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Preface

State-of-the-art microwave systems always require higher performance and lower cost 
microwave components. Constantly growing demands and performance requirements 
of industrial and scientific applications often make employing traditionally designed 
components impractical. For that reason, the design and development process remains a 
great challenge today. This problem motivated intensive research efforts in microwave design 
and technology, which is responsible for a great number of recently appeared alternative 
approaches to analysis and design of microwave components and antennas. This book 
highlights these new trends focusing on passive components such as novel resonators, 
filters, diplexers, power dividers, directional couplers, impedance transformers, waveguides, 
transmission lines and transitions as well as antennas, metamaterial-based structures, and 
various electromagnetic analysis and design techniques.

Modelling and computations in electromagnetics is a quite fast-growing research area. The 
recent interest in this field is caused by the increased demand for designing complex microwave 
components, modeling electromagnetic materials, and rapid increase in computational power 
for calculation of complex electromagnetic problems. The first part of this book is devoted to 
the advances in the analysis techniques such as method of moments, finite-difference time-
domain method, boundary perturbation theory, Fourier analysis, mode-matching method, 
and analysis based on circuit theory. These techniques are considered with regard to several 
challenging technological applications such as those related to electrically large devices, 
scattering in layered structures, photonic crystals, and artificial materials. 

The second part of the book deals with waveguides, transmission lines and transitions. This 
includes microstrip lines (MSL), slot waveguides, substrate integrated waveguides (SIW), 
vertical transmission lines in multilayer media as well as MSL to SIW and MSL to slot line 
transitions. 

Impedance matching is an important aspect in the design of microwave circuitry since 
impedance mismatches may severely deteriorate performance of the overall system. Different 
techniques for wideband matching are presented in the third part of this book. The design 
of compact microwave resonators and filters is also covered in this part. Compact, high-
performance microwave filters are essential for high-efficiency miniaturized microwave 
systems. The filter circuit size is large in traditionally designed planar bandpass filters due to 
a high number of large area resonators. The rejection level in the upper stopband of the filters 
is usually degraded by the spurious response at twice the passband frequency. Several types 
of resonators have been designed to overcome these problems, such as miniaturized hairpin 
resonators, stepped-impedance hairpin resonators, and slow-wave open-loop resonators.  
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Miniaturized resonators lead to a reduced filter size, but not always improve the spurious 
response. Another method relies on various resonator combinations within one filter structure 
to reduce the circuit size, such as the loop resonator or hairpin resonator incorporated with 
one or several open stubs.

Recently, microwave filters based on electromagnetic bandgap structures and artificial 
materials have attracted a great deal of interest because of improved characteristics in 
comparison to traditional filter design. Such artificial materials can be realized using periodic 
inclusion of variously shaped metals into a host medium. The most prominent candidate for 
such structures has been the split-ring resonator.  In addition to the split-ring resonator there 
are several alternative realizations based on lumped elements, quasi-lumped LC resonators 
and other planar microwave resonators which are in details discussed in the fourth part of 
this book.    

Antennas are key components in most microwave devices and systems. They are used 
everywhere where a transformation between a guided wave and a free-space wave (or vice 
versa) is required. The final part of the book is dedicated mainly to the design and applications 
of planar antennas and arrays including metamaterial-based antennas, monopoles, slot 
antennas, reflector antennas and arrays.

The book concludes with a chapter considering accuracy aspects of antenna gain measurements. 

Editor

Vitaliy Zhurbenko
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1. Introduction  
 

The electromagnetic wave interaction with layered structures constitutes a crucial topic of 
current interest in theoretical and experimental research. Generally speaking, several 
modelling and design problems, encountered, for instance, in SAR (Synthetic Aperture Radar) 
application, GPR (Ground Penetrating Radar) sensing, radar altimeter for planetary 
exploration, microstrip antennas and MMICs (Monolithic Microwave Integrated Circuits), 
radio-propagation in urban environment for wireless communications, through-the-wall 
detection technologies, optics, biomedical diagnostic of layered biological tissues, 
geophysical and seismic exploration, lead to the analysis of the electromagnetic wave 
interaction with multilayered structure, whose boundaries can exhibit some amount of 
roughness.  
This chapter is aimed primarily at providing a comprehensive analytical treatment of 
electromagnetic wave propagation and scattering in three-dimensional multilayered 
structures with rough interfaces. The emphasis is placed on the general formulation of the 
scattering problem in the analytic framework of the Boundary Perturbation Theory (BPT) 
developed by Imperatore et al. A systematic perturbative expansion of the fields in the 
layered structure, based on the gently rough interfaces assumption, enables the transferring 
of the geometry randomness into a non-uniform boundary conditions formulation. 
Subsequently, the fields’ expansion can be analytically evaluated by using a recursive matrix 
formalism approach encompassing a proper scattered field representation in each layer and 
a matrix reformulation of non-uniform boundary conditions. A key-point in the 
development resides in the appropriate exploitation of the generalized reflection/transmission 
notion, which has strong implications in order to make the mathematical treatment 
manageable and to effectively capture the physics of the problem. Two relevant compact 
closed-form solutions, derived in the first-order limit of the perturbative development, are 
presented. They refer to two complementary bi-static configurations for the scattering, 
respectively, from and through layered structures with arbitrary number of rough 
interfaces. The employed formalism is fully-polarimetric and suitable for applications. In 
addition, it is demonstrated how the symmetrical character of the BPT formalism reflects the 
inherent conformity with the reciprocity theorem of the electromagnetic theory.  

1
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Fig. 1. Geometry for an N-rough boundaries layered medium 

 
2. Statement of the problem   
 

When stratified media with rough interfaces are concerned, the possible approaches to cope 
with the EM scattering problem fall within three main categories. First, the numerical 
approaches do not permit to attain a comprehensive understanding of the general functional 
dependence of the scattering response on the structure parameters, as well as do not allow 
capturing the physics of the involved scattering mechanisms. In addition, the numerical 
approach turns out to be feasible for non-fully 3D geometry or configurations in which a 
very limited number of rough interfaces is accounted for. Layered structures with rough 
interfaces have been also treated resorting to radiative transfer theory (RT). However, coherent 
effects are not accounted for in RT theory and could not be contemplated without 
employing full wave analysis, which preserves phase information. Another approach relies 
on the full-wave methods. Although, to deal with the electromagnetic propagation and 
scattering in complex random layered media,  several analytical formulation involving some 
idealized cases and suitable approximations have been conducted in last decades, the 
relevant solutions usually turn out to be too complicated to be generally useful in 
applications, even if simplified geometries are accounted for. The proliferation of the 
proposed methods for the simulation of wave propagation and scattering in stratified media 
and the continuous interest in this topic are indicative of the need of appropriate modelling 
and interpretation of the complex physical phenomena that take place in layered structures. 
Indeed, the availability of accurate, sound physical and manageable models turns out still to 

 

be a strong necessity, in perspective to apply them, for instance, in retrieving of add-valued 
information from the data acquired by microwave sensors.  
Generally speaking, an exact analytical solution of Maxwell equations can be found only for 
a few idealized problems. Subsequently, appropriate approximation methods are needed. 
Regarding the perturbative approaches, noticeable progress has been attained in the analytic 
investigation on the extension of the classical SPM (small perturbation method) solution for 
the scattering from rough surface to specific layered configurations. Most of previous 
existing works analyze different layered configurations in the first-order limit, using 
procedures, formalisms and final solutions that can appear of difficult comparison (Yarovoy 
et al., 2000), (Azadegan and Sarabandi, 2003), (Fuks, 2001). All these formulations, which 
refer to the case of a single rough interface, have been recently unified in (Franceschetti et al, 
2008). On the other hand, solution for the case of two rough boundaries has also been 
proposed in (Tabatabaeenejad and Moghaddam, 2006).  
Methodologically, we underline that all the previously mentioned existing perturbative 
approaches, followed by different authors in analyzing scattering from simplified geometry, 
imply an inherent analytical complexity, which precludes the treatment to structures with 
more than one (Fuks, 2001) (Azadegan et al., 2003) (Yarovoy et al., 2000) or two 
(Tabatabaeenejad er al., 2006) rough interfaces.  
The general problem we intend to deal with here refers to the analytical evaluation of the 
electromagnetic scattering from and through layered structure with an arbitrary number of 
rough interfaces (see Fig.1). As schematically shown in fig.1, an arbitrary polarized 
monochromatic plane wave 

  )(
00000

0)](ˆ)(ˆ[)( zkjiiviihi i
z

i
evEhE 





  rkkkrE    (1) 

is considered to be incident on the layered medium at an angle i
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direction from the upper half-space, where in the field expression a time factor exp(-jt) is 
understood, and where, using a spherical frame representation, the incident vector wave 
direction is individuated by ii
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i ˆˆ k  is the two-dimensional projection of incident wave-number vector on 
the plane z=0. The parameters pertaining to layer m with boundaries –dm-1 and -dm are 
distinguished by a subscript m. Each layer is assumed to be homogeneous and characterized 
by arbitrary and deterministic parameters: the dielectric relative permittivity m, the magnetic 
relative permeability μm and the thickness m=dm-dm-1. With reference to Fig.1, it has been 
assumed that in particular, d0=0. In the following, the symbol  denotes the projection of the 
corresponding vector on the plan z=0. Here  z, rr , so we distinguish the transverse 
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spatial coordinates  yx,r  and the longitudinal coordinate z. In addition, each mth rough 
interface is assumed to be characterized by a zero-mean two-dimensional stochastic process 

)(  rmm   with normal vector mn̂ . No constraints are imposed on the degree to which 
the rough interfaces are correlated.  
A general methodology has been developed by Imperatore et al. to analytically treat EM 
bistatic scattering from this class of layered structures that can be described by small 
changes with respect to an idealized (unperturbed) structure, whose associated problem is 
exactly solvable. A thorough analysis of the results of this theoretical investigation (BPT), 
which is based on perturbation of the boundary condition, will be presented in the 
following, methodologically emphasizing the development of the several inherent aspects. 
 

 
Fig. 2.  Geometry for a flat boundaries layered medium 
 
3. Basic definition and notations 
 

This section is devoted preliminary to introduce the formalism used in the following of this 
chapter. The Flat Boundaries layered medium (unperturbed structure) is defined as a stack of 
parallel slabs (Fig.2), sandwiched in between two half-spaces, whose structure is shift 
invariant in the direction of x and y (infinite lateral extent in x-y directions). With the 
notations p

mmT 1
and p

mmR 1
, respectively, we indicate the ordinary transmission and reflection 

coefficients at the interface between the regions m-1 and m+1,  
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with the superscript p{v, h} indicating the polarization state for the incident wave and may 
stand for horizontal (h) or vertical (v) polarization (Tsang et al., 1985) (Imperatore et al. 2009a), 
and where  

  mmmzm kkk cos22  k ,     (9) 

where mmm kk 0  is the wave number for the electromagnetic medium in the mth layer, 

with  /2/0  ck , and where ykxk yx ˆˆ k  is the two-dimensional projection of 
vector wave-number on the plane z=0. In addition, we stress that: 
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3.1 Generalized reflection formalism 
The generalized reflection coefficients p

mm 1  at the interface between the regions (m-1) and m, 

for the p-polarization, are  defined  as  the  ratio  of  the  amplitudes  of  upward-  and  
downward-propagating  waves  immediately above  the  interface, respectively. They can be 
expressed by recursive relations as in (Chew W. C., 1997) (Imperatore et al. 2009a):  
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Furthermore, it should be noted that the factors 
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take into account the multiple reflections in the mth layer.  

 
3.2 Generalized transmission formalism 
The generalized transmission coefficients in downward direction p

m0 can be defined as: 

1

1
1

1

0

1

1
0 exp)(






































  p

n

m

n

p
nn

m

n

m

n
nzn

p
m MTkjk

 ,  (16) 

where p {v, h}. The generalized transmission coefficients in upward direction p
m 0  are then 

given by 
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As a counterpart of (17), we have 
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Equations (17) and (18) formally express the reciprocity of the generalized transmission 
coefficients for an arbitrary flat-boundaries layered structure (Imperatore et al. 2009b).  
Here we introduce notion of layered slab, which refers to a layered structure sandwiched 
between two half-spaces. Accordingly, the generalized transmission coefficients in downward 
direction for a layered slab between two half-spaces (0, N), )(
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It should be noted that the parenthesized superscript slab indicates that both the media 0 
and N are half-space. Similarly, the generalized transmission coefficients in downward direction 
for the layered slab between two half-spaces (m+1, N), )(
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Moreover, we consider the generalized transmission coefficients in upward direction for the 
layered slab between two half-spaces (m, 0), )(
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The generalized transmission coefficients in downward direction for the layered slab between 
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It should be noted that the p
m0  are distinct from the coefficients )(

0
slabp
m , because in the 

evaluation of p
m0  the effect of all the layers under the layer m is taken into account, 

whereas )(
0
slabp
m  are evaluated referring to a different configuration in which the 

intermediate layers 1...m are bounded by the half-spaces 0 and m.  
We stress that generalized reflection and transmission coefficients do not depend on the 
direction of k . In the following, we shown how the employing the generalized 
reflection/transmission coefficient notions not only is crucial in obtaining a compact closed-
form perturbation solution, but it also permit us to completely elucidate the obtained 
analytical expressions from a physical point of view, highlighting the role played by the 
equivalent reflecting interfaces and by the equivalent slabs, so providing the inherent connection 
between the global scattering response. 

 
4. Stochastic characterization for the 3-D geometry description 
 

In this section, the focus is on stochastic description for the geometry of the investigated 
structure, and the notion of wide-sense stationary process is detailed. First of all, when the 
description of a rough interface by means of deterministic function )( rm is concerned, the 
corresponding ordinary 2-D Fourier Transform pair can be defined as  
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We stress that generalized reflection and transmission coefficients do not depend on the 
direction of k . In the following, we shown how the employing the generalized 
reflection/transmission coefficient notions not only is crucial in obtaining a compact closed-
form perturbation solution, but it also permit us to completely elucidate the obtained 
analytical expressions from a physical point of view, highlighting the role played by the 
equivalent reflecting interfaces and by the equivalent slabs, so providing the inherent connection 
between the global scattering response. 

 
4. Stochastic characterization for the 3-D geometry description 
 

In this section, the focus is on stochastic description for the geometry of the investigated 
structure, and the notion of wide-sense stationary process is detailed. First of all, when the 
description of a rough interface by means of deterministic function )( rm is concerned, the 
corresponding ordinary 2-D Fourier Transform pair can be defined as  
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Let us assume now that )( rm ,  which describes the generic (mth) rough interface, is a 2-D 
stochastic process satisfying the conditions 
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where the angular bracket denotes statistical ensemble averaging, and where )(ρmB  is the 
interface autocorrelation function, which quantifies the similarity of the spatial fluctuations 
with a displacement . Equations (27)-(28) constitute the basic assumptions defining a wide 
sense stationary (WSS) stochastic process: the statistical properties of the process under 
consideration are invariant to a spatial shift. Similarly, concerning two mutually correlated 
random rough interfaces m and n , we also assume that they are jointly WSS, i.e. 

  )()()( ρrρr nmBnm    ,   (29) 

where )(ρnmB  is the corresponding cross-correlation function of the two random processes.  
It can be readily derived that 

 )()( ρρ  mnnm BB  .    (30) 

The integral in (25) is a Riemann integral representation for )( rm , and it exists if )( rm  is 
piecewise continuous and absolutely integrable. On the other hand, when the spectral analysis 
of a stationary random process is concerned, the integral (25) does not in general exist in the 
framework of theory of the ordinary functions. Indeed, a WSS process describing an 
interface )( rm of infinite lateral extension, for its proper nature, is not absolutely integrable, 
so the conditions for the existence of the Fourier Transform are not satisfied. In order to 
obtain a spectral representation for a WSS random process, this difficulty can be 
circumvented by resorting to the more general Fourier-Stieltjes integral (Ishimaru, 1978); 
otherwise one can define space-truncated functions. When a finite patch of the rough 
interface with area A is concerned, the space-truncated version of (25) can be introduced as 
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use again the (25)-(26), regarding them as symbolic formulas, which hold a rigorous 
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Transform). We underline that by virtue of the condition (27) directly follows also that 
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where the asterisk denotes the complex conjugated, and where the operations of average 
and integration have been interchanged. When jointly WSS processes m  and n are 
concerned, accordingly to (29), the LHS of (32) must be a function of   rr only; therefore, 
it is required that  

)()()(~)(~ *
  kkkkk  mnnm W ,  (33) 

where (·) is the Dirac delta function, and where )(κmnW  is called the (spatial) cross power 
spectral density of two interfaces m  and n , for the spatial frequencies of the roughness. 
Equation (33) states that the different spectral components of the two considered interfaces 
must be uncorrelated. This is to say that the (generalized) Fourier transform of jointly WSS 
processes are jointly non stationary white noise with average power )( kmnW . Indeed, by 
using (33) into (32), we obtain 
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where the RHS of (34) involves an (ordinary) 2D Fourier Transform. Note also that as a 
direct consequence of the fact that )( rn  is real we have the relation )(~)(~ *

  kk nn  . 
Therefore, setting   rrρ in (34), we have  
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The cross-correlation function )(ρnmB   of two interfaces m  and n  is then given by the 
(inverse) 2D Fourier Transform of their (spatial) cross power spectral density, and Equation (35) 
together with its Fourier inverse 

  )()2()( 2 ρρκ ρκ
nmBedW j

mn    ,  (36) 

may be regarded as the (generalized) Wiener-Khinchin theorem. In particular, when n=m, (33) 
reduces to  
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  kkkkk  mmm W ,  (37) 

where )(κmW is called the (spatial) power spectral density of nth corrugated interface m and 
can be expressed as the (ordinary) 2D Fourier transform of n-corrugated interface 
autocorrelation function, i.e., satisfying the transform pair: 

  )()2()( 2 ρρκ ρκ
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