: (a) original signal, (b) Ω > 1, (c) Ω < 1.
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1.4 Complex Numbers and Complex Arithmetic4

Before we begin studying signals, we need to review some basic aspects of complex numbers and complex
arithmetic. The rectangular coordinate representation of a complex number z is z has the form:

z = a+ jb (1.11)

where a and b are real numbers and j =
√−1. The real part of z is the number a, while the imaginary part

of z is the number b. We also note that jb (jb) = −b2 (a real number) since j (j) = −1. Any number having
the form

z = jb (1.12)

where b is a real number is an imaginary number. A complex number can also be represented in polar
coordinates

z = rejθ (1.13)

where

r =
√
a2 + b2 (1.14)

is the magnitude and

θ = arctan

(
b

a

)
(1.15)

is the phase of the complex number z. The notation for the magnitude and phase of a complex number is
given by |z| and ∠z, respectively. Using Euler's Identity:

e±jθ = cos (θ)± jsin (θ) (1.16)

it follows that a = rcos (θ) and b = rsin (θ). Figure 1.8 illustrates how polar coordinates and rectangular
coordinates are related.

Re(z)

Im(z)

z = a + jb

a

b

θ

r

Figure 1.8: Relationship between rectangular and polar coordinates.

4This content is available online at <http://cnx.org/content/m32867/1.2/>.
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10 CHAPTER 1. INTRODUCTION TO CONTINUOUS-TIME SIGNALS

Rectangular coordinates and polar coordinates are each useful depending on the type of mathematical
operation performed on the complex numbers. Often, complex numbers are easier to add in rectangular
coordinates, but multiplication and division is easier in polar coordinates. If z = a+ jb is a complex number
then its complex conjugate is de�ned by

z∗ = a− jb (1.17)

in polar coordinates we have

z∗ = re−jθ (1.18)

note that zz∗ = |z|2 = r2 and z+ z∗ = 2a. Also, if z1, z2, ..., zN are complex numbers it can be easily shown
that

(z1 + z2 + · · ·+ zN )∗ = z∗1 + z∗2 + · · ·+ z∗N (1.19)

and

(z1z2 · · · zN )∗ = z∗1z
∗
2 · · · z∗N (1.20)

Table 1.1 indicates how two complex numbers combine in terms of addition, multiplication, and division
when expressed in rectangular and in polar coordinates.

operation rectangular polar

z1 + z2 (a1 + a2) + j (b1 + b2)

z1z2 a1a2 − b1b2 + j (a1b2 + a2b1) r1r2e
j(θ1+θ2)

z1/z2
(a1a2+b1b2)+j(b1a2−a1b2)

a2
2+b22

r1
r2
ej(θ1−θ2)

Table 1.1: Operations on two complex numbers, z1 = a1 + jb1 = r1e
jθ1 and z2 = a2 + jb2 = r2e

jθ2 . The
sum of two complex numbers is cumbersome to express in polar coordinates, and is not shown.

1.5 Periodic Signals5

Periodic signals have the following property:

x (t) = x (t+ kT ) (1.21)

where k is an integer and T is called the fundamental period. Periodic have the property that they �repeat"
every T seconds. For periodic signals, the power can be de�ned as

px =
1
T

∫ t0+T

t0

x2 (t) dt (1.22)

Figure 1.9 shows an example of a periodic signal. We will study the frequency content of periodic signals
in some detail in Chapter 2.

5This content is available online at <http://cnx.org/content/m32869/1.2/>.
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Figure 1.9: General periodic signal.

1.6 Sinusoidal Signals6

1.6.1 Sinusoidal Signals

Sinusoidal signals are perhaps the most important type of signal that we will encounter in signal processing.
There are two basic types of signals, the cosine:

x (t) = Acos (Ωt) (1.23)

and the sine:

x (t) = Asin (Ωt) (1.24)

where A is a real constant. Plots of the sine and cosine signals are shown in Figure 1.10. Sinusoidal
signals are periodic signals. The period of the cosine and sine signals shown above is given by T = 2π/Ω.
The frequency of the signals is Ω = 2π/T which has units of rad/sec . Equivalently, the frequency can be
expressed as 1/T , which has units of sec−1, cycles/sec, or Hz. The quantity Ωt has units of radians and is
often called the phase of the sinusoid. Recalling the e�ect of a time shift on the appearance of a signal, we
can observe from Figure 1.10 that the sine signal is obtained by shifting the cosine signal by T/4 seconds,
i.e.

6This content is available online at <http://cnx.org/content/m32870/1.5/>.
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