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1. Introduction 

Vision is in fact the richest source of information for ourself and also for outdoors Robotics, 
and can be considered the most complex and challenging problem in signal processing for 
pattern recognition. The first results using Vision in the control loop have been obtained in 
indoors and structured environments, in which a line or known patterns are detected and 
followed by a robot (Feddema & Mitchell (1989), Masutani et al. (1994)). Successful works 
have demonstrated that visual information can be used in tasks such as servoing and 
guiding, in robot manipulators and mobile robots (Conticelli et al. (1999), Mariottini et al. 
(2007), Kragic & Christensen (2002).) 
Visual Servoing is an open issue with a long way for researching and for obtaining 
increasingly better and more relevant results in Robotics. It combines image processing and 
control techniques, in such a way that the visual information is used within the control loop. 
The bottleneck of Visual Servoing can be considered the fact of obtaining robust and on-line 
visual interpretation of the environment, which can be usefully treated by control structures 
and algorithms. The solutions provided in Visual Servoing are typically divided into Image 
Based Control Techniques and Pose Based Control Techniques, depending on the kind of 
information provided by the vision system that determine the kind of references that have to 
be sent to the control structure (Hutchinson et al. (1996), Chaumette & Hutchinson (2006) 
and Siciliano & Khatib (2008)). Another classical division of the Visual Servoing algorithms 
considers the physical disposition of the visual system, yielding to eye-in-hand systems and 
eye-to-hand systems, that in the case of Unmanned Aerial Vehicles (UAV) can be translated 
as on-board visual systems (Mejias (2006)) and ground visual systems (Martínez et al. 
(2009)). 
The challenge of Visual Servoing is to be useful in outdoors and non-structured 
environments. For this purpose the image processing algorithms have to provide visual 
information that has to be robust and works in real time. UAV can therefore be considered 
as a challenging testbed for visual servoing, that combines the difficulties of abrupt changes 
in the image sequence (i.e. vibrations), outdoors operation (non-structured environments) 
and 3D information changes (Mejias et al. (2006)). In this chapter we give special relevance 
to the fact of obtaining robust visual information for the visual servoing task. In section 
(2).we overview the main algorithms used for visual tracking and we discuss their 
robustness when they are applied to image sequences taken from the UAV. In sections (3). 
and (4). we analyze how vision systems can perform 3D pose estimation that can be used for 
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controlling whether the camera platform or the UAV itself. In this context, section (3). 
analyzes visual pose estimation using multi-camera ground systems, while section (4). 
analyzes visual pose estimation obtained from onboard cameras. On the other hand, section 
(5)., shows two position based control applications for UAVs. Finally section (6). explodes 
the advantages of fuzzy control techniques for visual servoing in UAVs. 

2. Image processing for visual servoing 

Image processing is used to find characteristics in the image that can be used to recognize an 
object or points of interest. This relevant information extracted from the image (called 
features) ranges from simple structures, such as points or edges, to more complex structures, 
such as objects. Such features will be used as reference for any visual servoing task and 
control system. 
On image regions, the spatial intensity also can be considered as a useful characteristic for 
patch tracking. In this context, the region intensities are considered as a unique feature that 
can be compared using correlation metrics on image intensity patterns. 
Most of the features used as reference are interest points, which are points in an image that 
have a well-defined position, can be robustly detected, and are usually found in any kind of 
images. Some of these points are corners formed by the intersection of two edges, and others 
are points in the image that have rich information based on the intensity of the pixels. A 
detector used for this purpose is the Harris corner detector (Harris & Stephens (1988)). It 
extracts corners very quickly based on the magnitude of the eigenvalues of the 
autocorrelation matrix. Where the local autocorrelation function measures the local changes 
of a point with patches shifted by a small amount in different directions. However, taking 
into account that the features are going to be tracked along the image sequence, it is not 
enough to use only this measure to guarantee the robustness of the corner. This means that 
good features to track (Shi & Tomasi (1994)) have to be selected in order to ensure the 
stability of the tracking process. The robustness of a corner extracted with the Harris 
detector can be measured by changing the size of the detection window, which is increased 
to test the stability of the position of the extracted corners. A measure of this variation is 
then calculated based on a maximum difference criteria. Besides, the magnitude of the 
eigenvalues is used to only keep features with eigenvalues higher than a minimum value. 
Combination of such criteria leads to the selection of the good features to track. Figure 1(a) 
shows and example of good features to track on a image obtained on a UAV. 
The use of other kind of features, such as edges, is another technique that can be applied on 
semi-structured environments. Since human constructions and objects are based on basic 
geometrical figures, the Hough transform (Duda & Hart (1972)) becomes a powerful 
technique to find them in the image. The simplest case of the algorithm is to find straight 
lines in an image that can be described with the equation y = mx + b. The main idea of the 
Hough transform is to consider the characteristics of the straight line not as image points x 
or y, but in terms of its parameters m and b, representing the same line as 

 in the parameter space, that is based on the angle of the vector from 

the origin to this closest point on the line (θ ) and distance between the line and the origin 
(r). If a set of points form a straight line, they will produce sinusoids that cross at the 
parameters of that line. Thus, the problem of detecting collinear points can be converted to 
the problem of finding concurrent curves. To apply this concept just to points that might be 
on a line, some pre-processing algorithms are used to find edge features, such as the Canny 
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edge detector (Canny (1986)) or the ones based on derivatives of the images obtained by a 
convolution of image intensities and a mask (Sobel I. (1968)). These methods have been used 
in order to find power lines and isolators in an UAV inspection application (Mejías et al. 
(2007)). 
The problem of tracking features can be solved with different approaches. The most popular 
algorithm to track features and image regions, is the Lucas-Kanade algorithm (Lucas & 
Kanade (1981)) which have demonstrated a good performance for real time with a good 
stability for small changes. Recently, feature descriptors have been successfully applied on 
visual tracking, showing a good robustness for image scaling, rotations, translations and 
illumination changes, eventhough they are time expensive to calculate. The generalized 
Lucas Kanade algorithm is overviewed on subsection 2.1, where it is applied for patch 
tracking and also for optical flow calculation, using the sparse L-K (subsection 2.1.1) and 
pyramidal L-K (subsection 2.1.2) variations. On subsection 2.2, features descriptors are 
introduced and used for robust matching, as explained on subsection 2.3 

2.1 Appearance tracking 
Appearance-based tracking techniques does not use features. They use the intensity values 
of a ‘patch’ of pixels that correspond to the object to be tracked. The method to track this 
patch of pixels is the generalized L-K algorithm, that works under three premises: first, the 
intensity constancy: the vicinity of each pixel considered as a feature does not change as it is 
tracked from frame to frame; second, the change in the position of the features between two 
consecutive frames must be minimum, so that the features are close enough to each other; 
and third, the neighboring points move in a solidarity form and have spatial coherence. 
The patch is related to the next frame by a warping function that can be the optical flow or 
another model of motion. Taking into account the previously mentioned L-K premisses, the 
problem can be formulated in this way: lets define X as the set of points that form the patch 

window or template image T, where x = (x,y)T
 is a column vector with the coordinates in the 

image plane of a given pixel and T(x) = T(x,y) is the grayscale value of the images a the 
locations x. The goal of the algorithm is to align the template T with the input image I 
(where I(x) = I(x,y) is the grayscale value of the images a the locations x). Because T 
transformed must match with a sub-image of I, the algorithm will find the set of parameters 

µ = (µ1,µ2, ...µn) for a motion model function ( e.g., Optical Flow, Affine, Homography) 

W(x;µ), also called the warping function. The objective function of the algorithm to be 
minimized in order to align the template and the actual image is equation 1: 

 
(1) 

where w(x) is a function to assign different weights to the comparison window. In general 
w(x) = 1. Alternatively, w could be a Gaussian function to emphasize the central area of the 
window. This equation can also be reformulated to make it possible to solve for track sparse 
feature as is explained on section 2.1.1. 
The Lucas Kanade problem is formulated to be solved in relation to all features in the form 
of a least squares’ problem, having a closed form solution as follows. 

Defining w(x) = 1, the objective function (equation 1) is minimized with respect to µ and the 
sum is performed over all of the pixels x on the template image. Since the minimization 

process has to be made with respect to µ, and there is no lineal relation between the pixel 
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position and its intensity value, the Lucas-Kanade algorithm assumes a known initial value 

for the parameters µ and finds increments of the parameters δµ. Hence, the expression to be 
minimized is: 

 
(2) 

and the parameter actualization in every iteration is µ = µ+δµ. In order to solve equation 2 
efficiently, the objective function is linearized using a Taylor Series expansion employing 

only the first order terms. The parameter to be minimized is δµ. Afterwards, the function to 
be minimized looks like equation 3 and can be solved like a ”least squares problem” with 
equation 4. 

 
(3) 

 
(4) 

where H is the Hessian Matrix approximation, 

 
(5) 

More details about this formulation can be found in (Buenaposada et al. (2003) and Baker 
and Matthews (2002)), where some modifications are introduced in order to make the 
minimization process more efficient, by inverting the roles of the template and changing the 
parameter update rule from an additive form to a compositional function. This is the so 
called ICIA (Inverse Compositional Image Alignment) algorithm, first proposed in (Baker 
and Matthews (2002)). These modifications where introduced to avoid the cost of computing 
the gradient of the images, the Jacobian of the Warping function in every step and the 
inversion of the Hessian Matrix that assumes the most computational cost of the algorithm. 

2.1.1 Sparse Lucas Kanade 
The Lucas Kanade algorithm can be applied on small windows around distinctive points as 
a sparse technique. In this case, the template is a small window (i.e., size of 3, 5, 7 or 9 pixels) 
and the warping function is defined by only a pure translational vector. In this context, the 
first assumption of the Lucas-Kanade method can be expressed as given a point xi = (x, y) at 

time t which intensity is I(x, y, t) will have moved by vx, vy and Δt between the two image 
frames, the following equation can be formulated: 

 (6) 

If the general movement can be consider small and using the Taylor series, equation 6 can be 
developed as: 

 
(7) 
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Because the higher order terms H.O.T. can being ignored, from equation we found that: 

 
(8) 

where vx,vy are the x and y components of the velocity or optical flow of I(x,y, t) and  
 are the derivatives of the image at point p = (x,y, t) 

 (9) 

Equation 9 is known as the Aperture Problem of the optical flow. It arises when you have a 
small aperture or window in which to measure motion. If motion is detected in this small 
aperture, it is often that it will be seeing as a edge and not as a corner, causing that the 
movement direction can not be determined. To find the optical flow another set of equations 
is needed, given by some additional constraint. 
The Lucas-Kanade algorithm forms the additional set of equation assuming that there is a 
local small window of size m × m centered at point p = (x,y) in which all pixels moves 
coherently. If the windows pixel are numerates as 1...n, with n = m2, a set of equations can be 
found: 

 

(10)

Equation 10 have more than two equations for the two unknowns and thus the system is 
over-determined. A systems of the form Ax = b can be former as equation 12 shows. 

 

(11)

The least squares method can be used to solve the over determined system of equation 12, 
finding that the optical flow can be defined as: 

 

(12)
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2.1.2 Pyramidal L-K 
On images with high motion, good matched features can be obtained using the Pyramidal 
Lucas-Kanade algorithm modification (Bouguet Jean Yves (1999)). It is used to solve the 
problem that arise when large and non-coherent motion are presented between consecutive 
frames, by firsts tracking features over large spatial scales on the pyramid image, obtaining 
an initial motion estimation, and then refine it by down sampling the levels of the images in 
the pyramid until it arrives to the original scale. 
The overall pyramidal tracking algorithm proceeds as follows: first, a pyramidal 

representation of an image I of size widthpixels × heightpixels is generated. The zeroth
 level is 

composed by the original image and defined as I0, then pyramids levels are recursively 

computed by dawnsampling the last available level (compute I1 form I0, then I2 from I1 and 

so on until ILm form IL–1)). Typical maximum pyramids Levels Lm are 2, 3 and 4. Then, the 
optical flow is computed at the deepest pyramid level Lm. Then, the result of that 
computation is propagated to the upper level Lm – 1 in a form of an initial guess for the pixel 
displacement (at level Lm – 1). Given that initial guess, the refined optical flow is computed 
at level Lm – 1, and the result is propagated to level Lm – 2 and so on up to the level 0 (the 
original image). 

2.2 Feature descriptors and tracking 
Feature description is a process to obtain interest points in the image which are defined by a 
series of characteristics that make it suitable for being matched on image sequences. This 
characteristics can include a clear mathematical definition, a well-defined position in image 
space and a local image structure around the interest point. This structure has to be rich in 
terms of local information contents that has to be robust under local and global 
perturbations in the image domain. These robustness includes those deformations arising 
from perspective transformations (i.e, scale changes, rotations and translations) as well as 
illumination/brightness variations, such that the interest points can be reliably computed 
with high degree of reproducibility. 
There are many feature descriptors suitable for visual matching and tracking, from which 
Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Feature algorithm (SURF) 
have been the more widely use on the literature and are overview in sections 2.2.1 and 2.2.2. 

2.2.1 SIFT features 
The SIFT (Scale Invariant Feature Transform) detector (Lowe (2004)) is one of the most widely 
used algorithms for interest point detection (called keypoints in the SIFT framework) and 
matching. This detector was developed with the intention to be used for object recognition. 
Because of this, it extracts keypoints invariant to scale and rotation using the gaussian 
difference of the images in different scales to ensure invariance to scale. To achieve invariance 
to rotation, one or more orientations based on local image gradient directions are assigned to 
each keypoint. The result of all this process is a descriptor associated to the keypoint, which 
provides an efficient tool to represent an interest point, allowing an easy matching against a 
database of keypoints. The calculation of these features has a considerable computational cost, 
which can be assumed because of the robustness of the keypoint and the accuracy obtained 
when matching these features. However, the use of these features depends on the nature of the 
task: whether it needs to be done fast or accurate. Figure 1(b) shows and example of SIFT 
keypoints on an aerial image taken with an UAV. 
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SIFT features can be used to track objects, using the rich information given by the keypoints 
descriptors. The object is matched along the image sequence comparing the model template 
(the image from which the database of features is created) and the SIFT descriptor of the 
current image, using the nearest neighbor method. Given the high dimensionality of the 
keypoint descriptor (128), its matching performance is improved using the Kd-tree search 
algorithm with the Best Bin First search modification proposed by Lowe (Beis and Lowe 
(1997)). The advantage of this method lies in the robustness of the matching using the 
descriptor, and in the fact that this match does not depend on the relative position of the 
template and the current image. Once the matching is performed, a perspective 
transformation is calculated using the matched Keypoints, comparing the original template 
with the current image. 

2.2.2 SURF features 
Speeded Up Robust Feature algorithm (Herbert Bay et al. (2006)) extracts features from an 
image which can be tracked over multiple views. The algorithm also generates a descriptor 
for each feature that can be used to identify it. SURF features descriptor are scale and 
rotation invariant. Scale invariance is attained using different amplitude gaussian filters, in 
such a way that its application results in an image pyramid. The level of the stack from 
which the feature is extracted assigns the feature to a scale. This relation provides scale 
invariance. The next step is to assign a repeatable orientation to the feature. The angle is 
calculated through the horizontal and vertical Haar wavelet responses in a circular domain 
around the feature. The angle calculated in this way provides a repeatable orientation to the 
feature. As with the scale invariance the angle invariance is attained using this relationship. 
Figure 1(c) shows and example of SURF features on an aerial image. 
SURF descriptor is a 64 element vector. This vector is calculated in a domain oriented with 
the assigned angle and sized according to the scale of the feature. Descriptor is estimated 
using horizontal and vertical response histograms calculated in a 4 by 4 grid. There are two 
variants to this descriptor: the first provides a 32 element vector and the other one a 128 
element vector. The algorithm uses integral images to implement the filters. This technique 
makes the algorithm very efficient. 
The procedure to match SURF features is based on the descriptor associated to the extracted 
interest point. An interest point in the current image is compared to an interest point in the 
previous one by calculating the Euclidean distance between their descriptor vectors. 
 

   

                       (a)                                                  (b)                                                   (c) 

Fig. 1. Comparison between features point extractors. Figure 1(a) are features obtained using 
Good Features to Track, figure 1(b) are keypoints obtained using SIFT (the green arrows 
represents the keypoints orientation and scale) and figure 1(c) are descriptors obtained 
using SURF (red circles and line represents the descriptor scale and angle). 
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2.3 Robust matching 
A set of corresponding or matched points between two images are frequently used to 
calculate geometrical transformation models like affine transformations, homographies or 
the fundamental matrix in stereo systems. The matched points can be obtained by a variety 
of methods and the set of matched points obtained often has two error sources. The first one 
is the measurement of the point position, which follows a Gaussian distribution. The second 
one is the outliers to the Gaussian error distribution, which are the mismatched points given 
by the selected algorithm. These outliers can severely disturb the estimated function, and 
consequently alter any measurement or application based on this geometric transformation. 
The goal then, is to determine a way to select a set of inliers from the total set of 
correspondences, so that the desired projection model can be estimated with some standard 
methods, but employing only the set of pairs considered as inliers. This kind of calculation is 
considered as robust estimation, because the estimation is tolerant (robust) to measurements 
following a different or unmodeled error distribution (outliers). 
Thus, the objective is to filter the total set of matched points in order to detect and 

eliminated erroneous matched and estimate the projection model employing only the 

correspondences considered as inliers. There are many algorithms that have demonstrated 

good performance in model fitting, some of them are the Median of Squares (LMeds) 

(Rousseeuw & Leroy (1987)) and Random Sample Consensus (RANSAC) algorithm (Fischer 

& Bolles (1981)). Both are randomized algorithms and are able to cope with a large 

proportion of outliers. 

In order to use a robust estimation method for a projective transformation, we will assume 

that a set of matched points between two projective planes (two images) obtained using 

some of the methods describe in section (2). are available. This set includes some unknown 

proportion of outliers or bad correspondences, giving a series of matched points  

(xi,yi) ↔(x′i ,y′i) for i = 1. . .n, from which a perspective transformation must be calculated, 

once the outliers have been discarded. 

For discard the outliers from the set of matched points, we use the RANSAC algorithm 

(Fischer & Bolles (1981)). It achieves its goal by iteratively selecting a random subset of the 

original data points by testing it to obtain the model and evaluating the model consensus, 

which is the total number of original data points that best fit the model. The model is 

obtained using a close form solution according to the desired projective transformation (an 

example is show on section 2.3.1). This procedure is then repeated a fixed number of times, 

each time producing either a model which is rejected because too few points are classified as 

inliers, or a refined model. When total trials are reached, the algorithm return the projection 

model with the largest number of inliers. The algorithm 1 shows a the general steps to 

obtain a robust transformation. Further description can be found on (Hartley & Zisserman 

(2004), Fischer & Bolles (1981)). 

2.3.1 Robust homography 

As an example of the generic robust method described above, we will show its application 

for a robust homography estimation. It can be viewed as the problem of estimating a 2D 

projective transformation that given a set of points xi  in P2 and a corresponding set of 

points ′xi  in P2, compute the 3x3 matrix H that takes each xi  to ′xi  or ′xi  = H xi . In general 

the points xi  and ′xi  are points in two images or in 2D plane surfaces. 
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Taking into account that the number of degrees of freedom of the projective transformation 

is eight (defined up to scale) and because each point to point correspondences (xi,yi) ↔(x′i ,y′i) 
gives rise to two independent equations in the entries of H, is enough with four 

correspondences to have a exact solution or minimal solution. If more than four points 

correspondences are given, the system is over determined and H is estimated using a 

minimization method. So, in order to use the algorithm 1, we define the minimum set of 

points to be s = 4. 

If matrix H is written in the form of a vector h = [h11, h12, h13, h21, h22, h23, h31, h32, h33]t the 

homogeneous equations ′x = H x  for n points could be formed as Ah = 0, with A a 2n × 9 

matrix defined by equation 13: 

 

(13)

In general, equation 13 can be solved using three different methods (the inhomogeneous 
solution, the homogeneous solution and non-linear geometric solution) as explained in 
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Criminisi et al. (1999). The most widely use of these methods is the inhomogeneous solution. 
In this method, one of the nine matrix elements is given a fixed unity value, forming an 
equation of the form A’h’ = b as is shown in equation 14. 

 

(14)

The resulting simultaneous equations for the 8 unknown elements are then solved using a 
Gaussian elimination in the case of a minimal solution or using a pseudo-inverse method in 
case of an over-determined system Hartley and Zisserman (2004). 
Figure 2 shows an example of a car tracking using a UAV, in which SURF algorithm, is used 
to obtain visual features, and the RANSAC algorithm is used for outliers rejection. 
 

 

Fig. 2. Robust Homography Estimation using SURF features on a car tracking from a UAV. 
Up: Reference template. Down: Scene view, in which are present translation, rotation, and 
occlusions. 

3. Ground visual system for pose estimation 

Multi-camera systems are considered attractive because of the huge amount of information 
that can be recovered and the increase of the camera FOV (Field Of View) that can be 
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obtained with these systems. These characteristics can help solving common vision 
problems such as occlusions, and can offer more tools for control, tracking, representation of 
objects, object analysis, panoramic photography, surveillance, navigation of mobile vehicles, 
among other tasks. However, in spite of the advantages offered by these systems, there are 
some applications where the hardware and the computational requirements make a multi-
camera solution inadequate, taking into account that the larger the number of cameras used, 
the greater the complexity of the system is. 
For example, in the case of pose estimation algorithms, when there is more than one camera 
involved, there are different subsystems that must be added to the algorithm: 

• Camera calibration 

• Feature Extraction and tracking in multiple images 

• Feature Matching 

• 3D reconstruction (triangulation) 
Nonetheless, obtaining an adequate solution for each subsystem, it could be possible to 
obtain a multiple view-based 3D position estimation at real-time frame rates. 
This section presents the use of a multi-camera system to detect, track, and estimate the 
position and orientation of a UAV by extracting some onboard landmarks, using the 
triangulation principle to recovered their 3D location, and then using this 3D information to 
estimate the position and orientation of the UAV with respect to a World Coordinate System. 
This information will be use later into a UAV’s control loop to develop positioning and 
landing tasks. 

3.0.2 Coordinate systems 

Different coordinate systems are used to map the extracted visual information from ℜ2 to ℜ3, 
and then to convert this information into commands to the helicopter. This section provides 
a description of the coordinate systems and their corresponding transformations to achieve 
vision-based tasks. 
There are different coordinate systems involved: the Image Coordinate System (Xi), that 
includes the Lateral (Xf ) and Central Coordinate Systems (Xu) in the image plane, the Camera 
Coordinate System (Xc), the Helicopter Coordinate System (Xh), and an additional one: the World 
Coordinate System (Xw), used as the principal reference system to control the vehicle (see 
figure 3). 

• Image and Camera Coordinate Systems 
The relation between the Camera Coordinate System and the Image Coordinate System is taken 

from the “pinhole” camera model. It states that any point referenced in the Camera Coordinate 

System xc is projected onto the image plane in the point xf by intersecting the ray that links 

the 3D point xc with the center of projection and the image plane. This mapping is described 

in equation15, where xc and xf are represented in homogenous coordinates. 

 

(15)

The matrix Kk contains the intrinsic camera parameters of the kth
 camera, such as the 

coordinates of the center of projection (cx, cy) in pixel units, and the focal length (fx, fy), where  
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Fig. 3. Coordinate systems involved in the pose estimation algorithm. 

fx = fmx and fy = fmy represent the focal length in terms of pixel dimensions, being mx and my 

the number of pixels per unit distance. 
The above-mentioned camera model assumes that the world point, the image point, and the 
optical center are collinear; however, in a real camera lens there are some effects (lens 
distortions) that have to be compensated in order to have a complete model. This 
compensation can be achieved by the calculation of the distortion coefficients through a 
calibration process (Zhang (2000)), in which the intrinsic camera parameters, as well as the 
radial and tangential distortion coefficients, are calculated. 

• Camera and World Coordinate Systems 
Considering that the cameras are fixed, these systems are related by a rigid transformation 

that allows to define the pose of the kth camera in a World Coordinate Frame. As presented in 

equation (16), this transformation is defined by a rotation matrix Rk and a translation vector 

tk that link the two coordinate systems and represent the extrinsic camera parameters. Such 
parameters are calculated through a calibration process of the trinocular system. 

 
(16)

• World and Helicopter Coordinate Systems 
The Helicopter Reference System, as described in figure 3, has its origin at the center of mass of 
the vehicle and its correspondent axes: Xh, aligned with the helicopter’s longitudinal axis; 
Yh, transversal to the helicopter; and Zh, pointing down. Considering that the estimation of 
the helicopter’s pose with respect to the World Coordinate System is based on the distribution 
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of the landmarks around the Helicopter Coordinate System, and that the information extracted 
from the vision system will be used as reference to the flight controller, a relation between 
those coordinate systems has to be found. 
In figure 3, it is possible to observe that this relation depends on a translation vector that 
defines the helicopter’s position (t), and on a rotation matrix R that defines the orientation of 
the helicopter (pitch, roll and yaw angles). Considering that the helicopter is flying at low 

velocities (< 4m/s), pitch and roll angles are considered ≈ 0, and only the yaw angle (θ) is 
taken into account in order to send the adequate commands to the helicopter. 
Therefore, the relation of the World and the Helicopter Coordinate Systems can be expressed as 
follows: 

 

(17)

Where (tx, ty, tz) will represent the position of the helicopter   with respect to 

the World Coordinate System, and θ the helicopter’s orientation. 

3.1 Feature extraction 

The backprojection algorithm proposed by Swain and Ballar in ( Swain & Ballard (1991)) is 

used to extract the different landmarks onboard the UAV. This algorithm finds a Ratio 

histogram k
iRh  for each landmark i in the kth camera as defined in equation 18: 

 
(18)

This ratio k
iRh  represents the relation between the bin j of a model histogram Mhi and the 

bin j of the histogram of the image Ihk which is the image of the kth camera that is being 

analyzed. Once k
iRh  is found, it is then backprojected onto the image. The resulting image is 

a gray-scaled image, whose pixel’s values represent the probability that each pixel belongs 

to the color we are looking for. 

The location of the landmarks in the different frames are found using the previous-

mentioned algorithm and the Continuously Adaptive Mean Shift (CamShift) algorithm (Bradski 

(1998)). The CamShift takes the probability image for each landmark i in each camera k and 

moves a search window (previously initialized) iteratively in order to find the densest 

region (the peak) which will correspond to the object of interest (colored-landmark i). The 

centroid of each landmarks ( k
ix , k

iy ) is determined using the information contained inside 

the search window to calculate the zeroth (
00

k
im ), and first order moments (

10

k
im , 

01

k
im ), 

(equation 19). These centroids found in the different images (as presented in figure. 4) are 

then used as features for the 3D reconstruction stage. 

 
(19)

When working with overlapping FOVs in a 3D reconstruction process, it is necessary to find 
the relation of the information between the different cameras. This process is known as 
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Fig. 4. Feature Extraction. Different features must be extracted from images taken by 
different cameras. In this example color-based features have been considered. 

feature matching. This is a critical process, which requires the differentiation of features in 

the same image and also the definition of a metric which tells us if the feature i in image I1 is 

the same feature i in image I2 (image -I- of camera k). 
However, in this case, the feature matching problem has been solved taking into account the 

color information of the different landmarks; so that, for each image Ik there is a matrix ×
k
4 2F  

that will contain the coordinates of the features i found in this image. Then, the features are 

matched by grouping only the characteristics found (the central moments of each landmark) 
with the same color, that will correspond to the information of the cameras that are seing the 
same landmarks. 

3.1.1 3D reconstruction 

Assuming that the intrinsic parameters (Kk) and the extrinsic parameters (Rk and tk) of each 

camera are known (calculated through a calibration process), the 3D position of the matched 

landmarks can be recovered by intersecting in the 3D space the backprojection of the rays 

from the different cameras that represent the same landmark. 

The relation of the found position of each landmark, expressed in the Lateral Coordinate 
System (image plane), with the position expressed in the Camera Coordinate System, is defined 
as: 

 
(20)

where (
i

k
fx , 

i

k
fy ) is the found position of each landmark expressed in the image plane, (

i

k
cx , 

i

k
cy ,

i

k
cz ) represent the coordinates of the landmark expressed in the Camera Coordinate 

System, ( k
xc , k

yc ) the coordinates of the center of projection in pixel units, and ( k
xf , k

yf ) the 

focal length in terms of pixel dimensions. 
If the relation of the 3D position of landmark i with its projection in each Camera Coordinate 
System is defined as: 

 
(21)

Then, integrating equation 21 and equation 20, and reorganizing them, it is possible to 

obtain the following equations: 
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(22)

 
(23)

Where 
i

k
ux  and 

i

k
uy  represent the coordinates of landmark i expressed in the Central Camera 

Coordinate System of the kth camera, rk and tk are the components of the rotation matrix Rk and 

the translation vector tk that represent the extrinsic parameters, and 
iwx , 

iwy , 
iwz  are the 

3D coordinates of landmark i. 
From equations 22 and 23 we have a linear system of two equations and three unknowns 
with the following form: 

 

(24)

If there are at least two cameras seeing the same landmark, it is possible to solve the 

overdetermined system using the least squares method whose solution will be equation 25, 

where the obtained vector c represents the 3D position (
iwx , 

iwy , 
iwz ) of the ith landmark: 

 (25)

Once the 3D coordinates of the landmarks onboard the UAV have been calculated, the 

UAV’s position (
uavwx ) and its orientation with respect to World Coordinate System can be 

estimated using the 3D position found and the landmark’s distribution around the Helicopter 

Coordinate System (see figure 5). The helicopter’s orientation is defined only with respect to 

the Zh axis (Yaw angle θ) and it is assumed that the angles, with respect to the other axes, are 

considered to be ≈ 0 (helicopter on hover state or flying at low velocities < 4 m/s). Therefore, 

equation 17 can be formulated for each landmark. 

Reorganizing equation 17, considering that cθ = cos(θ), sθ = sin(θ), 
uavwx = tx, 

uavwy = ty, 

uavwz = tz, and formulating equation 17 for all the landmarks detected, it is possible to create 

a system of equations of the form Ac = b as in equation 26, with five unknowns: cθ, sθ, 

,
uavwx ,

uavwy .
uavwz  If at least the 3D position of two landmarks is known, this system of 

equations can be solved as in equation 25, and the solution c is a 4 × 1 vector whose 

components define the orientation (yaw angle) and the position of the helicopter expressed 

with respect to a World Coordinate System. 

 

(26)
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Fig. 5. Distribution of landmarks. The distribution of the landmarks in the Helicopter 
coordinate system is a known parameter used to extract the helicopter position and 
orientation with respect to the World coordinate system. 

In figures: 6(a), 6(b), 6(c) and 6(d), it is possible to see an example of the UAV’s position 
estimation using a ground-based multi camera system (see Martínez et al. (2009) for more 
details). In these figures, the vision-based position and orientation estimation (red lines) is 
also compared with the estimation obtained by the onboard sensors of the UAV (green 
lines). 

4. Onboard visual system for pose estimation 

In this section, a 3D pose estimation method based on projection matrix and homographies 
is explained. The method estimates the position of a world plane relative to the camera 
projection center for every image sequence using previous frame-to-frame homographies 
and the projective transformation at first frame, obtaining for each new image, the camera 
rotation matrix R and a translational vector t. This method is based on the propose by Simon 
et. al. (Simon et al. (2000), Simon & Berger (2002)). 

4.1 World plane projection onto the Image plane 

In order to align the planar object on the world space and the camera axis system, we 

consider the general pinhole camera model and the homogeneous camera projection matrix, 

that maps a world point xw
 in P3 (projective space) to a point xi on ith image in P2, defined by 

equation 27: 

 (27)

where the matrix K is the camera calibration matrix, Ri and ti are the rotation and translation 
that relates the world coordinate system and camera coordinate system, and s is an arbitrary 
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scale factor. Figure 7 shows the relation between a world reference plane and two images 
taken by a moving camera, showing the homography induced by a plane between these two 
frames. 
 

  

                                       (a)                                                                                (b) 

  

                                         (c)                                                                             (d) 

Fig. 6. Vision-based estimation vs. helicopter state estimation. The state values given by the 
helicopter state estimator after a Kalman f ilter (green lines) are compared with a multiple 
view-based estimation of the helicopter’s pose (red lines). 

 

Fig. 7. Projection model on a moving camera and frame-to-frame homography induced by a 
plane. 
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