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To my parents



PREFACE

My aim in this book is to give an elementary treatment of linear control

theory with an Hoo optimality criterion. The systems are all linear, time-

invariant, and finite-dimensional and they operate in continuous time. The book

has been used in a one-semester graduate course, with only a few prerequisites:

classical control theory, linear systems (state-space and input-output viewpoints),

and a bit of real and complex analysis.

Only one problem is solved in this book: how to design a controller which

minimizes the Hoo-norm of a pre-designated closed-loop transfer matrix. The

Hoo-norm of a transfer matrix is the maximum over all frequencies of its largest

singular value. In this problem the plant is fixed and known, although a certain

robust stabilization problem can be recast in this form. The general robust per-

formance problem - how to design a controller which is Hoo-optimal for the worst

plant in a pre-specified set - is as yet unsolved.

The book focuses on the mathematics of Hoo control. Generally speaking,

the theory is developed in the input-output (operator) framework, while computa-

tional procedures are presented in the state-space framework. However, I have

compromised in some proofs: if a result is required for computations and if both

operator and state-space proofs are available, I have usually adopted the latter.

The book contains several numerical examples, which were performed using PC-

MATLAB and the Control Systems Toolbox. The primary purpose of the exam-

ples is to illustrate the theory, although two are examples of (not entirely realis-

tic) Hoo designs. A good project for the future would be a collection of case stu-

dies of Hoo designs.

Chapter 1 motivates the approach by looking at two example control prob-

lems: robust stabilization and wideband disturbance attenuation. Chapter 2 col-

lects some elementary concepts and facts concerning spaces of functions, both

time-domain and frequency domain. Then the main problem, called the standard

problem, is posed in Chapter 3. One example of the standard problem is the

model-matching problem of designing a cascade controller to minimize the error
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between the input-output response of a plant and that of a model. In Chapter 4

the very useful parametrization due to Youla, Jabr, and Bongiorno (1976) is used

to reduce the standard problem to the model-matching problem. The results in

Chapter 4 are fairly routine generalizations of those in the expert book by

Vidyasagar (1985a).

Chapter 5 introduces some basic concepts about operators on Hilbert space

and presents some useful facts about Hankel operators, including Nehari's

theorem. This material permits a solution to the scalar-valued model-matching

problem in Chapter 6. The matrix-valued problem is much harder and requires a

preliminary chapter, Chapter 7, on factorization theory. The basic factorization

theorem is due to Bart, Gohberg, and Kaashoek (1979); its application yields

spectral factorization, inner-outer factorization, and J -spectral factorization.

This arsenal together with the geometric theory of Ball and Helton (1983) is used

against the matrix-valued problem in Chapter 8; actually, only nearly optimal

solutions are derived.

Thus Chapters 4 to 8 constitute a theory of how to compute solutions to the

standard problem. But the Hoo approach offers more than this: it yields qualita-

tive and quantitative results on achievable performance, showing the trade-offs

involved in frequency-domain design. Three examples of such results are

presented in the final chapter.

I chose to omit three elements of the theory: a proof of Nehari's theorem,

because it would take us too far afield; a proof of the main existence theorem, for

the same reason; and the theory of truly (rather than nearly) optimal solutions,

because it's too hard for an elementary course.

It is a pleasure to express my gratitude to three colleagues: George Zames,

Bill Helton, and John Doyle. Because of George's creativity and enthusiasm I

became interested in the subject in the first place. From Bill I learned some

beautiful operator theory. And from John I learned "the big picture" and how to

compute using state-space methods. I am also grateful to John for his invitation

to participate in the ONR/Honeywell workshop (1984). The notes from that

workshop led to a joint expository paper, which led in turn to this book.
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I am also very grateful to Linda Espeut for typing the first draft into the

computer and to John Hepburn for helping me with unix, troff, pic, and grap.

Toronto

May, 1986

Bruce A. Francis
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IX

The transfer matrix corresponding to the state-space realization

(A , B, C, D) is denoted [A , B , C, D ], i.e.

[A, B, C, D] := D + C (8 -A tlB

Following is a collection of useful operations on transfer matrices using this data

structure:

[A, B, C, D] = [T-1AT, T-1B, CT, D]

[A, B, C, D]~ = [-A T , -C T, B T, D T]

[A l' B v C l' D 1]X [A 2' B 2' C 2' D 2]

[[~I B~~,], [B~:,], (GI DIG,I, DID,]

[ [B~ ~, : 1], [B: ~ , ], (D1G , G 1], DID, ]

[A l' B v C l' D 1] + [A 2' B 2' C 2' D 2]

= [[~I :,J, [~:].(GI G,I, DI+D, ]
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CHAPTER 1

INTRODUCTION

This course is about the design of control systems to meet frequency-domain

performance specifications. This introduction presents two example problems by

way of motivating the approach to be developed in the course. We shall restrict

attention to single-input, single-output systems for simplicity.

To begin, we need the Hardy space Hoo' This consists of all complex-valued

functions F (s ) of a complex variable s which are analytic and bounded in the

open right half-plane, Re s >0; bounded means that there is a real number b

such that

I F (s ) I ::; b, Re s >0 .

The least such bound b is the Hoo-norm of F, denoted IIF 1100' Equivalently

IIF 1100 := sup { I F (s) I : Re s >o} . (1)

Let's focus on real-rational functions, Le. rational functions with real

coefficients. The subset of Hoo consisting of real-rational functions will be

denoted by RHoo' If F (s) is real-rational, then F ERHoo if and only if F is

proper ( I F (00) I is finite) and stable (F has no poles in the closed right half-

plane, Re s 20). By the maximum modulus theorem we can replace the open

right half-plane in (1) by the imaginary axis:

IIF 1100 = sup { IF (jw) I : wER} . (2)

To appreciate the concept of Hoo-norm in familiar terms, picture the Nyquist plot

of F (s). Then (2) says that IIF 1100equals the distance from the origin to the

farthest point on the Nyquist plot.

We now look at two examples of control objectives which are characterizable

as Hoo-norm constraints.
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Figure 1.1. Single-loop feedback system
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Example 1.

The first example uses a baby version of the small gain theorem. Consider

the feedback system in Figure 1. Here P (s) and K (s) are transfer functions

and are assumed to be real-rational, proper, and stable. For well-posedness we

shall assume that P or K (or both) is strictly proper (equal to zero at s =(0).
The feedback system is said to be internally stable if the four transfer functions

from v 1 and v 2 to uland u 2 are all stable (they are all proper because of the

assumptions on P and K). For example, the transfer function from v 1 to u 1

equals (l-PK t1
• The Nyquist criterion says that the feedback system is inter-

nally stable if and only if the Nyquist plot of PK doesn't pass through or encir-

cle the point s =1. So a sufficient condition for internal stability is the small

gain condition IIPK 1100<1.
Let's extend this idea to the problem of robust stabilization. The block

diagram in Figure 2a shows a plant and controller with transfer functions

P (s )+~P (s ) and K (s ) respectively; P represents the nominal plant and ~P

an unknown perturbation, usually due to unmodeled dynamics or parameter vari-

ations. Suppose, for simplicity, that P, ~P, and K are real-rational, P and

~P are strictly proper and stable, and K is proper. Suppose also that the feed-

back system is internally stable for ~P =0. How large can I ~P I be so that

internal stability is maintained?

One method which is used to obtain a transfer function model is a frequency

response experiment. This yields gain and phase estimates at several frequencies,

which in turn provide an upper bound for I ~P (jw) I at several values of w.
Suppose R is a radius function belonging to RHoo and bounding the perturba-

tion ~P in the sense that

I ~P(jw) I < I R (jw) I for all O:::;w:::;oo,

or equivalently

(3)

How large can I R I be so that internal stability is maintained?
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Figure 1.2a. Feedback system with perturbed plant
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Figure 1.2b. After loop transformation
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Figure 1.2c. After loop transformation
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Simple loop transformations lead from Figure 2a to Figure 2b to Figure 2c.

Since the nominal feedback system is internally stable, K (l-PK t1ERHoo. Our

baby version of the small gain theorem gives that the system in Figure 2c will be

internally stable if

(4)

In view of (3) a sufficient condition for (4) is

(5)

We just used the sub-multiplicative property of the Hoo-norm:

We conclude that an Hoo-norm bound on a weighted closed-loop transfer func-

tion, i.e. condition (5), is sufficient for robust stability.

Example 2.

For the second example we need another Hardy space, H2• It consists of all

complex-valued functions F (8 ) which are analytic in the open right half-plane

and satisfy the condition

[ ]

1/2

sup (21ft1 j I F(e+jw) 12dw < 00.
e>o -00

The left-hand side of this inequality is defined to be the H2-norm of F, IIF 112'

Again, let's focus on real-rational functions. A real-rational function belongs to

RH2 if and only if it's stable and strictly proper. For such a function F (8 ) it

can be proved that its H2-norm can be obtained by integrating over the ima-

ginary axis:

(6)

Consider a one-sided signal x (t) (zero for t <0) and suppose its Laplace

transform x (8 ) belongs to RH2. Then Plancherel's theorem says
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00

J x(t)2dt = 11£1122.
o

Thus 11£ 1122 can be interpreted physically as the energy of the signal x (t).

Ch. 1

Next, consider a system with transfer function F (s ) in RHoo' Let the input

and output signals be denoted by x (t) and y (t) respectively. It is easy to see

that if £ ERH2 and 11£ Ib=I, then f} ERH2 and 11f} 112:::; IIF 1100' Thus the Hoo-

norm of the transfer function provides a bound on the system gain

The previous discussion was limited to the familiar class of real-rational

functions, but the results are general. In fact the Hoo-norm of the transfer func-

tion equals the system gain. The precise statement is as follows: If F EHoo and

x EH2, then Fx EH2; moreover

(7)

With these preliminaries let's look at a disturbance attenuation problem. In

Figure 1 suppose v 1=0 and v 2 represents a disturbance signal referred to the

output of the plant P. The objective is to attenuate the effect of v 2 on the out-

put u 2 in a suitably defined sense. As before, we shall assume P and K are

real-rational and proper, with at least one of them strictly proper. The transfer

function from v 2 to u 2 is the sensitivity function

S := (I-PK r1
•

We shall suppose the disturbance v 2 is not a fixed signal, but can be any

function in the class

(8)

where W, W-1EHoo; that is, the disturbance signal class consists of all v 2 in H2

such that

(9)

Assuming for now that the boundary values v 2(jw) and W (j w) are well-defined,

we can interpret inequality (9) as a constraint on the weighted energy of v 2: the
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energy-density spectrum I v 2(j w) I 2 is weighted by the factor I W (j w) I -2.

For example, if I W (jw) I were relatively large on a certain frequency band and

relatively small off it, then (9) would generate a class of signals having their

energy concentrated on that band.

The disturbance attenuation objective can now be stated precisely: minimize

the energy of u 2 for the worst v 2 in class (8); equivalently (by virtue of (7)),

minimize II WS 1100'the Roo-norm of the weighted sensitivity function. In a syn-

thesis problem P and W would be given and K would be chosen to minimize

II WS 1100'with the added constraint of internal stability. (In an actual design it

may make more sense to employ W as a design parameter, to be adjusted by the

designer to shape the magnitude Bode plot of S .)

To recap, we have seen how certain control objectives, robust stability and

disturbance attenuation, will be achieved if certain Roo-norm bounds are

achieved. In Chapter 3 is posed a general Roo optimization problem which

includes the above two examples as special cases.

Notes and References

The theory presented in this book was initiated by Zames (1976, 1979, 1981).

He formulated the problem of sensitivity reduction by feedback as an optimiza-

tion problem with an operator norm, in particular, an Roo-norm. Relevant con-

temporaneous works are those of Helton (1976) and Tannenbaum (1977). The

important papers of Sarason (1967), and Adamjan, Arov, and Krein (1971) esta-

blished connections between operator theory and complex function theory, in par-

ticular, Roo-functions; Helton showed that these two mathematical subjects have

useful applications in electrical engineering, namely, in broadband matching.

Tannenbaum used (Nevanlinna-Pick) interpolation theory to attack the problem

of stabilizing a plant with an unknown gain.

For a survey of the papers in the field the reader may consult Francis and

Doyle (1986).
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