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Introduction to Fundamentals of Signal

Processing1

What is Digital Signal Processing?

To understand what is Digital Signal Processing (DSP) let's examine what does each of its words mean.
�Signal� is any physical quantity that carries information. �Processing� is a series of steps or operations to
achieve a particular end. It is easy to see that Signal Processing is used everywhere to extract information
from signals or to convert information-carrying signals from one form to another. For example, our brain
and ears take input speech signals, and then process and convert them into meaningful words. Finally, the
word �Digital� in Digital Signal Processing means that the process is done by computers, microprocessors,
or logic circuits.

The �eld DSP has expanded signi�cantly over that last few decades as a result of rapid developments
in computer technology and integrated-circuit fabrication. Consequently, DSP has played an increasingly
important role in a wide range of disciplines in science and technology. Research and development in DSP
are driving advancements in many high-tech areas including telecommunications, multimedia, medical and
scienti�c imaging, and human-computer interaction.

To illustrate the digital revolution and the impact of DSP, consider the development of digital cameras.
Traditional �lm cameras mainly rely on physical properties of the optical lens, where higher quality requires
bigger and larger system, to obtain good images. When digital cameras were �rst introduced, their quality
were inferior compared to �lm cameras. But as microprocessors become more powerful, more sophisticated
DSP algorithms have been developed for digital cameras to correct optical defects and improve the �nal
image quality. Thanks to these developments, the quality of consumer-grade digital cameras has now sur-
passed the equivalence in �lm cameras. As further developments for digital cameras attached to cell phones
(cameraphones), where due to small size requirements of the lenses, these cameras rely on DSP power to
provide good images. Essentially, digital camera technology uses computational power to overcome physi-
cal limitations. We can �nd the similar trend happens in many other applications of DSP such as digital
communications, digital imaging, digital television, and so on.

In summary, DSP has foundations on Mathematics, Physics, and Computer Science, and can provide the
key enabling technology in numerous applications.

Overview of Key Concepts in Digital Signal Processing

The two main characters in DSP are signals and systems. A signal is de�ned as any physical quantity
that varies with one or more independent variables such as time (one-dimensional signal), or space (2-D
or 3-D signal). Signals exist in several types. In the real-world, most of signals are continuous-time or
analog signals that have values continuously at every value of time. To be processed by a computer, a
continuous-time signal has to be �rst sampled in time into a discrete-time signal so that its values at
a discrete set of time instants can be stored in computer memory locations. Furthermore, in order to be

1This content is available online at <http://cnx.org/content/m13673/1.1/>.
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2

processed by logic circuits, these signal values have to be quantized in to a set of discrete values, and the
�nal result is called a digital signal. When the quantization e�ect is ignored, the terms discrete-time signal
and digital signal can be used interchangeability.

In signal processing, a system is de�ned as a process whose input and output are signals. An important
class of systems is the class of linear time-invariant (or shift-invariant) systems. These systems
have a remarkable property is that each of them can be completely characterized by an impulse response
function (sometimes is also called as point spread function), and the system is de�ned by a convolution
(also referred to as a �ltering) operation. Thus, a linear time-invariant system is equivalent to a (linear)
�lter. Linear time-invariant systems are classi�ed into two types, those that have �nite-duration impulse
response (FIR) and those that have an in�nite-duration impulse response (IIR).

A signal can be viewed as a vector in a vector space. Thus, linear algebra provides a powerful
framework to study signals and linear systems. In particular, given a vector space, each signal can be
represented (or expanded) as a linear combination of elementary signals. The most important signal
expansions are provided by the Fourier transforms. The Fourier transforms, as with general transforms,
are often used e�ectively to transform a problem from one domain to another domain where it is much easier
to solve or analyze. The two domains of a Fourier transform have physical meaning and are called the time
domain and the frequency domain.

Sampling, or the conversion of continuous-domain real-life signals to discrete numbers that can
be processed by computers, is the essential bridge between the analog and the digital worlds. It is important
to understand the connections between signals and systems in the real world and inside a computer. These
connections are convenient to analyze in the frequency domain. Moreover, many signals and systems are
speci�ed by their frequency characteristics.

Because any linear time-invariant system can be characterized as a �lter, the design of such systems
boils down to the design the associated �lters. Typically, in the �lter design process, we determine the
coe�cients of an FIR or IIR �lter that closely approximates the desired frequency response speci�cations.
Together with Fourier transforms, the z-transform provides an e�ective tool to analyze and design digital
�lters.

In many applications, signals are conveniently described via statistical models as random signals. It
is remarkable that optimum linear �lters (in the sense of minimum mean-square error), so calledWiener
�lters, can be determined using only second-order statistics (autocorrelation and crosscorrelation
functions) of a stationary process. When these statistics cannot be speci�ed beforehand or change over
time, we can employ adaptive �lters, where the �lter coe�cients are adapted to the signal statistics.
The most popular algorithm to adaptively adjust the �lter coe�cients is the least-mean square (LMS)
algorithm.

Available for free at Connexions <http://cnx.org/content/col10360/1.4>



Chapter 1

Foundations

1.1 Signals Represent Information1

Whether analog or digital, information is represented by the fundamental quantity in electrical engineering:
the signal. Stated in mathematical terms, a signal is merely a function. Analog signals are continuous-
valued; digital signals are discrete-valued. The independent variable of the signal could be time (speech, for
example), space (images), or the integers (denoting the sequencing of letters and numbers in the football
score).

1.1.1 Analog Signals

Analog signals are usually signals de�ned over continuous independent variable(s). Speech2 is
produced by your vocal cords exciting acoustic resonances in your vocal tract. The result is pressure waves
propagating in the air, and the speech signal thus corresponds to a function having independent variables of
space and time and a value corresponding to air pressure: s (x, t) (Here we use vector notation x to denote
spatial coordinates). When you record someone talking, you are evaluating the speech signal at a particular
spatial location, x0 say. An example of the resulting waveform s (x0, t) is shown in this �gure (Figure 1.1:
Speech Example).

1This content is available online at <http://cnx.org/content/m0001/2.27/>.
2"Modeling the Speech Signal" <http://cnx.org/content/m0049/latest/>
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4 CHAPTER 1. FOUNDATIONS

Speech Example
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Figure 1.1: A speech signal's amplitude relates to tiny air pressure variations. Shown is a recording
of the vowel "e" (as in "speech").

Photographs are static, and are continuous-valued signals de�ned over space. Black-and-white images
have only one value at each point in space, which amounts to its optical re�ection properties. In Fig-
ure 1.2 (Lena), an image is shown, demonstrating that it (and all other images as well) are functions of two
independent spatial variables.

Available for free at Connexions <http://cnx.org/content/col10360/1.4>
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Lena

(a) (b)

Figure 1.2: On the left is the classic Lena image, which is used ubiquitously as a test image. It
contains straight and curved lines, complicated texture, and a face. On the right is a perspective display
of the Lena image as a signal: a function of two spatial variables. The colors merely help show what
signal values are about the same size. In this image, signal values range between 0 and 255; why is that?

Color images have values that express how re�ectivity depends on the optical spectrum. Painters long ago
found that mixing together combinations of the so-called primary colors�red, yellow and blue�can produce
very realistic color images. Thus, images today are usually thought of as having three values at every point
in space, but a di�erent set of colors is used: How much of red, green and blue is present. Mathematically,
color pictures are multivalued�vector-valued�signals: s (x) = (r (x) , g (x) , b (x))T .

Interesting cases abound where the analog signal depends not on a continuous variable, such as time, but
on a discrete variable. For example, temperature readings taken every hour have continuous�analog�values,
but the signal's independent variable is (essentially) the integers.

1.1.2 Digital Signals

The word "digital" means discrete-valued and implies the signal has an integer-valued independent variable.
Digital information includes numbers and symbols (characters typed on the keyboard, for example). Com-
puters rely on the digital representation of information to manipulate and transform information. Symbols
do not have a numeric value, and each is represented by a unique number. The ASCII character code has the
upper- and lowercase characters, the numbers, punctuation marks, and various other symbols represented
by a seven-bit integer. For example, the ASCII code represents the letter a as the number 97 and the letter
A as 65. Table 1.1: ASCII Table shows the international convention on associating characters with integers.

ASCII Table
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00 nul 01 soh 02 stx 03 etx 04 eot 05 enq 06 ack 07 bel

08 bs 09 ht 0A nl 0B vt 0C np 0D cr 0E so 0F si

10 dle 11 dc1 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etb

18 car 19 em 1A sub 1B esc 1C fs 1D gs 1E rs 1F us

20 sp 21 ! 22 " 23 # 24 $ 25 % 26 & 27 '

28 ( 29 ) 2A * 2B + 2C , 2D - 2E . 2F /

30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7

38 8 39 9 3A : 3B ; 3C < 3D = 3E > 3F ?

40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G

48 H 49 I 4A J 4B K 4C L 4D M 4E N 4F 0

50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W

58 X 59 Y 5A Z 5B [ 5C \ 5D ] 5E ^ 5F _

60 ' 61 a 62 b 63 c 64 d 65 e 66 f 67 g

68 h 69 i 6A j 6B k 6C l 6D m 6E n 6F o

70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w

78 x 79 y 7A z 7B { 7C | 7D } 7E ∼ 7F del

Table 1.1: The ASCII translation table shows how standard keyboard characters are represented by
integers. In pairs of columns, this table displays �rst the so-called 7-bit code (how many characters in a

seven-bit code?), then the character the number represents. The numeric codes are represented in
hexadecimal (base-16) notation. Mnemonic characters correspond to control characters, some of which may

be familiar (like cr for carriage return) and some not (bel means a "bell").

1.2 Introduction to Systems3

Signals are manipulated by systems. Mathematically, we represent what a system does by the notation
y (t) = S (x (t)), with x representing the input signal and y the output signal.

De�nition of a system

System
x(t) y(t)

Figure 1.3: The system depicted has input x (t) and output y (t). Mathematically, systems operate
on function(s) to produce other function(s). In many ways, systems are like functions, rules that yield a
value for the dependent variable (our output signal) for each value of its independent variable (its input
signal). The notation y (t) = S (x (t)) corresponds to this block diagram. We term S (·) the input-output
relation for the system.

3This content is available online at <http://cnx.org/content/m0005/2.19/>.

Available for free at Connexions <http://cnx.org/content/col10360/1.4>



7

This notation mimics the mathematical symbology of a function: A system's input is analogous to an
independent variable and its output the dependent variable. For the mathematically inclined, a system is a
functional: a function of a function (signals are functions).

Simple systems can be connected together�one system's output becomes another's input�to accomplish
some overall design. Interconnection topologies can be quite complicated, but usually consist of weaves of
three basic interconnection forms.

1.2.1 Cascade Interconnection

cascade

S1[•] S2[•]x(t) y(t)w(t)

Figure 1.4: The most rudimentary ways of interconnecting systems are shown in the �gures in this
section. This is the cascade con�guration.

The simplest form is when one system's output is connected only to another's input. Mathematically,
w (t) = S1 (x (t)), and y (t) = S2 (w (t)), with the information contained in x (t) processed by the �rst, then
the second system. In some cases, the ordering of the systems matter, in others it does not. For example, in
the fundamental model of communication 4 the ordering most certainly matters.

1.2.2 Parallel Interconnection

parallel

x(t)

x(t)

x(t)

+
y(t)

S1[•]

S2[•]

Figure 1.5: The parallel con�guration.

A signal x (t) is routed to two (or more) systems, with this signal appearing as the input to all systems
simultaneously and with equal strength. Block diagrams have the convention that signals going to more

4"Structure of Communication Systems", Figure 1: Fundamental model of communication
<http://cnx.org/content/m0002/latest/#commsys>
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than one system are not split into pieces along the way. Two or more systems operate on x (t) and their
outputs are added together to create the output y (t). Thus, y (t) = S1 (x (t))+S2 (x (t)), and the information
in x (t) is processed separately by both systems.

1.2.3 Feedback Interconnection

feedback

S1[•]
x(t) e(t) y(t)

S2[•]

–
+

Figure 1.6: The feedback con�guration.

The subtlest interconnection con�guration has a system's output also contributing to its input. Engineers
would say the output is "fed back" to the input through system 2, hence the terminology. The mathematical
statement of the feedback interconnection (Figure 1.6: feedback) is that the feed-forward system produces
the output: y (t) = S1 (e (t)). The input e (t) equals the input signal minus the output of some other system's
output to y (t): e (t) = x (t) − S2 (y (t)). Feedback systems are omnipresent in control problems, with the
error signal used to adjust the output to achieve some condition de�ned by the input (controlling) signal.
For example, in a car's cruise control system, x (t) is a constant representing what speed you want, and y (t)
is the car's speed as measured by a speedometer. In this application, system 2 is the identity system (output
equals input).

1.3 Discrete-Time Signals and Systems5

Mathematically, analog signals are functions having as their independent variables continuous quantities,
such as space and time. Discrete-time signals are functions de�ned on the integers; they are sequences. As
with analog signals, we seek ways of decomposing discrete-time signals into simpler components. Because
this approach leads to a better understanding of signal structure, we can exploit that structure to represent
information (create ways of representing information with signals) and to extract information (retrieve the
information thus represented). For symbolic-valued signals, the approach is di�erent: We develop a common
representation of all symbolic-valued signals so that we can embody the information they contain in a
uni�ed way. From an information representation perspective, the most important issue becomes, for both
real-valued and symbolic-valued signals, e�ciency: what is the most parsimonious and compact way to
represent information so that it can be extracted later.

1.3.1 Real- and Complex-valued Signals

A discrete-time signal is represented symbolically as s (n), where n = {. . . ,−1, 0, 1, . . . }.
5This content is available online at <http://cnx.org/content/m10342/2.16/>.
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Cosine

n

sn

1
…

…

Figure 1.7: The discrete-time cosine signal is plotted as a stem plot. Can you �nd the formula for this
signal?

We usually draw discrete-time signals as stem plots to emphasize the fact they are functions de�ned only
on the integers. We can delay a discrete-time signal by an integer just as with analog ones. A signal delayed
by m samples has the expression s (n−m).

1.3.2 Complex Exponentials

The most important signal is, of course, the complex exponential sequence.

s (n) = ei2πfn (1.1)

Note that the frequency variable f is dimensionless and that adding an integer to the frequency of the
discrete-time complex exponential has no e�ect on the signal's value.

ei2π(f+m)n = ei2πfnei2πmn

= ei2πfn
(1.2)

This derivation follows because the complex exponential evaluated at an integer multiple of 2π equals one.
Thus, we need only consider frequency to have a value in some unit-length interval.

1.3.3 Sinusoids

Discrete-time sinusoids have the obvious form s (n) = Acos (2πfn+ φ). As opposed to analog complex
exponentials and sinusoids that can have their frequencies be any real value, frequencies of their discrete-
time counterparts yield unique waveforms only when f lies in the interval

(
− 1

2 ,
1
2

]
. This choice of frequency

interval is arbitrary; we can also choose the frequency to lie in the interval [0, 1). How to choose a unit-length
interval for a sinusoid's frequency will become evident later.

1.3.4 Unit Sample

The second-most important discrete-time signal is the unit sample, which is de�ned to be

δ (n) =

 1 if n = 0

0 otherwise
(1.3)
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Unit sample

1

n

δn

Figure 1.8: The unit sample.

Examination of a discrete-time signal's plot, like that of the cosine signal shown in Figure 1.7 (Cosine),
reveals that all signals consist of a sequence of delayed and scaled unit samples. Because the value of
a sequence at each integer m is denoted by s (m) and the unit sample delayed to occur at m is written
δ (n−m), we can decompose any signal as a sum of unit samples delayed to the appropriate location and
scaled by the signal value.

s (n) =
∞∑

m=−∞
s (m) δ (n−m) (1.4)

This kind of decomposition is unique to discrete-time signals, and will prove useful subsequently.

1.3.5 Unit Step

The unit step in discrete-time is well-de�ned at the origin, as opposed to the situation with analog signals.

u (n) =

 1 if n ≥ 0

0 if n < 0
(1.5)

1.3.6 Symbolic Signals

An interesting aspect of discrete-time signals is that their values do not need to be real numbers. We do
have real-valued discrete-time signals like the sinusoid, but we also have signals that denote the sequence of
characters typed on the keyboard. Such characters certainly aren't real numbers, and as a collection of pos-
sible signal values, they have little mathematical structure other than that they are members of a set. More
formally, each element of the symbolic-valued signal s (n) takes on one of the values {a1, . . . , aK} which
comprise the alphabet A. This technical terminology does not mean we restrict symbols to being mem-
bers of the English or Greek alphabet. They could represent keyboard characters, bytes (8-bit quantities),
integers that convey daily temperature. Whether controlled by software or not, discrete-time systems are
ultimately constructed from digital circuits, which consist entirely of analog circuit elements. Furthermore,
the transmission and reception of discrete-time signals, like e-mail, is accomplished with analog signals and
systems. Understanding how discrete-time and analog signals and systems intertwine is perhaps the main
goal of this course.

1.3.7 Discrete-Time Systems

Discrete-time systems can act on discrete-time signals in ways similar to those found in analog signals and
systems. Because of the role of software in discrete-time systems, many more di�erent systems can be
envisioned and "constructed" with programs than can be with analog signals. In fact, a special class of
analog signals can be converted into discrete-time signals, processed with software, and converted back into
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an analog signal, all without the incursion of error. For such signals, systems can be easily produced in
software, with equivalent analog realizations di�cult, if not impossible, to design.

1.4 Linear Time-Invariant Systems6

A discrete-time signal s (n) is delayed by n0 samples when we write s (n− n0), with n0 > 0. Choosing n0

to be negative advances the signal along the integers. As opposed to analog delays7, discrete-time delays
can only be integer valued. In the frequency domain, delaying a signal corresponds to a linear phase shift
of the signal's discrete-time Fourier transform: s (n− n0)↔ e−(i2πfn0)S

(
ei2πf

)
.

Linear discrete-time systems have the superposition property.

Superposition
S (a1x1 (n) + a2x2 (n)) = a1S (x1 (n)) + a2S (x2 (n)) (1.6)

A discrete-time system is called shift-invariant (analogous to time-invariant analog systems) if delaying
the input delays the corresponding output.

Shift-Invariant
If S (x (n)) = y (n) , Then S (x (n− n0)) = y (n− n0) (1.7)

We use the term shift-invariant to emphasize that delays can only have integer values in discrete-time, while
in analog signals, delays can be arbitrarily valued.

We want to concentrate on systems that are both linear and shift-invariant. It will be these that allow us
the full power of frequency-domain analysis and implementations. Because we have no physical constraints
in "constructing" such systems, we need only a mathematical speci�cation. In analog systems, the di�er-
ential equation speci�es the input-output relationship in the time-domain. The corresponding discrete-time
speci�cation is the di�erence equation.

The Di�erence Equation

y (n) = a1y (n− 1) + · · ·+ apy (n− p) + b0x (n) + b1x (n− 1) + · · ·+ bqx (n− q) (1.8)

Here, the output signal y (n) is related to its past values y (n− l), l = {1, . . . , p}, and to the current and
past values of the input signal x (n). The system's characteristics are determined by the choices for the
number of coe�cients p and q and the coe�cients' values {a1, . . . , ap} and {b0, b1, . . . , bq}.

aside: There is an asymmetry in the coe�cients: where is a0 ? This coe�cient would multiply the
y (n) term in the di�erence equation (1.8: The Di�erence Equation). We have essentially divided
the equation by it, which does not change the input-output relationship. We have thus created the
convention that a0 is always one.

As opposed to di�erential equations, which only provide an implicit description of a system (we must
somehow solve the di�erential equation), di�erence equations provide an explicit way of computing the
output for any input. We simply express the di�erence equation by a program that calculates each output
from the previous output values, and the current and previous inputs.

1.5 Discrete Time Convolution8

1.5.1 Introduction

Convolution, one of the most important concepts in electrical engineering, can be used to determine the
output a system produces for a given input signal. It can be shown that a linear time invariant system is

6This content is available online at <http://cnx.org/content/m0508/2.7/>.
7"Simple Systems": Section Delay <http://cnx.org/content/m0006/latest/#delay>
8This content is available online at <http://cnx.org/content/m10087/2.27/>.
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