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1 Mathematical Prelude

Just below the title of each chapter is a tip on what I perceive to be the most
common mistake made by students in applying material from the chapter. 1
include these tips so that you can avoid making the mistakes. Here’s the first one:

1 1
The reciprocal of —+— isnotx+y. Tryitin the case of some simple numbers.
X

1 1 1 1
Suppose x=2 and y=4. Then —+— = —+—
Xy 2 4

2 1
= —+— = — and the reciprocal
4 4 4

of % is % which is clearly not 6 (which is what you obtain if you take the

reciprocal of %+% to be 2+4). So what is the reciprocal of ! +l ? The
Xy
reciprocal of ! +l is ! :
x y 1.1
Xy
This book is a physics book, not a mathematics book. One of your goals in taking
a physics course is to become more proficient at solving physics problems, both
conceptual problems involving little to no math, and problems involving some
mathematics. In a typical physics problem you are given a description about
something that is taking place in the universe and you are supposed to figure out
and write something very specific about what happens as a result of what is
taking place. More importantly, you are supposed to communicate clearly,
completely, and effectively, how, based on the description and basic principles of
physics, you arrived at your conclusion. To solve a typical physics problem you
have to: (1) form a picture based on the given description, quite often a moving
picture, in your mind, (2) concoct an appropriate mathematical problem based on
the picture, (3) solve the mathematical problem, and (4) interpret the solution of
the mathematical problem. The physics occurs in steps 1, 2, and 4. The
mathematics occurs in step 3. It only represents about 25% of the solution to a
typical physics problem.

You might well wonder why we start off a physics book with a chapter on mathematics. The
thing is, the mathematics covered in this chapter is mathematics you are supposed to already
know. The problem is that you might be a little bit rusty with it. We don’t want that rust to get
in the way of your learning of the physics. So, we try to knock the rust off of the mathematics
that you are supposed to already know, so that you can concentrate on the physics.

As much as we emphasize that this is a physics course rather than a mathematics course, there is
no doubt that you will advance your mathematical knowledge if you take this course seriously.
You will use mathematics as a tool, and as with any tool, the more you use it the better you get at
using it. Some of the mathematics in this book is expected to be new to you. The mathematics
that is expected to be new to you will be introduced in recitation on an as-needed basis. It is
anticipated that you will learn and use some calculus in this course before you ever see it in a
mathematics course. (This book is addressed most specifically to students who have never had a



Chapter 1 Mathematical Prelude

physics course before and have never had a calculus course before but are currently enrolled in a
calculus course. If you have already taken calculus, physics, or both, then you have a well-
earned advantage.)

Two points of emphasis regarding the mathematical component of your solutions to physics
problems that have a mathematical component are in order:

(1) You are required to present a clear and complete analytical solution to each problem. This
means that you will be manipulating symbols (letters) rather than numbers.

(2) For any physical quantity, you are required to use the symbol which is conventionally used
by physicists, and/or a symbol chosen to add clarity to your solution. In other words, it is
not okay to use the symbol x to represent every unknown.

Aside from the calculus, here are some of the kinds of mathematical problems you have to be
able to solve:

Problems Involving Percent Change

A cart is traveling along a track. As it passes through a photogate’ its speed is measured to be
3.40 m/s. Later, at a second photogate, the speed of the cart is measured to be 3.52 m/s. Find the
percent change in the speed of the cart.

The percent change in anything is the change divided by the original, all times 100%. (I’ve
emphasized the word “original” because the most common mistake in these kinds of
problems is dividing the change by the wrong thing.)

The change in a quantity is the new value minus the original value. (The most common
mistake here is reversing the order. If you forget which way it goes, think of a simple
problem for which you know the answer and see how you must arrange the new and
original values to make it come out right. For instance, suppose you gained 2 kg over the
summer. You know that the change in your mass is +2 kg. You can calculate the
difference both ways—we’re talking trial and error with at most two trials. You’ll quickly
find out that it is “the new value minus the original value” a.k.a. “final minus initial” that
yields the correct value for the change.)

Okay, now let’s solve the given problem

change

% Change = 100 % (1-1)

original

Recalling that the change is the new value minus the original value we have

' A photogate is a device that produces a beam of light, senses whether the beam is blocked, and typically sends a
signal to a computer indicating whether the beam is blocked or not. When a cart passes through a photogate, it
temporarily blocks the beam. The computer can measure the amount of time that the beam is blocked and use that
and the known length of the cart to determine the speed of the cart as it passes through the photogate.
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new — original

% Change = 100% (1-2)

original

While it’s certainly okay to memorize this by accident because of familiarity with it, you
should concentrate on being able to derive it using common sense (rather than working at
memorizing it).

Substituting the given values for the case at hand we obtain

352" _3.40™"
% Change = 5 - 5100%
3.40
S

% Change = 3.5%

Problems Involving Right Triangles

Example 1-1: The length of the shorter side of a right triangle is x and the length of the
hypotenuse is . Find the length of the longer side and find both of the angles, aside
from the right angle, in the triangle.

Solution:
[ r
Draw the triangle such that it is obvious X
which side is the shorter side —» p
Y
Pythagorean Theorem —p rr=x"+y’
Subtract x” from both sides of the equation —p 7> —x* = »*
Swap sides —p Y =r’-x’
Take the square root of both
sides of the equation y=Nrl-x’
By definition, the sine of & is the side sing =~
opposite & divided by the hypotenuse o,
Take the arcsine of both sides of the 0—sin
equation in order to get @ by itself - s N
By definition, the cosine of ¢ is the side cosp =X
adjacent to ¢ divided by the hypotenuse ¢= r
Take the arccosine of both sides of the X
equation in order to get ¢ by itself ' P = o8 ~
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To solve a problem like the one above, you need Hypotenuse
to memorize the relations between the sides and Opposite
the angles of a right triangle. A convenient
mnemonic’ for doing so is “SOHCAHTOA” o) =
pronounced as a single word. Adjacent
Referring to the diagram above right:
. . Opposite
SOH reminds us that: sin = ———— (1-3)
Hypotenuse
CAH reminds us that: cosd = _Adjacent (1-4)
Hypotenuse
. Opposite
TOA reminds us that: tand = ——— (1-5)
Adjacent

Points to remember:

1. The angle @ is never the 90 degree angle.

2. The words “opposite” and “adjacent” designate sides relative to the angle. For instance,
the cosine of @ is the length of the side adjacent to & divided by the length of the
hypotenuse.

You also need to know about the arcsine and the arccosine functions to solve the example
problem above. The arcsine function is the inverse of the sine function. The answer to the
question, “What is the arcsine of 0.44?” is, “that angle whose sine is 0.44 .” There is an arcsine
button on your calculator. It is typically labeled sin™, to be read, “arcsine.” To use it you
probably have to hit the inverse button or the second function button on your calculator first.

The inverse function of a function undoes what the function does. Thus:
sin"' sinf =60 (1-6)

Furthermore, the sine function is the inverse function to the arcsine function and the cosine
function is the inverse function to the arccosine function. For the former, this means that:

sin(sin ' x) = x (1-7)

* A mnemonic is something easy to remember that helps you remember something that is harder to remember.
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Problems Involving the Quadratic Formula

First comes the quadratic equation, then comes the quadratic formula. The quadratic formula is
the solution to the quadratic equation:

ax’+bx+c=0 (1-8)
in which:
x is the variable whose value is sought, and
a, b, and ¢ are constants

The goal is to find the value of x that makes the left side 0. That value is given by the quadratic
formula:

—b+b* —4dac
X = 5 (1-9)
a

to be read/said:

‘x” equals minus ‘b’, plus-or-minus the square root of ‘b’ squared
minus four ‘a’ ‘c’, all over two ‘a’.

So, how do you know when you have to use the quadratic formula? There is a good chance that
you need it when the square of the variable for which you are solving, appears in the equation
you are solving. When that is the case, carry out the algebraic steps needed to arrange the terms
as they are arranged in equation 1-8 above. Ifthis is impossible, then the quadratic formula is
not to be used. Note that in the quadratic equation you have a term with the variable to the
second power, a term with the variable to the first power, and a term with the variable to the
zeroth power (the constant term). If additional powers also appear, such as the one-half power
(the square root), or the third power, then the quadratic formula does not apply. If the equation
includes additional terms in which the variable whose value is sought appears as the argument of
a special function such as the sine function or the exponential function, then the quadratic
formula does not apply. Now suppose that there is a square term and you can get the equation
that you are solving in the form of equation 1-8 above but that either b or ¢ is zero. In such a
case, you can use the quadratic formula, but it is overkill. If 5 in equation 1-8 above is zero then
the equation reduces to

ax’+bx=0

The easy way to solve this problem is to recognize that there is at least one x in each term, and to
factor the x out. This yields:

(ax+b)x=0

Then you have to realize that a product of two multiplicands is equal to zero if either
multiplicand is equal to zero. Thus, setting either multiplicand equal to zero and solving for x
yields a solution. We have two multiplicands involving x, so, there are two solutions to the
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equation. The second multiplicand in the expression (ax+b)x =0 is x itself, so
x=0

is a solution to the equation. Setting the first term equal to zero gives:

ax+b=0

ax=-b

Now suppose the b in the quadratic equation ax’+ bx + ¢ =0, equation 1-8, is zero. In that case,
the quadratic equation reduces to:

ax*+c¢=0

which can easily be solved without the quadratic formula as follows:

a
x==% /- €
\ «
where we have emphasized the fact that there are two square roots to every value by placing a
plus-or-minus sign in front of the radical.

Now, if upon arranging the given equation in the form of the quadratic equation (equation 1-8):
ax’+bx+c=0

you find that a, b, and ¢ are all non-zero, then you should use the quadratic formula. Here we
present an example of a problem whose solution involves the quadratic formula:
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Example 1-2: Quadratic Formula Example Problem

Given

(1-10)
find x.

At first glance, this one doesn’t look like a quadratic equation, but as we begin isolating x, as we
always strive to do in solving for x, (hey, once we have x all by itself on the left side of the
equation, with no x on the right side of the equation, we have indeed solved for x—that’s what it
means to solve for x) we quickly find that it is a quadratic equation.

Whenever we have the unknown in the denominator of a fraction, the first step in isolating that
unknown is to multiply both sides of the equation by the denominator. In the case at hand, this
yields

(x+1)3+x)=24

Multiplying through on the left we find

3x+3+x> +x=24

At this point it is pretty clear that we are dealing with a quadratic equation so our goal becomes
getting it into the standard form of the quadratic equation, the form of equation 1-8, namely:

ax® +bx+c=0. Combining the terms involving x on the left and rearranging we obtain
x* +4x+3=24

Subtracting 24 from both sides yields
x*+4x-21=0

which is indeed in the standard quadratic equation form. Now we just have to use inspection to
identify which values in our given equation are the a, b, and c that appear in the standard

quadratic equation (equation 1-8) ax® +bx +c = 0. Although it is not written, the constant
multiplying the x°, in the case at hand, is just 1. Sowe havea=1, b=4, and c =-21.

Substituting these values into the quadratic formula (equation 1-9):

B —b++b* —4ac

X =

2a
yields
B —4+,/4% —4(1)(=21)
- 2(1)
which results in
x=3, x=-7
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as the solutions to the problem. As a quick check we substitute each of these values back into
the original equation, equation 1-10:

24
3+x=

and find that each substitution leads to an identity. (An identity is an equation whose validity is
trivially obvious, such as 6 = 6.)

This chapter does not cover all the non-calculus mathematics you will encounter in this course.
I’ve kept the chapter short so that you will have time to read it all. If you master the concepts in
this chapter (or re-master them if you already mastered them in high school) you will be on your
way to mastering all the non-calculus mathematics you need for this course. Regarding reading
it all: By the time you complete your physics course, you are supposed to have read this book
from cover to cover. Reading physics material that is new to you is supposed to be slow going.
By the word reading in this context, we really mean reading with understanding. Reading a
physics text involves not only reading but taking the time to make sense of diagrams, taking the
time to make sense of mathematical developments, and taking the time to make sense of the
words themselves. It involves rereading. The method I use is to push my way through a chapter
once, all the way through at a novel-reading pace, picking up as much as I can on the way but not
allowing myself to slow down. Then, I really read it. On the second time through I pause and
ponder, study diagrams, and ponder over phrases, looking up words in the dictionary and
working through examples with pencil and paper as I go. I try not to go on to the next paragraph
until I really understand what is being said in the paragraph at hand. That first read, while of
little value all by itself; is of great benefit in answering the question, “Where is the author going
with this?”, while I am carrying out the second read.



2 Conservation of Mechanical Energy I: Kinetic Energy &
Gravitational Potential Energy

Physics professors often assign conservation of energy problems that, in terms of
mathematical complexity, are very easy, to make sure that students can
demonstrate that they know what is going on and can reason through the problem
in a correct manner, without having to spend much time on the mathematics. A
good before-and-after-picture correctly depicting the configuration and state of
motion at each of two well-chosen instants in time is crucial in showing the
appropriate understanding. A presentation of the remainder of the conceptual-
plus-mathematical solution of the problem starting with a statement in equation
form that the energy in the before picture is equal to the energy in the after picture,
continuing through to an analytical solution and, if numerical values are provided,
only after the analytical solution has been arrived at, substituting values with units,
evaluating, and recording the result is almost as important as the picture. The
problem is that, at this stage of the course, students often think that it is the final
answer that matters rather than the communication of the reasoning that leads to
the answer. Furthermore, the chosen problems are often so easy that students can
arrive at the correct final answer without fully understanding or communicating the
reasoning that leads to it. Students are unpleasantly surprised to find that correct
final answers earn little to no credit in the absence of a good correct before-and-
after picture and a well-written remainder of the solution that starts from first
principles, is consistent with the before and after picture, and leads logically, with
no steps omitted, to the correct answer. Note that students who focus on correctly
communicating the entire solution, on their own, on every homework problem they
do, stand a much better chance of successfully doing so on a test than those that
“Just try to get the right numerical answer” on homework problems.

Mechanical Energy

Energy is a transferable physical quantity that an object can be said to have. If one transfers
energy to a material particle that is initially at rest, the speed of that particle changes to a value
which is an indicator of how much energy was transferred. Energy has units of joules,
abbreviated J. Energy can’t be measured directly but when energy is transferred to or from an
object, some measurable characteristic (or characteristics) of that object changes (change) such
that, measured values of that characteristic or those characteristics (in combination with one or
more characteristics such as mass that do not change by any measurable amount) can be used to
determine how much energy was transferred. Energy is often categorized according to which
measurable characteristic changes when energy is transferred. In other words, we categorize
energy in accord with the way it reveals itself to us. For instance, when the measurable
characteristic is temperature, we call the energy thermal energy; when the measurable quantity is
speed, we call the energy kinetic energy. While it can be argued that there is only one form or
kind of energy, in the jargon of physics we call the energy that reveals itself one way one kind or
form of energy (such as thermal energy) and the energy that reveals itself another way another
kind or form of energy (such as kinetic energy). In physical processes it often occurs that the

10



Chapter 2 Conservation of Mechanical Energy I: Kinetic Energy & Gravitational Potential Energy

way in which energy is revealing itself changes. When that happens we say that energy is
transformed from one kind of energy to another.

Kinetic Energy is energy of motion. An object at rest has no motion; hence, it has no kinetic
energy. The kinetic energy K of a non-rotating rigid object in motion depends on the mass m and
speed v of the object as follows':

K =1mv? (2-1)

The mass m of an object is a measure of the object’s inertia, the object’s inherent tendency to
maintain a constant velocity. The inertia of an object is what makes it hard to get that object
moving. The words “mass” and “inertia” both mean the same thing. Physicists typically use the
word “inertia” when talking about the property in general conceptual terms, and the word “mass”
when they are assigning a value to it, or using it in an equation. Mass has units of kilograms,
abbreviated kg. The speed v has units of meters per second, abbreviated m/s. Check out the
units in equation 2-1:
K=1mv?

On the left we have the kinetic energy which has units of joules. On the right we have the
2

product of a mass and the square of a velocity. Thus the units on the right are kg—- and we
s

2
: : m
can deduce that a joule is a kg—-.
S

Potential Energy is energy that depends on the arrangement of matter. Here, we consider one
type of potential energy:

The Gravitational Potential Energy of an object” near the surface of the earth is the energy
(relative to the gravitational potential energy that the object has when it is at the reference level
about to me mentioned) that the object has because it is "up high" above a reference level such as
the ground, the floor, or a table top. In characterizing the relative gravitational potential energy
of'an object it is important to specify what you are using for a reference level. In using the
concept of near-earth gravitational potential energy to solve a physics problem, although you are
free to choose whatever you want to as a reference level, it is important to stick with one and the
same reference level throughout the problem. The relative gravitational potential energy U, of

"In classical physics we deal with speeds much smaller than the speed of light c=3.00x10*m/s. The classical

1

physics expression K =2 mv” is an approximation (a fantastic approximation at speeds much smaller than the speed

of light—the smaller the better) to the relativistic expression K = (1/y1-v?/c* —)me* which is valid for all speeds.
* We call the potential energy discussed here the gravitational potential energy “of the object.” Actually, it is the
gravitational potential energy of the object-plus-earth system taken as a whole. It would be more accurate to ascribe
the potential energy to the gravitational field of the object and the gravitational field of the earth. In lifting an
object, it is as if you are stretching a weird invisible spring—weird in that it doesn’t pull harder the more you stretch
it as an ordinary spring does—and the energy is being stored in that invisible spring. For energy accounting purposes
however, it is easier to ascribe the gravitational potential energy of an object near the surface of the earth, to the
object, and that is what we do in this book. This is similar to calling the gravitational force exerted on an object by
the earth’s gravitational field the “weight of the object” as if it were a property of the object, rather than what it
really is, an external influence acting on the object.

11
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an object near the surface of the earth depends on the object's height y above the chosen
reference level, the object's mass m, and the magnitude g of the earth’s gravitational field, which

to a good approximation has the same value g = 9.80% everywhere near the surface of the
g
earth, as follows:

Uy =mgy @)

: N : : .
The Nin g = 9.80k— stands for newtons, the unit of force. (Force is an ongoing push or pull.)
g
Since it is an energy, the units of U, are joules, and the units on the right side of equation 2-2,
with the height y being in meters, work out to be newtons times meters. Thus a joule must be a
2
newton meter, and indeed it is. Just above we showed that a joule is a kgm—z. If a joule is also
s

m
a newton meter then a newton must be a kg —-.
S

A Special Case of the Conservation of Mechanical Energy

Energy is very useful for making predictions about physical processes because it is never created
or destroyed. To borrow expressions from economics, that means we can use simple
bookkeeping or accounting to make predictions about physical processes. For instance, suppose
we create, for purposes of making such a prediction, an imaginary boundary enclosing part of the
universe. Then any change in the total amount of energy inside the boundary will correspond
exactly to energy transfer through the boundary. Ifthe total energy inside the boundary increases
by AE, then exactly that same amount of energy AE must have been transferred through the
boundary into the region enclosed by the boundary from outside that region. And if the total
energy inside the boundary decreases by AE, then exactly that amount of energy AE must have
been transferred through the boundary out of the region enclosed by the boundary from inside
that region. Oddly enough, in keeping book on the energy in such an enclosed part of the
universe, we rarely if ever know or care what the overall total amount of energy is. It is
sufficient to keep track of changes. What can make the accounting difficult is that there are so
many different ways in which energy can manifest itself (what we call the different “forms” of
energy), and there is no simple energy meter that tells us how much energy there is in our
enclosed region. Still, there are processes for which the energy accounting is relatively simple.
For instance, it is relatively simple when there is no (or negligible) transfer of energy into or out
of the part of the universe that is of interest to us, and when there are few forms of energy for
which the amount of energy changes.

The two kinds of energy discussed above (the kinetic energy of a rigid non-rotating object and
gravitational potential energy) are both examples of mechanical energy, to be contrasted with,
for example, thermal energy. Under certain conditions the total mechanical energy of a system
of objects does not change even though the configuration of the objects does. This represents a
special case of the more general principle of the conservation energy. The conditions under
which the total mechanical energy of a system doesn’t change are:

12



Chapter 2 Conservation of Mechanical Energy I: Kinetic Energy & Gravitational Potential Energy

(1) No energy is transferred to or from the surroundings.
(2) No energy is converted to or from other forms of energy (such as thermal energy).

Consider a couple of processes in which the total mechanical energy of a system does not remain
the same:

Case #1
A rock is dropped from shoulder height. It hits the ground and comes to a complete stop.

The "system of objects" in this case is just the rock. As the rock falls, the gravitational potential
energy is continually decreasing. As such, the kinetic energy of the rock must be continually
increasing in order for the total energy to be staying the same. On the collision with the ground,
some of the kinetic energy gained by the rock as it falls through space is transferred to the
ground and the rest is converted to thermal energy and the energy associated with sound.
Neither condition (no transfer and no transformation of energy) required for the total mechanical
energy of the system to remain the same is met; hence, it would be incorrect to write an equation
setting the initial mechanical energy of the rock (upon release) equal to the final mechanical
energy of the rock (after landing).

Can the idea of an unchanging total amount of mechanical energy be used in the case of a falling
object? The answer is yes. The difficulties associated with the previous process occurred upon
collision with the ground. You can use the idea of an unchanging total amount of mechanical
energy to say something about the rock if you end your consideration of the rock before it hits
the ground. For instance, given the height from which it is dropped, you can use the idea of an
unchanging total amount of mechanical energy to determine the speed of the rock at the last
instant before it strikes the ground. The "last instant before" it hits the ground corresponds to the
situation in which the rock has not yet touched the ground but will touch the ground in an
amount of time that is too small to measure and hence can be neglected. It is so close to the
ground that the distance between it and the ground is too small to measure and hence can be
neglected. It is so close to the ground that the additional speed that it would pick up in
continuing to fall to the ground is too small to be measured and hence can be neglected. The
total amount of mechanical energy does not change during this process. It would be correct to
write an equation setting the initial mechanical energy of the rock (upon release) equal to the
final mechanical energy of the rock (at the last instant before collision).

Case #2
A block, in contact with nothing but a sidewalk, slides across the sidewalk.

The total amount of mechanical energy does not remain the same because there is friction
between the block and the sidewalk. In any case involving friction, mechanical energy is
converted into thermal energy; hence, the total amount of mechanical energy after the sliding, is
not equal to the total amount of mechanical energy prior to the sliding.
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Chapter 2 Conservation of Mechanical Energy I: Kinetic Energy & Gravitational Potential Energy

Applying the Principle of the Conservation of Energy for the Special Case
in which the Mechanical Energy of a System does not Change

In applying the principle of conservation of mechanical energy for the special case in which the
mechanical energy of a system does not change, you write an equation which sets the total
mechanical energy of an object or system objects at one instant in time equal to the total
mechanical energy at another instant in time. Success hangs on the appropriate choice of the two
instants. The principal applies to all pairs of instants of the time interval during which energy is
neither transferred into or out of the system nor transformed into non-mechanical forms. You
characterize the conditions at the first instant by means of a "Before Picture" and the conditions
at the second instant by means of an "After Picture.” In applying the principle of conservation of
mechanical energy for the special case in which the mechanical energy of a system does not
change, you write an equation which sets the total mechanical energy in the Before Picture equal
to the total mechanical energy in the After Picture. (In both cases, the “total” mechanical energy
in question is the amount the system has relative to the mechanical energy it would have if all
objects were at rest at the reference level.) To do so effectively, it is necessary to sketch a
Before Picture and a separate After Picture. After doing so, the first line in one's solution to a
problem involving an unchanging total of mechanical energy always reads

Energy Before = Energy After (2-3)
We can write this first line more symbolically in several different manners:

E =E, or E,=E, or E=E' (2-4)

The first two versions use subscripts to distinguish between "before picture" and "after picture”
energies and are to be read "E-sub-one equals E-sub-two" and "E-sub-i equals E-sub-f." In the
latter case the symbols 7 and f'stand for initial and final. In the final version, the prime symbol is
added to the E to distinguish "after picture" energy from "before picture" energy. The last
equation is to be read "E equals E-prime." (The prime symbol is sometimes used in mathematics
to distinguish one variable from another and it is sometimes used in mathematics to signify the
derivative with respect to x. It is never used it to signify the derivative in this book.) The
unprimed/prime notation is the notation that will be used in the following example:
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Example 2-1: A rock is dropped from a height of 1.6 meters. How fast is the rock
falling just before it hits the ground?

Solution: Choose the "before picture" to correspond to the instant at which the rock is
released, since the conditions at this instant are specified ("dropped" indicates that the rock was
released from rest—its speed is initially zero, the initial height of the rock is given). Choose the
"after picture" to correspond to the last instant before the rock makes contact with the ground
since the question pertains to a condition (speed) at this instant.

Rock of BEFORE AFTER
mass m
7 v=_0
y=1L6m
\l/ Reference Level Q -
v'=7?
E = E'
0 (since at rest) 0 (since at ground level)
+ U = K + U

Note that we have omitted 1
the subscript g (for mgy = —m V"2
“gravitational”) from both U 2
and U'. When you are i
dealing with only one kind 4 = 29y
of potential energy, you
don’t need to use a '

v = ./2
subscript to distinguish it gy
from other kinds.

v = |2(9.80m/s*)1.6m

m
v = 5.6—
S
kg-m

Note that the unit, 1 newton, abbreviated as 1 N, is 1 . Hence, the magnitude of the earth’s

s
o N
near-surface gravitational field g = 9.80k— can also be expressed as g = 9.8022 as we have
g s
done in the example for purposes of working out the units.
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The solution presented in the example provides you with an example of what is required of
students in solving physics problems. In cases where student work is evaluated, it is the solution
which is evaluated, not just the final answer. In the following list, general requirements for
solutions are discussed, with reference to the solution of the example problem:

1. Sketch (the before and after pictures in the example).
Start each solution with a sketch or sketches appropriate to the problem at hand. Use the
sketch to define symbols and, as appropriate, to assign values to symbols. The sketch aids
you in solving the problem and is important in communicating your solution to the reader.
Note that each sketch depicts a configuration at a particular instant in time rather than a
process which extends over a time interval.

2. Write the "Concept Equation" (E = E' in the example).

3. Replace quantities in the "Concept Equation" with more specific representations of the same
quantities. Repeat as appropriate.

In the example given, the symbol £ representing total mechanical energy in the before picture
is replaced with "what it is,” namely, the sum of the kinetic energy and the potential energy
K +U of'the rock in the before picture. On the same line E’ has been replaced with what it
is, namely, the sum of the kinetic energy and the potential energy K'+ U’ in the after picture.

Quantities that are obviously zero have slashes drawn through them and are omitted from
subsequent steps.

This step is repeated in the next line (mgy =5 m v'?) in which the gravitational potential
energy in the before picture, U, has been replaced with what it is, namely m gy, and on the
right, the kinetic energy in the after picture has been replaced with what it is, namely, Lmv'?,
The symbol m that appears in this step is defined in the diagram.

4. Solve the problem algebraically. The student is required to solve the problem by algebraically
manipulating the symbols rather than substituting values and simultaneously evaluating and
manipulating them.

The reasons that physics teachers require students taking college level physics courses to
solve the problems algebraically in terms of the symbols rather than working with the
numbers are:

(a) College physics teachers are expected to provide the student with experience in "the
next level" in abstract reasoning beyond working with the numbers. To gain this
experience, the students must solve the problems algebraically in terms of symbols.

(b) Students are expected to be able to solve the more general problem in which, whereas
certain quantities are to be treated as if they are known, no actual values are given.
Solutions to such problems are often used in computer programs which enable the user
to obtain results for many different values of the "known quantities.” Actual values are
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assigned to the known quantities only affer the user of the program provides them to the
program as input—Ilong after the algebraic problem is solved.

(c) Many problems more complicated than the given example can more easily be solved
algebraically in terms of the symbols. Experience has shown that students accustomed
to substituting numerical values for symbols at the earliest possible stage in a problem
are unable to solve the more complicated problems.

In the example, the algebraic solution begins with the line mgy =5 m v'?. The m's appearing

on both sides of the equation have been canceled out (this is the algebraic step) in the solution
provided. Note that in the example, had the m's not canceled out, a numerical answer to the
problem could not have been determined since no value for m was given. The next two lines
represent the additional steps necessary in solving algebraically for the final speed v'. The

final line in the algebraic solution (v’ = /29y in the example) always has the quantity being

solved for all by itself on the /eft side of the equation being set equal to an expression
involving only known quantities on the right side of the equation. The algebraic solution is
not complete if unknown quantities (especially the quantity sought) appear in the expression
on the right hand side. Writing the final line of the algebraic solution in the reverse order, e.g.

29y = v', is unconventional and hence unacceptable. If your algebraic solution naturally

leads to that, you should write one more line with the algebraic answer written in the correct
order.

5) Replace symbols with numerical values with units, v' = \/ 2(9.80)1.6m in the example; the
S

units are the units of measurement: mz and m in the example).

S

No computations should be carried out at this stage. Just copy down the algebraic solution but
with symbols representing known quantities replaced with numerical values with units. Use
parentheses and brackets as necessary for clarity.

6) Write the final answer with units (v' = 5.6% in the example).

Numerical evaluations are to be carried out directly on the calculator and/or on scratch paper. It
is unacceptable to clutter the solution with arithmetic and intermediate numerical answers
between the previous step and this step. Units should be worked out and provided with the final
answer. It is good to show some steps in working out the units but for simple cases units (not
algebraic solutions) may be worked out in your head. In the example provided, it is easy to see

m

that upon taking the square root of the product of = and m, one obtains % hence no additional
s

steps were depicted.
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