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Preface 
 

Heat conduction is a fundamental phenomenon encountered in many industrial and 
biological processes as well as in everyday life. Economizing of energy consumption in 
different heating and cooling processes or ensuring temperature limitations for proper 
device operation requires the knowledge of heat conduction physics and mathematics. 
The fundamentals of heat conduction were formulated by J. Fourier in his outstanding 
manuscript Théorie de la Propagation de la Chaleur dans les Solides presented to the 
Institut de France in 1807 and in the monograph ThéorieAnalytique de la Chaleur (1822). 
The two century evolution of the heat conduction theory resulted in a wide range of 
methods and problems that have been solved or have to be solved for successful 
development of the world community.  

The content of this book covers several up-to-date approaches in the heat conduction 
theory such as inverse heat conduction problems, non-linear and non-classic heat 
conduction equations, coupled thermal and electromagnetic or mechanical effects and 
numerical methods for solving heat conduction equations as well. The book is 
comprised of 14 chapters divided in four sections. 

In the first section inverse heat conduction problems are discuss. The section is started 
with a review containing classification of inverse heat conduction problems alongside 
with the methods for their solution. The genetic algorithm, neural network and 
particle swarm optimization techniques, and the Marching Algorithm are considered 
in the next two chapters. In Chapter 4 the inverse heat conduction problem is used for 
evaluating from experimental data the local heat transfer coefficient for jet 
impingement with plane surface. 

The first two chapter of the second section are devoted to construction of analytical 
solutions of nonlinear heat conduction problems when nonlinear terms are included in 
the heat conduction equation (Chapter 5) or the nonlinearity appears through 
boundary conditions and/or temperature dependence of the heat conduction equation 
coefficients (Chapter 6). In the last two chapters of this section wavelike solutions are 
attained due to construction of a hyperbolic heat conduction equation (Chapter 7) or 
because of time varying boundary conditions (Chapter 8). 



X Preface 
 

The third section is devoted to combined effects of heat conduction and 
electromagnetic interactions in plasmas (Chapter 9) or pyroelectric material (Chapter 
10), elastic deformations (Chapter 11) and hydrodynamics (Chapter 12). 

Two chapters in the last section are dedicated to numerical methods for solving heat 
conduction problems, namely the particle transport Monte Carlo method (Chapter 13) 
and a meshless version of the boundary element method (Chapter 14). 

 
Dr. Prof. Vyacheslav S. Vikhrenko 

Belarusian State Technological University,  
Belarus 
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Inverse Heat Conduction Problems 
Krzysztof Grysa 

Kielce University of Technology 
Poland 

1. Introduction  
In the heat conduction problems if the heat flux and/or temperature histories at the surface 
of a solid body are known as functions of time, then the temperature distribution can be 
found. This is termed as a direct problem. However in many heat transfer situations, the 
surface heat flux and temperature histories must be determined from transient temperature 
measurements at one or more interior locations. This is an inverse problem. Briefly speaking 
one might say the inverse problems are concerned with determining causes for a desired or 
an observed effect.  
The concept of an inverse problem have gained widespread acceptance in modern applied 
mathematics, although it is unlikely that any rigorous formal definition of this concept exists. 
Most commonly, by inverse problem is meant a problem of determining various quantitative 
characteristics of a medium such as density, thermal conductivity, surface loading, shape of a 
solid body etc. , by observation over physical fields in the medium or – in other words -  a 
general framework that is used to convert observed measurements into information about a 
physical object or system that we are interested in. The fields may be of natural appearance or 
specially induced, stationary or depending on time, (Bakushinsky & Kokurin, 2004).  
Within the class of inverse  problems, it is the subclass of indirect measurement problems 
that characterize the nature of inverse problems that arise in applications. Usually 
measurements only record some indirect aspect of the phenomenon of interest. Even if the 
direct information is measured, it is measured as a correlation against a standard and this 
correlation can be quite indirect. The inverse problems are difficult because they ussually 
are extremely sensitive to measurement errors. The difficulties are particularly pronounced 
as one tries to obtain the maximum of information from the input data.  
 A formal mathematical model of an inverse problem can be derived with relative ease. 
However, the process of solving the inverse problem is extremely difficult and the so-called 
exact solution practically does not exist. Therefore, when solving an inverse problem the 
approximate methods like iterative procedures, regularization techniques, stochastic and 
system identification methods, methods based on searching an approximate solution in a 
subspace of the space of  solutions (if the one is known), combined techniques or straight 
numerical methods are used.  

2. Well-posed and ill-posed problems 
The concept of well-posed or correctly posed problems was introduced in (Hadamard, 
1923). Assume that a problem is defined as 
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 Au=g   (1) 

where u  U, g  G, U and G are metric spaces and A is  an operator so that AUG. In 
general u can be a vector that characterize a model of phenomenon and g can be the 
observed attribute of the phenomenon.  
A well-posed problem must meet the following requirements: 
 the solution of equation (1) must exist for any gG, 
 the solution of equation (1) must be unique, 
 the solution of equation (1) must be stable with respect to perturbation on the right-

hand side, i.e. the operator A-1 must be defined throughout the space G and be 
continuous.  

If one of the requirements is not fulfilled the problem is termed as an ill-posed. For ill-
posed problems the inverse operator A-1 is not continuous in its domain AU G which 
means that the solution of the equation (1) does not depend continuously on the input 
data g  G, (Kurpisz & Nowak, 1995; Hohage, 2002; Grysa, 2010). In general we can say 
that the (usually approximate) solution of an ill-posed problem does not necessarily 
depend continuously on the measured data and the structure of the solution can have a 
tenuous link to the measured data. Moreover, small measurement errors can be the source  
for unacceptable perturbations in the solution. The best example of the last statement is  
numerical differentiation of a solution of an inverse problem with noisy input data. Some 
interesting remarks on the inverse and ill-posed problems can be found in (Anderssen, 
2005). 
Some typical inverse and ill-posed problems are mentioned in (Tan & Fox, 2009).  

3. Classification of the inverse problems 
Engineering field problems are defined by governing partial differential or integral 
equation(s), shape and size of the domain, boundary and initial conditions, material 
properties of the media contained in the field and by internal sources and external forces or 
inputs. As it has been mentioned above, if all of this information is known, the field problem 
is of a direct type and generally considered as well posed and solvable. In the case of heat 
conduction problems the governing equations and possible boundary and initial conditions 
have the following form: 

   v
T

c k T Q
t

 
    


 ,   (x,y,z) 3R  , t(0, tf],  (2) 

      , , , , , ,    for   , , ,b DT x y z t T x y z t x y z t S  ,   t(0, tf],    (3) 
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
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
  t(0, tf], (4) 

         , , ,
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k h T x y z t T x y z t x y z t S

n


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
  t(0, tf],  (5) 

      0, , ,0 , ,    for   , ,T x y z T x y z x y z  ,  (6) 
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where ( / , / , / )x y z        stands for gradient differential operator in 3D;  denotes 
density of mass, [kg/m3]; c is the constant-volume specific heat, [J/kg K]; T is temperature, 
[K]; k denotes thermal conductivity, [W/m K]; vQ is the rate of heat generation per unit 
volume, [W/m3], frequently termed as source function; / n  means differentiation along 
the outward normal; hc denotes the heat transfer coefficient, [W/m2 K]; Tb , qb and T0 are 
given functions and Te stands for environmental temperature, tf – final time. The boundary 
  of the domain  is divided into three disjoint parts denoted with subscripts D for 
Dirichlet, N for Neumann and R for Robin boundary condition; D N RS S S    . 
Moreover, it is also possible to introduce the fourth-type or radiation boundary condition, 
but here this condition will not be dealt with.  
 The equation (2) with conditions (3) to (6) describes an initial-boundary value problem for 
transient heat conduction. In the case of stationary problem the equation (2) becomes a 
Poisson equation or – when the source function vQ  is equal to zero – a Laplace equation. 
Broadly speaking, inverse problems may be subdivided into the following categories: 
inverse conduction, inverse convection, inverse radiation and inverse phase change 
(melting or solidification) problems as well as all combination of them (Özisik & Orlande, 
2000). Here we have adopted classification based on the type of causal characteristics to be 
estimated:  
1. Boundary value determination inverse problems, 
2. Initial value determination inverse problems, 
3. Material properties determination inverse problems, 
4. Source determination inverse problems 
5. Shape determination inverse problems.  

3.1 Boundary value determination inverse problems 
In this kind of inverse problem on a part of a boundary the condition is not known. Instead, 
in some internal points of the considered body some results of temperature measurements 
or anticipated values of temperature or heat flux are prescribed. The measured or 
anticipated values are called internal responses. They can be known on a line or surface 
inside the considered body or in a discrete set of points. If the internal responses are known 
as  values of heat flux, on a part of the boundary a temperature has to be known, i.e. 
Dirichlet or Robin condition has to be prescribed. In the case of stationary problems an 
inverse problem for Laplace or Poisson equation has to be solved. If the temperature field 
depends on time, then the equation (2) becomes a starting point. The additional condition 
can be formulated as  

    , , , , , ,aT x y z t T x y z t    for    , ,x y z L   ,  t(0, tf]  (7) 

or 

  , , ,i i i i ikT x y z t T    for    , ,i i ix y z  , tk(0, tf], i=1,2,…, I; k=1,2,..,K  (8) 

with  Ta being a given function and  Tik known from e.g. measurements. As examples of such 
problems can be presented papers (Reinhardt et al., 2007; Soti et al., 2007; Ciałkowski & 
Grysa, 2010) and many others. 
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