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Spring 2002 CS200 Pioneer Graduates
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Jeff Taylor, Jacques Fournier, Katie Winstanley, Russell O’Reagan, Victor Clay Yount.
Front: Grace Deng, Rachel Dada, Jon Erdman (Assistant Coach).
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textbook. I hope the resulting book captures the spirit and fun of computing
exemplified by SICP, but better suited to an introductory course for students
with no previous background while covering many topics not included in SICP
such as languages, complexity analysis, objects, and computability. Although
this book is designed around a one semester introductory course, it should also
be suitable for self-study students and for people with substantial programming
experience but without similar computer science knowledge.
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1
Computing

In their capacity as a tool, computers will be but a ripple on the surface of our
culture. In their capacity as intellectual challenge, they are without precedent in
the cultural history of mankind.

Edsger Dijkstra, 1972 Turing Award Lecture

The first million years of hominid history produced tools to amplify, and later
mechanize, our physical abilities to enable us to move faster, reach higher, and
hit harder. We have developed tools that amplify physical force by the trillions
and increase the speeds at which we can travel by the thousands.

Tools that amplify intellectual abilities are much rarer. While some animals have
developed tools to amplify their physical abilities, only humans have developed
tools to substantially amplify our intellectual abilities and it is those advances
that have enabled humans to dominate the planet. The first key intellect am-
plifier was language. Language provided the ability to transmit our thoughts to
others, as well as to use our own minds more effectively. The next key intellect
amplifier was writing, which enabled the storage and transmission of thoughts
over time and distance.

Computing is the ultimate mental amplifier—computers can mechanize any in-
tellectual activity we can imagine. Automatic computing radically changes how
humans solve problems, and even the kinds of problems we can imagine solv-
ing. Computing has changed the world more than any other invention of the
past hundred years, and has come to pervade nearly all human endeavors. Yet,
we are just at the beginning of the computing revolution; today’s computing of-
fers just a glimpse of the potential impact of computing.

There are two reasons why everyone should study computing: It may be true that
you have to be able
to read in order to
fill out forms at the
DMV, but that’s not
why we teach
children to read. We
teach them to read
for the higher
purpose of allowing
them access to
beautiful and
meaningful ideas.
Paul Lockhart,
Lockhart’s Lament

1. Nearly all of the most exciting and important technologies, arts, and sci-
ences of today and tomorrow are driven by computing.

2. Understanding computing illuminates deep insights and questions into
the nature of our minds, our culture, and our universe.

Anyone who has submitted a query to Google, watched Toy Story, had LASIK
eye surgery, used a smartphone, seen a Cirque Du Soleil show, shopped with a
credit card, or microwaved a pizza should be convinced of the first reason. None
of these would be possible without the tremendous advances in computing over
the past half century.

Although this book will touch on on some exciting applications of computing,
our primary focus is on the second reason, which may seem more surprising.
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Computing changes how we think about problems and how we understand the
world. The goal of this book is to teach you that new way of thinking.

1.1 Processes, Procedures, and Computers
Computer science is the study of information processes. A process is a sequenceinformation

processes of steps. Each step changes the state of the world in some small way, and the
result of all the steps produces some goal state. For example, baking a cake,
mailing a letter, and planting a tree are all processes. Because they involve phys-
ical things like sugar and dirt, however, they are not pure information processes.
Computer science focuses on processes that involve abstract information rather
than physical things.

The boundaries between the physical world and pure information processes,
however, are often fuzzy. Real computers operate in the physical world: they
obtain input through physical means (e.g., a user pressing a key on a keyboard
that produces an electrical impulse), and produce physical outputs (e.g., an im-
age displayed on a screen). By focusing on abstract information, instead of the
physical ways of representing and manipulating information, we simplify com-
putation to its essence to better enable understanding and reasoning.

A procedure is a description of a process. A simple process can be describedprocedure

just by listing the steps. The list of steps is the procedure; the act of following
them is the process. A procedure that can be followed without any thought is
called a mechanical procedure. An algorithm is a mechanical procedure that isalgorithm

guaranteed to eventually finish.

For example, here is a procedure for making coffee, adapted from the actual
directions that come with a major coffeemaker:A mathematician is

a machine for
turning coffee into

theorems.
Attributed to Paul

Erdös

1. Lift and open the coffeemaker lid.
2. Place a basket-type filter into the filter basket.
3. Add the desired amount of coffee and shake to level the coffee.
4. Fill the decanter with cold, fresh water to the desired capacity.
5. Pour the water into the water reservoir.
6. Close the lid.
7. Place the empty decanter on the warming plate.
8. Press the ON button.

Describing processes by just listing steps like this has many limitations. First,
natural languages are very imprecise and ambiguous. Following the steps cor-
rectly requires knowing lots of unstated assumptions. For example, step three
assumes the operator understands the difference between coffee grounds and
finished coffee, and can infer that this use of “coffee” refers to coffee grounds
since the end goal of this process is to make drinkable coffee. Other steps as-
sume the coffeemaker is plugged in and sitting on a flat surface.

One could, of course, add lots more details to our procedure and make the lan-
guage more precise than this. Even when a lot of effort is put into writing pre-
cisely and clearly, however, natural languages such as English are inherently am-
biguous. This is why the United States tax code is 3.4 million words long, but
lawyers can still spend years arguing over what it really means.

Another problem with this way of describing a procedure is that the size of the
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description is proportional to the number of steps in the process. This is fine
for simple processes that can be executed by humans in a reasonable amount
of time, but the processes we want to execute on computers involve trillions of
steps. This means we need more efficient ways to describe them than just listing
each step one-by-one.

To program computers, we need tools that allow us to describe processes pre-
cisely and succinctly. Since the procedures are carried out by a machine, every
step needs to be described; we cannot rely on the operator having “common
sense” (for example, to know how to fill the coffeemaker with water without ex-
plaining that water comes from a faucet, and how to turn the faucet on). Instead,
we need mechanical procedures that can be followed without any thinking.

A computer is a machine that can: computer

1. Accept input. Input could be entered by a human typing at a keyboard,
received over a network, or provided automatically by sensors attached to
the computer.

2. Execute a mechanical procedure, that is, a procedure where each step can
be executed without any thought.

3. Produce output. Output could be data displayed to a human, but it could
also be anything that effects the world outside the computer such as elec-
trical signals that control how a device operates. A computer

terminal is not
some clunky old
television with a
typewriter in front
of it. It is an
interface where the
mind and body can
connect with the
universe and move
bits of it about.
Douglas Adams

Computers exist in a wide range of forms, and thousands of computers are hid-
den in devices we use everyday but don’t think of as computers such as cars,
phones, TVs, microwave ovens, and access cards. Our primary focus is on uni-
versal computers, which are computers that can perform all possible mechan-
ical computations on discrete inputs except for practical limits on space and
time. The next section explains what it discrete inputs means; Chapters 6 and 12
explore more deeply what it means for a computer to be universal.

1.2 Measuring Computing Power
For physical machines, we can compare the power of different machines by
measuring the amount of mechanical work they can perform within a given
amount of time. This power can be captured with units like horsepower and
watt. Physical power is not a very useful measure of computing power, though,
since the amount of computing achieved for the same amount of energy varies
greatly. Energy is consumed when a computer operates, but consuming energy
is not the purpose of using a computer.

Two properties that measure the power of a computing machine are:

1. How much information it can process?
2. How fast can it process?

We defer considering the second property until Part II, but consider the first
question here.

1.2.1 Information
Informally, we use information to mean knowledge. But to understand informa- information

tion quantitatively, as something we can measure, we need a more precise way
to think about information.
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The way computer scientists measure information is based on how what is known
changes as a result of obtaining the information. The primary unit of informa-
tion is a bit . One bit of information halves the amount of uncertainty. It is equiv-bit

alent to answering a “yes” or “no” question, where either answer is equally likely
beforehand. Before learning the answer, there were two possibilities; after learn-
ing the answer, there is one.

We call a question with two possible answers a binary question. Since a bit canbinary question

have two possible values, we often represent the values as 0 and 1.

For example, suppose we perform a fair coin toss but do not reveal the result.
Half of the time, the coin will land “heads”, and the other half of the time the
coin will land “tails”. Without knowing any more information, our chances of
guessing the correct answer are 1

2 . One bit of information would be enough to
convey either “heads” or “tails”; we can use 0 to represent “heads” and 1 to rep-
resent “tails”. So, the amount of information in a coin toss is one bit.

Similarly, one bit can distinguish between the values 0 and 1:

Is it 1?

No Yes

0 1

Example 1.1: Dice

How many bits of information are there in the outcome of tossing a six-sided
die?

There are six equally likely possible outcomes, so without any more information
we have a one in six chance of guessing the correct value. One bit is not enough
to identify the actual number, since one bit can only distinguish between two
values. We could use five binary questions like this:

2?

1 2

3?

3

4?

6?
No Yes

65?
No

5

4

No

No

No

Yes

Yes

Yes

Yes

This is quite inefficient, though, since we need up to five questions to identify
the value (and on average, expect to need 3 1

3 questions). Can we identify the
value with fewer than 5 questions?
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Our goal is to identify questions where the “yes” and “no” answers are equally
likely—that way, each answer provides the most information possible. This is
not the case if we start with, “Is the value 6?”, since that answer is expected to be
“yes” only one time in six. Instead, we should start with a question like, “Is the
value at least 4?”. Here, we expect the answer to be “yes” one half of the time,
and the “yes” and “no” answers are equally likely. If the answer is “yes”, we know
the result is 4, 5, or 6. With two more bits, we can distinguish between these
three values (note that two bits is actually enough to distinguish among four
different values, so some information is wasted here). Similarly, if the answer
to the first question is no, we know the result is 1, 2, or 3. We need two more
bits to distinguish which of the three values it is. Thus, with three bits, we can
distinguish all six possible outcomes.

1 2

3
6

54

>= 4?

No Yes

YesNo

No Yes

YesNo

YesNo

5?2?

3? 6?

Three bits can convey more information that just six possible outcomes, how-
ever. In the binary question tree, there are some questions where the answer
is not equally likely to be “yes” and “no” (for example, we expect the answer to
“Is the value 3?” to be “yes” only one out of three times). Hence, we are not
obtaining a full bit of information with each question.

Each bit doubles the number of possibilities we can distinguish, so with three
bits we can distinguish between 2 ∗ 2 ∗ 2 = 8 possibilities. In general, with n bits,
we can distinguish between 2n possibilities. Conversely, distinguishing among k
possible values requires log2 k bits. The logarithm is defined such that if a = bc logarithm

then logb a = c. Since each bit has two possibilities, we use the logarithm base
2 to determine the number of bits needed to distinguish among a set of distinct
possibilities. For our six-sided die, log2 6 ≈ 2.58, so we need approximately 2.58
binary questions. But, questions are discrete: we can’t ask 0.58 of a question, so
we need to use three binary questions.

Trees. Figure 1.1 depicts a structure of binary questions for distinguishing
among eight values. We call this structure a binary tree. We will see many useful binary tree

applications of tree-like structures in this book.

Computer scientists draw trees upside down. The root is the top of the tree, and
the leaves are the numbers at the bottom (0, 1, 2, . . ., 7). There is a unique path
from the root of the tree to each leaf. Thus, we can describe each of the eight
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possible values using the answers to the questions down the tree. For example,
if the answers are “No”, “No”, and “No”, we reach the leaf 0; if the answers are
“Yes”, “No”, “Yes”, we reach the leaf 5. Since there are no more than two possible
answers for each node, we call this a binary tree.

We can describe any non-negative integer using bits in this way, by just adding
additional levels to the tree. For example, if we wanted to distinguish between
16 possible numbers, we would add a new question, “Is is >= 8?” to the top
of the tree. If the answer is “No”, we use the tree in Figure 1.1 to distinguish
numbers between 0 and 7. If the answer is “Yes”, we use a tree similar to the one
in Figure 1.1, but add 8 to each of the numbers in the questions and the leaves.

The depth of a tree is the length of the longest path from the root to any leaf. Thedepth

example tree has depth three. A binary tree of depth d can distinguish up to 2d

different values.

No

0

Yes

1 2 3 4 5 6 7

1?

No Yes

3?

No Yes

5?

No Yes

7?

No Yes

>= 2?

No Yes

>= 6?

No Yes

>= 4?

Figure 1.1. Using three bits to distinguish eight possible values.

Units of Information. One byte is defined as eight bits. Hence, one byte of
information corresponds to eight binary questions, and can distinguish among
28 (256) different values. For larger amounts of information, we use metric pre-
fixes, but instead of scaling by factors of 1000 they scale by factors of 210 (1024).
Hence, one kilobyte is 1024 bytes; one megabyte is 220 (approximately one mil-
lion) bytes; one gigabyte is 230 (approximately one billion) bytes; and one ter-
abyte is 240 (approximately one trillion) bytes.

Exercise 1.1. Draw a binary tree with the minimum possible depth to:

a. Distinguish among the numbers 0, 1, 2, . . . , 15.

b. Distinguish among the 12 months of the year.
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Exercise 1.2. How many bits are needed:

a. To uniquely identify any currently living human?

b. To uniquely identify any human who ever lived?

c. To identify any location on Earth within one square centimeter?

d. To uniquely identify any atom in the observable universe?

Exercise 1.3. The examples all use binary questions for which there are two
possible answers. Suppose instead of basing our decisions on bits, we based it
on trits where one trit can distinguish between three equally likely values. For
each trit, we can ask a ternary question (a question with three possible answers).

a. How many trits are needed to distinguish among eight possible values? (A
convincing answer would show a ternary tree with the questions and answers
for each node, and argue why it is not possible to distinguish all the values
with a tree of lesser depth.)

b. [?] Devise a general formula for converting between bits and trits. How many
trits does it require to describe b bits of information?

Exploration 1.1: Guessing Numbers

The guess-a-number game starts with one player (the chooser) picking a num-
ber between 1 and 100 (inclusive) and secretly writing it down. The other player
(the guesser) attempts to guess the number. After each guess, the chooser re-
sponds with “correct” (the guesser guessed the number and the game is over),
“higher” (the actual number is higher than the guess), or “lower” (the actual
number is lower than the guess).

a. Explain why the guesser can receive slightly more than one bit of information
for each response.

b. Assuming the chooser picks the number randomly (that is, all values between
1 and 100 are equally likely), what are the best first guesses? Explain why
these guesses are better than any other guess. (Hint: there are two equally
good first guesses.)

c. What is the maximum number of guesses the second player should need to
always find the number?

d. What is the average number of guesses needed (assuming the chooser picks
the number randomly as before)?

e. [?] Suppose instead of picking randomly, the chooser picks the number with
the goal of maximizing the number of guesses the second player will need.
What number should she pick?

f. [??] How should the guesser adjust her strategy if she knows the chooser is
picking adversarially?

g. [??] What are the best strategies for both players in the adversarial guess-a-
number game where chooser’s goal is to pick a starting number that maxi-
mizes the number of guesses the guesser needs, and the guesser’s goal is to
guess the number using as few guesses as possible.
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