
Purdue Digital Signal Processing Labs (ECE
438)

By:
Charles A. Bouman

Purdue Digital Signal Processing Labs (ECE
438)

By:
Charles A. Bouman

Online:
< http://cnx.org/content/col10593/1.4/ >

C O N N E X I O N S

Rice University, Houston, Texas

This selection and arrangement of content as a collection is copyrighted by Charles A. Bouman. It is licensed under

the Creative Commons Attribution 2.0 license (http://creativecommons.org/licenses/by/2.0/).

Collection structure revised: September 14, 2009

PDF generated: October 26, 2012

For copyright and attribution information for the modules contained in this collection, see p. 164.

Table of Contents

1 Lab 0 - Introduction to Module Set . 1
2 Lab 1 - Discrete and Continuous-Time Signals . 3
3 Lab 2 - Discrete-Time Systems . 11
4 Lab 3 - Frequency Analysis . 17
5 Lab 4 - Sampling and Reconstruction . 29
6 Lab 5a - Digital Filter Design (part 1) . 41
7 Lab 5b - Digital Filter Design (part 2) . 55
8 Lab 6a - Discrete Fourier Transform and FFT (part 1) . 67
9 Lab 6b - Discrete Fourier Transform and FFT (part 2) . 73
10 Lab 7a - Discrete-Time Random Processes (part 1) . 81
11 Lab 7b - Discrete-Time Random Processes (part 2) . 91
12 Lab 7c - Power Spectrum Estimation . 97
13 Lab 8 - Number Representation and Quantization . 103
14 Lab 9a - Speech Processing (part 1) . 113
15 Lab 9b - Speech Processing (part 2) . 125
16 Lab 10a - Image Processing (part 1) . 133
17 Lab 10b - Image Processing (part 2) 151
Bibliography . 163
Attributions .164

iv

Available for free at Connexions <http://cnx.org/content/col10593/1.4>

Chapter 1

Lab 0 - Introduction to Module Set1

Questions or comments concerning this laboratory should be directed to Prof. Charles A. Bouman, School
of Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907; (765) 494-0340;
bouman@ecn.purdue.edu

1.1 Introduction

These modules are a reproduction of a set of laboratory experiments developed for the course ECE438 -
Digital Signal Processing with Applications, taught in the School of Electrical and Computer En-
gineering at Purdue University. This is a senior-level undergraduate course that covers the fundamentals
of digital signal processing, along with several applications throughout the course. Some applications of
particular emphasis are speech modeling, coding and synthesis, and also imaging processing topics including
�ltering, color spaces, halftoning, and tomography.

Laboratory experiments are performed each week during the semester, so these modules are designed to
be completed in 2-4 hours. While the labs are performed as part of a lecture course, the lab modules contain
most of the relevant background theory along with the lab exercises.

All of the lab exercises in this module set are written for Matlab by MathWorks. The modules are
written for a student who has essentially no Matlab experience. A Matlab introduction is contained in the
�rst module, and further Matlab skills and tips are provided as the modules progress forward.

1.2 External Links

Purdue University2

School of Electrical and Computer Engineering3

ECE438 Laboratory4

Prof. Charles A. Bouman5

Prof. Jan P. Allebach6

Prof. Michael D. Zoltowski7

Prof. Ilya Pollak8

1This content is available online at <http://cnx.org/content/m18074/1.3/>.
2http://www.purdue.edu/
3http://engineering.purdue.edu/ECE/
4http://www.purdue.edu/VISE/ee438L/
5http://engineering.purdue.edu/∼bouman/
6http://dps.ecn.purdue.edu/∼allebach/
7http://cobweb.ecn.purdue.edu/∼mikedz/
8http://cobweb.ecn.purdue.edu/∼ipollak/

Available for free at Connexions <http://cnx.org/content/col10593/1.4>

1

2 CHAPTER 1. LAB 0 - INTRODUCTION TO MODULE SET

Available for free at Connexions <http://cnx.org/content/col10593/1.4>

Chapter 2

Lab 1 - Discrete and Continuous-Time
Signals1

Question and Comments
Questions or comments concerning this laboratory should be directed to Prof. Charles A. Bouman, School
of Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907; (765) 494-0340;
bouman@ecn.purdue.edu

2.1 Introduction

The purpose of this lab is to illustrate the properties of continuous and discrete-time signals using digital
computers and the Matlab software environment. A continuous-time signal takes on a value at every point
in time, whereas a discrete-time signal is only de�ned at integer values of the �time� variable. However,
while discrete-time signals can be easily stored and processed on a computer, it is impossible to store the
values of a continuous-time signal for all points along a segment of the real line. In later labs, we will see
that digital computers are actually restricted to the storage of quantized discrete-time signals. Such signals
are appropriately known as digital signals.

How then do we process continuous-time signals? In this lab, we will show that continuous-time signals
may be processed by �rst approximating them by discrete-time signals using a process known as sampling.
We will see that proper selection of the spacing between samples is crucial for an e�cient and accurate
approximation of a continuous-time signal. Excessively close spacing will lead to too much data, whereas
excessively distant spacing will lead to a poor approximation of the continuous-time signal. Sampling will be
an important topic in future labs, but for now we will use sampling to approximately compute some simple
attributes of both real and synthetic signals.

NOTE: Be sure to read the guidelines for the written reports.

2.2 Matlab Review

Practically all lab tasks in the ECE438 lab will be performed using Matlab. Matlab (MATrix LABoratory)
is a technical computing environment for numerical analysis, matrix computation, signal processing, and
graphics. In this section, we will review some of its basic functions. For a short tutorial and some Matlab
examples click here2 .

1This content is available online at <http://cnx.org/content/m18073/1.3/>.
2https://engineering.purdue.edu/ECN/Support/KB/Docs/MatlabCharlesBoumans

Available for free at Connexions <http://cnx.org/content/col10593/1.4>

3

4 CHAPTER 2. LAB 1 - DISCRETE AND CONTINUOUS-TIME SIGNALS

2.2.1 Starting Matlab and Getting Help

You can start Matlab (version 7.0) on your workstation by typing the command
matlab

in a command window. After starting up, you will get a Matlab window. To get help on any speci�c
command, such as �plot�, you can type the following

help plot

in the �Command Window� portion of the Matlab window. You can do a keyword search for commands
related to a topic by using the following.

lookfor topic

You can get an interactive help window using the function
helpdesk

or by following the Help menu near the top of the window.

2.2.2 Matrices and Operations

Every element in Matlab is a matrix. So, for example, the Matlab command

a =
[

1 2 3
]

creates a matrix named �a� with dimensions of 1 × 3. The variable �a� is stored in what is called the
Matlab workspace. The operation

b = a.'
stores the transpose of �a� into the vector �b�. In this case, �b� is a 3× 1 vector.
Since each element in Matlab is a matrix, the operation
c = a ∗ b
computes the matrix product of �a� and �b� to generate a scalar value for �c� of 14 = 1∗1 + 2∗2 + 3∗3 .
Often, you may want to apply an operation to each element of a vector. For example, you many want to

square each value of �a�. In this case, you may use the following command.
c = a. ∗ a
The dot before the * tells Matlab that the multiplication should be applied to each corresponding element

of �a�. Therefore the .* operation is not a matrix operation. The dot convention works with many other
Matlab commands such as divide ./ , and power .^. An error results if you try to perform element-wise
operations on matrices that aren't the same size.

Note also that while the operation a.' performs a transpose on the matrix "a", the operation a' performs
a conjugate transpose on "a" (transposes the matrix and conjugates each number in the matrix).

2.2.3 Matlab Scripts and Functions

Matlab has two methods for saving sequences of commands as standard �les. These two methods are called
scripts and functions. Scripts execute a sequence of Matlab commands just as if you typed them directly
into the Matlab command window. Functions di�er from scripts in that they accept inputs and return
outputs, and variables de�ned within a function are generally local to that function.

A script-�le is a text �le with the �lename extension ".m". The �le should contain a sequence of Matlab
commands. The script-�le can be run by typing its name at the Matlab prompt without the .m extension.
This is equivalent to typing in the commands at the prompt. Within the script-�le, you can access variables
you de�ned earlier in Matlab. All variables in the script-�le are global, i.e. after the execution of the
script-�le, you can access its variables at the Matlab prompt. For more help on scripts click here3.

To create a function called func, you �rst create a text �le called func.m. The �rst line of the �le must
be

function output = func(input)

3See the �le at <http://cnx.org/content/m18073/latest/script.pdf>

Available for free at Connexions <http://cnx.org/content/col10593/1.4>

5

where input designates the set of input variables, and output are your output variables. The rest of the
function �le then contains the desired operations. All variables within the function are local; that means the
function cannot access Matlab workspace variables that you don't pass as inputs. After the execution of the
function, you cannot access internal variables of the function. For more help on functions click here4.

2.3 Continuous-Time Vs. Discrete-Time

The "Introduction" (Section 2.1: Introduction) mentioned the important issue of representing continuous-
time signals on a computer. In the following sections, we will illustrate the process of sampling, and
demonstrate the importance of the sampling interval to the precision of numerical computations.

2.3.1 Analytical Calculation

Compute these two integrals. Do the computations manually.

1. ∫ 2π

0

sin2 (5t) dt (2.1)

2. ∫ 1

0

etdt (2.2)

INLAB REPORT: Hand in your calculations of these two integrals. Show all work.

2.3.2 Displaying Continuous-Time and Discrete-Time Signals in Matlab

For help on the following topics, visit the corresponding link: Plot Function5, Stem Command6, and Subplot
Command7.

It is common to graph a discrete-time signal as dots in a Cartesian coordinate system. This can be done
in the Matlab environment by using the stem command. We will also use the subplot command to put
multiple plots on a single �gure.

Start Matlab on your workstation and type the following sequence of commands.

n = 0:2:60;

y = sin(n/6);

subplot(3,1,1)

stem(n,y)

This plot shows the discrete-time signal formed by computing the values of the function sin(t/6) at points
which are uniformly spaced at intervals of size 2. Notice that while sin(t/6) is a continuous-time function,
the sampled version of the signal, sin(n/6), is a discrete-time function.

A digital computer cannot store all points of a continuous-time signal since this would require an in�nite
amount of memory. It is, however, possible to plot a signal which looks like a continuous-time signal, by
computing the value of the signal at closely spaced points in time, and then connecting the plotted points
with lines. The Matlab plot function may be used to generate such plots.

Use the following sequence of commands to generate two continuous-time plots of the signal sin(t/6).

4See the �le at <http://cnx.org/content/m18073/latest/function.pdf>
5See the �le at <http://cnx.org/content/m18073/latest/plot.pdf>
6See the �le at <http://cnx.org/content/m18073/latest/stem.pdf>
7See the �le at <http://cnx.org/content/m18073/latest/subplot.pdf>

Available for free at Connexions <http://cnx.org/content/col10593/1.4>

6 CHAPTER 2. LAB 1 - DISCRETE AND CONTINUOUS-TIME SIGNALS

n1 = 0:2:60;

z = sin(n1/6);

subplot(3,1,2)

plot(n1,z)

n2 = 0:10:60;

w = sin(n2/6);

subplot(3,1,3)

plot(n2,w)

As you can see, it is important to have many points to make the signal appear smooth. But how many points
are enough for numerical calculations? In the following sections we will examine the e�ect of the sampling
interval on the accuracy of computations.

INLAB REPORT: Submit a hard copy of the plots of the discrete-time function and two
continuous-time functions. Label them with the title command, and include your names. Com-
ment on the accuracy of each of the continuous time plots.

2.3.3 Numerical Computation of Continuous-Time Signals

For help on the following topics, click the corresponding link: MatLab Scripts8, MatLab Functions9, and the
Subplot Command10.
Background on Numerical Integration
One common calculation on continuous-time signals is integration. Figure 2.1 illustrates a method used for
computing the widely used Riemann integral. The Riemann integral approximates the area under a curve
by breaking the region into many rectangles and summing their areas. Each rectangle is chosen to have the
same width ∆t, and the height of each rectangle is the value of the function at the start of the rectangle's
interval.

8See the �le at <http://cnx.org/content/m18073/latest/script.pdf>
9See the �le at <http://cnx.org/content/m18073/latest/function.pdf>

10See the �le at <http://cnx.org/content/m18073/latest/subplot.pdf>

Available for free at Connexions <http://cnx.org/content/col10593/1.4>

7

Figure 2.1: Illustration of the Riemann integral

To see the e�ects of using a di�erent number of points to represent a continuous-time signal, write a
Matlab function for numerically computing the integral of the function sin2(5t) over the interval [0, 2π]. The
syntax of the function should be I=integ1(N) where I is the result and N is the number of rectangles used
to approximate the integral. This function should use the sum command and it should not contain any for
loops!

Note: Since Matlab is an interpreted language, for loops are relatively slow. Therefore, we will
avoid using loops whenever possible.

Next write an m-�le script that evaluates I (N) for 1 ≤ N ≤ 100, stores the result in a vector and plots the
resulting vector as a function of N . This m-�le script may contain for loops.

Repeat this procedure for a second function J=integ2(N) which numerically computes the integral of
exp (t) on the interval [0, 1].

INLAB REPORT: Submit plots of I (N) and J (N) versus N . Use the subplot command to put
both plots on a single sheet of paper. Also submit your Matlab code for each function. Compare
your results to the analytical solutions from the "Analytical Calculation" (Section 2.3.1: Analytical
Calculation) section. Explain why I(5) = I(10 = 0.

2.4 Processing of Speech Signals

For this section download the speech.au11 �le. For instructions on how to load and play audio signals click
here12.

Digital signal processing is widely used in speech processing for applications ranging from speech com-
pression and transmission, to speech recognition and speaker identi�cation. This exercise will introduce the
process of reading and manipulating a speech signal.

11See the �le at <http://cnx.org/content/m18073/latest/speech.au>
12See the �le at <http://cnx.org/content/m18073/latest/audio.pdf>

Available for free at Connexions <http://cnx.org/content/col10593/1.4>

8 CHAPTER 2. LAB 1 - DISCRETE AND CONTINUOUS-TIME SIGNALS

First download the speech audio �le speech.au13, and then do the following:

1. Use the auread command to load the �le speech.au into Matlab.
2. Plot the signal on the screen as if it were a continuous-time signal (i.e. use the plot command).
3. Play the signal via the digital-to-analog converter in your workstation with the Matlab sound function.

INLAB REPORT: Submit your plot of the speech signal.

2.5 Attributes of Continuous-Time Signals

For this section download the signal1.p14 function.
In this section you will practice writing .m-�les to calculate the basic attributes of continuous-time signals.

Download the function signal1.p15. This is a pre-parsed pseudo-code �le (P-�le), which is a �pre-compiled�
form of the Matlab function signal1.m. To evaluate this function, simply type y = signal1(t) where t is
a vector containing values of time. Note that this Matlab function is valid for any real-valued time, t , so y

= signal1(t) yields samples of a continuous-time function.
First plot the function using the plot command. Experiment with di�erent values for the sampling

period and the starting and ending times, and choose values that yield an accurate representation of the
signal. Be sure to show the corresponding times in your plot using a command similar to plot(t,y).

Next write individual Matlab functions to compute the minimum, maximum, and approximate energy
of this particular signal. Each of these functions should just accept an input vector of times, t, and should
call signal1(t) within the body of the function. You may use the built-in Matlab functions min and max.
Again, you will need to experiment with the sampling period, and the starting and ending times so that
your computations of the min, max, and energy are accurate.

Remember the de�nition of the energy is

energy =
∫ ∞
−∞
|signal1 (t)|2dt . (2.3)

INLAB REPORT: Submit a plot of the function, and the computed values of the min, max,
and energy. Explain your choice of the sampling period, and the starting and ending times. Also,
submit the code for your energy function.

2.6 Special Functions

Plot the following two continuous-time functions over the speci�ed intervals. Write separate script �les if
you prefer. Use the subplot command to put both plots in a single �gure, and be sure to label the time
axes.

• sinc (t) for t in [−10π, 10π]
• rect (t) for t in [−2, 2]

Hint: The function rect(t) may be computed in Matlab by using a Boolean expression. For
example, if t=-10:0.1:10, then y = rect(t) may be computed using the Matlab command
y=(abs(t)<=0.5).

13See the �le at <http://cnx.org/content/m18073/latest/speech.au>
14See the �le at <http://cnx.org/content/m18073/latest/signal1.p>
15See the �le at <http://cnx.org/content/m18073/latest/signal1.p>

Available for free at Connexions <http://cnx.org/content/col10593/1.4>

9

Write an .m-script �le to stem the following discrete-time function for a = 0.8, a = 1.0 and a = 1.5. Use the
subplot command to put all three plots in a single �gure. Issue the command orient('tall') just prior
to printing to prevent crowding of the subplots.

• an (u (n)− u (n− 10)) for n in [−20, 20]

Repeat this procedure for the function

• cos (ωn) anu (n) for ω = π/4, and n in [−1, 10]

Hint: The unit step function y = u (n) may be computed in Matlab using the command y =

(n>=0) , where n is a vector of time indices.

INLAB REPORT: Submit all three �gures, for a total of 8 plots. Also submit the printouts of
your Matlab .m-�les.

2.7 Sampling

The word sampling refers to the conversion of a continuous-time signal into a discrete-time signal. The
signal is converted by taking its value, or sample, at uniformly spaced points in time. The time between two
consecutive samples is called the sampling period. For example, a sampling period of 0.1 seconds implies
that the value of the signal is stored every 0.1 seconds.

Consider the signal f (t) = sin(2πt). We may form a discrete-time signal, x(n), by sampling this signal
with a period of Ts. In this case,

x (n) = f (Tsn) = sin (2πTsn) . (2.4)

Use the stem command to plot the function f (Tsn) de�ned above for the following values of Ts and n.
Use the subplot command to put all the plots in a single �gure, and scale the plots properly with the axis
command.

1. Ts = 1/10, 0 ≤ n ≤ 100; axis([0,100,-1,1])
2. Ts = 1/3, 0 ≤ n ≤ 30; axis([0,30,-1,1])
3. Ts = 1/2, 0 ≤ n ≤ 20; axis([0,20,-1,1])
4. Ts = 10/9, 0 ≤ n ≤ 9; axis([0,9,-1,1])

INLAB REPORT: Submit a hardcopy of the �gure containing all four subplots. Discuss your
results. How does the sampled version of the signal with Ts = 1/10 compare to those with Ts = 1/3,
Ts = 1/2 and Ts = 10/9?

2.8 Random Signals

For help on the Matlab random function, click here16.
The objective of this section is to show how two signals that �look� similar can be distinguished by

computing their average over a large interval. This type of technique is used in signal demodulators to
distinguish between the digits �1� and �0�.

Generate two discrete-time signals called �sig1� and �sig2� of length 1,000. The samples of �sig1� should
be independent, Gaussian random variables with mean 0 and variance 1. The samples of �sig2� should be
independent, Gaussian random variables with mean 0.2 and variance 1. Use the Matlab command random or

16See the �le at <http://cnx.org/content/m18073/latest/random.pdf>

Available for free at Connexions <http://cnx.org/content/col10593/1.4>

10 CHAPTER 2. LAB 1 - DISCRETE AND CONTINUOUS-TIME SIGNALS

randn to generate these signals, and then plot them on a single �gure using the subplot command. (Recall
that an alternative name for a Gaussian random variable is a normal random variable.)

Next form a new signal �ave1(n)� of length 1,000 such that �ave1(n)� is the average of the vector �sig1(1:n)�
(the expression sig1(1:n) returns a vector containing the �rst n elements of �sig1�). Similarly, compute
�ave2(n)� as the average of �sig2(1:n)�. Plot the signals �ave1(n)� and �ave2(n)� versus �n� on a single plot.
Refer to help on the Matlab plot command17 for information on plotting multiple signals.

INLAB REPORT: Submit your plot of the two signals �sig1� and �sig2�. Also submit your plot
of the two signals �ave1� and �ave2�. Comment on how the average values changes with n. Also
comment on how the average values can be used to distinguish between random noise with di�erent
means.

2.9 2-D Signals

For help on the following topics, click the corresponding link: Meshgrid Command18, Mesh Command19,
and Displaying Images20.

So far we have only considered 1-D signals such as speech signals. However, 2-D signals are also very
important in digital signal processing. For example, the elevation at each point on a map, or the color at
each point on a photograph are examples of important 2-D signals. As in the 1-D case, we may distinguish
between continuous-space and discrete-space signals. However in this section, we will restrict attention to
discrete-space 2-D signals.

When working with 2-D signals, we may choose to visualize them as images or as 2-D surfaces in a
3-D space. To demonstrate the di�erences between these two approaches, we will use two di�erent display
techniques in Matlab. Do the following:

1. Use the meshgrid command to generate the discrete-space 2-D signal

f (m,n) = 255|sinc (0.2m) sin (0.2n) | (2.5)

for −50 ≤ m ≤ 50 and −50 ≤ n ≤ 50. See the help on meshgrid21 if you're unfamiliar with its usage.
2. Use the mesh command to display the signal as a surface plot.
3. Display the signal as an image. Use the command colormap(gray(256)) just after issuing the image

command to obtain a grayscale image. Read the help on image22 for more information.

INLAB REPORT: Hand in hardcopies of your mesh plot and image. For which applications do
you think the surface plot works better? When would you prefer the image?

17See the �le at <http://cnx.org/content/m18073/latest/plot.pdf>
18See the �le at <http://cnx.org/content/m18073/latest/meshgrid.pdf>
19See the �le at <http://cnx.org/content/m18073/latest/mesh.pdf>
20See the �le at <http://cnx.org/content/m18073/latest/image.pdf>
21See the �le at <http://cnx.org/content/m18073/latest/meshgrid.pdf>
22See the �le at <http://cnx.org/content/m18073/latest/image.pdf>

Available for free at Connexions <http://cnx.org/content/col10593/1.4>

Chapter 3

Lab 2 - Discrete-Time Systems1

Question or Comments
Questions or comments concerning this laboratory should be directed to Prof. Charles A. Bouman, School
of Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907; (765) 494-0340;
bouman@ecn.purdue.edu

3.1 Introduction

A discrete-time system is anything that takes a discrete-time signal as input and generates a discrete-time
signal as output.2 The concept of a system is very general. It may be used to model the response of an
audio equalizer or the performance of the US economy.

In electrical engineering, continuous-time signals are usually processed by electrical circuits described
by di�erential equations. For example, any circuit of resistors, capacitors and inductors can be analyzed
using mesh analysis to yield a system of di�erential equations. The voltages and currents in the circuit may
then be computed by solving the equations.

The processing of discrete-time signals is performed by discrete-time systems. Similar to the continuous-
time case, we may represent a discrete-time system either by a set of di�erence equations or by a block
diagram of its implementation. For example, consider the following di�erence equation.

y (n) = y (n− 1) + x (n) + x (n− 1) + x (n− 2) (3.1)

This equation represents a discrete-time system. It operates on the input signal x (n) to produce the output
signal y (n). This system may also be de�ned by a system diagram as in Figure 3.1.

1This content is available online at <http://cnx.org/content/m18075/1.3/>.
2A more general behavioral view of systems is anything that imposes constraints on a set of signals.

Available for free at Connexions <http://cnx.org/content/col10593/1.4>

11

Thank You for previewing this eBook
You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can
access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

