
745

27

Visual Conveyor tracking in

 High-speed Robotics Tasks

Theodor Borangiu

1. Introduction

The chapter presents two methods and related motion control algorithms for
robots which are required to pick "on-the-fly" objects randomly moving on
conveyor belts; the instantaneous location of moving objects is computed by
the vision system acquiring images from a stationary, down looking camera.
The algorithms for visual tracking of conveyor belts for moving object access
are partitioned in two stages: (i) visual planning of the instantaneous destina-
tion of the robot, (ii) dynamic re-planning of the robot's destination while
tracking the moving objects.
In the first method one assumes that conveyors are configured as external axes
of the robot, which allows their modelling by means of a special class of vari-
ables called belt variables. A belt variable is here considered as a relative trans-
formation (having a component variable in time) defining the location of a ref-
erence frame attached to the moving belt conveyor. By composing this time
variable transformation (it reflects the contents of the belt's encoder) with the
time – invariant instantaneous object location (estimated by vision for each ob-
ject and compensated by the encoder offset value), the motion control algo-
rithm will operate with a periodically updated destination, hence the robot
will track the object moving on the belt.
In the second method the ensemble conveyor belt-actuator-sensor is config-
ured as a 3≤m -axis Cartesian robot, leading thus to a problem of cooperation
between multiple robot manipulators subject to the multitasking control of a
computer. Conceptually, the problem is solved by defining a number of user
tasks which attach two types of "robots": the n – d.o.f. manipulator responsible
with grasping on-the-fly objects moving on the conveyor belt, and the 3≤m -
axis robot emulating the conveyor belt under vision control. These user tasks
run concurrently with the internal system tasks of a multitasking robot con-
troller, mainly responsible for trajectory generation, axis servoing and system
resources management.
Both methods use the concept of Conveyor Belt Window to implement fast re-
action routines in response to emergency situations. The tracking algorithms

Source: Industrial-Robotics-Theory-Modelling-Control, ISBN 3-86611-285-8, pp. 964, ARS/plV, Germany, December 2006, Edited by: Sam Cubero

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

746 Industrial Robotics: Theory, Modelling and Control

also provide collision-free object grasping by modelling the gripper’s finger-
prints and checking at run time whether their projections on the image plane
cover only background pixels.

2. Modelling conveyors with belt variables

The problem of interest consists in building up a software environment allow-
ing a robot controller to estimate the instantaneous position of the conveyor
belt on which parts are travelling. The conveyor must be equipped with a dis-
placement measuring device, in this case an encoder.
There are no constraints with respect to the position and orientation of the
conveyor relative to the working area of the robot; the only requirement is that
the belt’s motion follows a straight line within the robot’s manipulability re-
gion (Schilling, 1990). The encoder data will be interpreted by the controller as
the current displacement of one of its external robot axes – in this case the
tracked conveyor belt.

2.1 The special class of belt variables

The mechanism which allows specifying robot motions relative to a conveyor
belt consists into modelling the belt by defining a special type of location data,
named belt variables.

Definition 5.1: A belt variable is a relative homogenous transformation (having a
component variable in time) which defines the location of a conveniently cho-
sen reference frame attached to the conveyor’s moving belt. The assignment of
a belt variable is based on the software operation

DEFBELT %belt_variable = nominal_trans,scale_factor,

where:

• %belt_variable is the name of the belt variable to be defined, expressed as a 6-

component homogenous transformation in minimal representation of the
frame’s orientation (e.g. by the Euler angles yaw, pitch and roll).

• nominal_trans represents the value in 6R of the relative transformation defi-

ning the position and the orientation of the conveyor belt. The X axis of no-
minal_trans indicates the direction of motion of the belt, the XY plane defi-
ned by this transformation is parallel to the conveyor's belt surface, and the
position (X,Y,Z) specified by the transformation points to the approximate
centre of the belt relative to the base frame of the robot. The origin of nomi-
nal_trans is chosen in the middle of the robot's working displacement over
the conveyor.

Visual Conveyor tracking in High-speed Robotics Tasks 747

• scale_factor is the calibrating constant specifying the ratio between the ele-
mentary displacement of the belt and one pulse of the encoder.

Using such a belt variable, it becomes possible to describe the relationship be-
tween a belt encoder and the location and speed of the reference frame (con-
veniently chosen with respect to the manipulability domain of the robot ac-
cessing the belt) which maintains a fixed position and orientation relative to
the belt (Borangiu, 2004). The informational model of the conveyor belt is its
assigned belt variable, to which additional modelling data must be specified
for robot-vision compatibility:

• window parameters, defining the working area of the robot over the conveyor

belt;
• encoder offset, used to adjust the origin of the belt’s reference frame (e.g. rela-

tive to the moment when image acquisition is triggered).

The current orientation data in a belt variable is invariant in time, equal to that
expressed by nominal_trans. In order to evaluate the current location updated
by the same belt variable, the following real-time computation has to be per-
formed: multiplication of a unit vector in the direction of

ansnominal_tr
X by

belt_distance – a distance derived from the encoder's contents (periodically
read by the system), and then addition of the result to the position vector of
nominal_trans. The symbolic representation of this computation is given in
equations (1) and (2):

)(unit_vect_
ansnominal_trnominalousinstantane XcetandisbeltXYZXYZ ∗+= (1)

orscale_factoffsetencodercountencodercetandisbelt ∗−=)__(_ (2)

Here, encoder_count is the encoder's read contents and encoder_offset will be
used to establish the instantaneous location of the belt's reference frame

),(ii yx relative to its nominal location),(nn yx . In particular, the belt's offset

can be used to nullify a displacement executed by the conveyor (by setting the
value of the offset to the current value of the encoder's counter). The designed
algorithm for visual robot tracking of the conveyor belt accounts for variable
belt offsets which are frequently changed by software operations using
mathematical expressions, like that included in the following V+ syntax:
SETBELT %belt_variable = expression.
When the conveyor belt position is computed by referring to its assigned belt
variable, the previously defined encoder offset will be always subtracted from
the current position of the belt, i.e. from the encoder’s current accumulated
content. In the discussed method, setting a belt offset will use the real-valued

748 Industrial Robotics: Theory, Modelling and Control

function BELT %belt_variable,mode to effectively reset the belt’s position [en-
coder pulses].

Example 1:
A reaction routine continuously monitors a fast digital-input interrupt line
which detects the occurrence of an external event of the type: "an object has
completely entered the Conveyor Belt Window – and hence is completely visi-
ble". This event is detected by a photocell, and will determine an image acqui-
sition of the moving object. The very moment the detected object is recognised
as an object of interest and successfully located, the position of the belt is reset
and consequently the belt variable will encapsulate from now on the current
displacement of the belt relative to the belt’s position in which the object has
been successfully located. The V+ code is given below:

trigger = SIG(1001) ;signal from photocell
save = PRIORITY ;current priority of the robot-vision task
snap = 0 ;reset event detection after image acquisition
success = 0 ;reset indication of successful part location
REACT –trigger,acquisition(snap,success,$name,belt_offset)
TIMER 1 = 0 ;reset "timeout"-valued timer
IF TIMER(1)>timeout AND NOT snap THEN
 GOTO l_end ;no incoming parts, exit the task
 ELSE
LOCK PRIORITY + 2 ;raise priority to lock out any signals from the

;photocell until the current object is treated
IF success == 1 THEN
SETBELT %belt = belt_offset
IF $name == "PART" THEN ;if the object is of interest
Tracking the belt such that the robot picks on-the-fly the object (modelled
with the name "part") which was successfully located by vision in vis.loc
...

END
LOCK save ;re activate the REACT mechanism to check for on-off
;for on-off signal #1001 transitions
END

The interruption routine, automatically called by the REACT mechanism, has
the form:

 .PROGRAM acquisition(snap,success,$name,belt_offset)

 VPICTURE (cam) –1,1 ;image acquisition and recognition of one object
 snap = 1
 ;Locate any type of recognised object, return its name in the string

Visual Conveyor tracking in High-speed Robotics Tasks 749

 ;var. $name and its location relative to the vision frame in vis_loc

 VLOCATE (cam,0) $name,vis.loc
 success = VFEATURE(1) ;evaluate the success of the locating op.
 belt_offset = VFEATURE(8)

 ;The real-valued function VFEATURE(8) returns the contents of the
 ;belt’s encoder when the strobe light for image acquisition was
 ;triggered.

 RETURN
 .END

In what concerns the encoder’s scale factor represented by the constant pa-
rameter scale_factor, it can be evaluated:

• either theoretically, knowing the mechanical coupling belt-encoder,
• or experimentally by reading the encoder’s contents twice, each time when

the image acquisition is triggered for a circular disk the presence of which is
detected by the belt’s photocell. The distance at which travel the two identi-
cal disks on the conveyor belt has been upstream set at a convenient, known
value (see Fig. 1).

Figure 1. The experimental setup for conveyor belt calibration

2.2 The logical mechanism "Conveyor Belt Window" and emergency routines

There has been designed a logical mechanism called Conveyor Belt Window
(CBW) which allows the user to check the area of the belt in which the robot
will operate. A CBW defines a segment of the belt delimitated by two planes
perpendicular to the direction of motion of the belt (this window is restricted
only in the direction of motion of the conveyor's belt) (Borangiu & Kopacek,
2004).

750 Industrial Robotics: Theory, Modelling and Control

Because the conveyor is modelled by a belt variable (e.g. %belt_var), in order to
define a CBW it is necessary to refer the same belt variable and to specify two
composed transformations which, together with the direction of motion of the
belt, restrict the motion of the robot along a desired area of the conveyor:

WINDOW %belt_var = downstr_lim,upstr_lim,program_name,priority,

where:

• downstr_lim and upstr_lim are respectively the relative transformations de-

fining the downstream and upstream edges of an invariant window posi-
tioned along the belt within the working space of the robot and the image
field of the camera (it is necessary that the robot tracks and picks parts
within these two limits);

• program_name indicates the reaction routine to be automatically called,
whenever a window violation occurs while the robot tracks the conveyor
belt;

• priority is the level of priority granted to the reaction routine. Normally, it
must be greater than that of the conveyor tracking program, so that the mo-
tion of the robot can be immediately interrupted in case of window viola-
tion.

The CBW will be used not only in the stage of robot motion planning, but also
at run time, during motion execution and tracking control, in order to check if
the motion reference (the destination) is within the two imposed limits:

• When a robot movement is planned, the destination of the movement is
checked against the operating CBW; if a window violation is detected, the
reaction program is ignored and an error message will be issued.

• When a robot movement relative to the conveyor belt is executed, the destination
is compared every 8 milliseconds with the window's limits; if a window
violation is detected, the reaction program is automatically invoked accord-
ing to its priority level and the robot will be instructed to stop tracking the
belt.

There have been designed two useful CBW functions which allow the dynamic
reconfiguring of programs, decisions, branching and loops during the execu-
tion of robot – vision conveyor tracking programs, function of the current
value of the part-picking transformation relative to the belt, and of the current
status of the belt tracking process. These functions are further introduced.
The function WINTEST(robot_transformation,time,mode) returns a value in
millimetres indicating where is situated the location specified by the belt-
relative composed transformation robot_transformation, with respect to the
fixed window limits downstr_lim and upstr_lim at time seconds in the future,
computed according to its current position and belt speed.

Visual Conveyor tracking in High-speed Robotics Tasks 751

Finally, the argument mode is a real-valued expression which specifies whether
the result of the WINTEST function represents a distance inside or outside the
predefined conveyor belt window. For example, if mode is positive, the value
returned by WINTEST will be interpreted as:

 0: the composed, belt-relative location is inside the CBW;

<0: the location is upstream of upstr_lim of the CBW;

>0, the location is downstream of the dwnstr_lim of the CBW.

Hence, the returned value conforms to the WINDOW model shown in Fig. 2,
for which the value returned by the function WINDOW increases as the belt-
relative location moves downstream.

WINDOW()

Downstream

limit

Upstream

limit

Motion direction

along the belt

Figure 2. The WINDOW function for mode > 0

For robots tracking conveyor belts in order to pick moving objects recognised
and located by vision, the belt-relative transformation is %belt_var:part.loc
(variable in time), obtained by the composition of:

• %belt_var, models the conveyor belt,
• part.loc, is a composed, time invariant transformation expressing the gripper

frame),,(ggg zyx relative to the base frame of the robot),,(000 zyx at the

moment the object was identified and located by vision.

752 Industrial Robotics: Theory, Modelling and Control

For example, the distance WINTEST(%belt:part.loc,4,1) is positive if, in 4 sec-
onds from the time being, the belt-relative part picking location will be outside
the window defined for the conveyor belt modelled by %belt.
If the robot tries to move towards a belt-relative location that has not yet ap-
peared inside the belt window (it is still upstream relative to the CBW), the
motion control algorithm has been designed with two options:

• temporarily stops the robot, delaying thus the motion planning, until the

time-variable destination enters the belt window;
• definitively stops the robot and generates immediately an error message.

Also, the control algorithm generates a condition of window violation anytime
the vision-based robot motion planner computes a destination which is down-
stream the CBW, or will exit the CBW at the predicted time the robot will
reach it. The function BELTSTATUS indicates the current status of the belt
tracking process: robot tracking the belt; destination upstream; destination down-
stream; window violation, real-time information which can be used to dynami-
cally reconfigure the robot – vision task.

2.3 Robot locations, frames and belt-relative movements planned by vision

To command the belt-relative motion of a robot with linear interpolation in the
Cartesian space, i.e. to define an end-tip transformation relative to an instanta-
neous location of a moving frame),(ii yx on the conveyor belt, the already de-

fined belt variable (which models the conveyor belt as a relative transforma-
tion having time variable components along the X (and possibly Y) Cartesian
axes) will be composed with the time-invariant end-tip transformation relative
to the base of the robot (which is computed at run time by the vision part of
the system).
The result will be a time-variable transformation updating the position refer-
ence for the robot. This reference or target destination tracks an object moving
on the belt, to be picked by the robot’s gripper. The target destination is:

• planned once at runtime by vision, as soon as the object is perfectly visible to

the camera, either inside the manipulability area of the robot or upstream
this area;

• updated every 8 milliseconds by the motion controller based on the current po-

sition data read from the belt’s encoder, until the robot’s end-point com-
pletes the necessary percentage of its motion segment towards the part's
grasping location.

Visual Conveyor tracking in High-speed Robotics Tasks 753

The research on Guidance Vision for Robots (GVR) accessing moving targets
was directed to develop a convergent motion control algorithm for visually
plan the motion of the robot as a result of object detection, recognition and lo-
cating on a moving conveyor belt, and than track the object in order to grasp it
inside a conveniently defined belt window. The main idea relies on dynami-
cally changing the visually computed destination of the robot end point by
composing it with a belt-related transformation updated every 8 milliseconds
from the encoder data.
If a stationary camera looks down at the conveyor belt, and supposing that its
field of view covers completely a conveyor belt window defined inside the
working area of the robot (after execution of a camera – robot calibration ses-
sion), then the image plane can be referred by the time – invariant frame

),(visvis yx as represented in Fig. 3.

It is also assumed that the X axes of the reference frame of the robot)(0x , of the

conveyor's direction of motion)(nx and of the image plane)(visx are parallel.

The conveyor belt is modelled by the belt variable %belt. Parts are circulating
on the belt randomly; their succession (current part type entering the CBW), dis-
tance from the central axis of the conveyor and orientation are unknown. The
"Look-and-Move" interlaced operating principle of the image processing sec-
tion and motion control section is used (Hutchinson, 1996), (Borangiu, 2001),
(West, 2001), (Adept, 2001). According to this principle, while an image of the
CBW is acquired and processed for object identification and locating, no mo-
tion command is issued and reciprocally, the camera will not snap images
while the robot tracks a previously located part in order to pick it "on-the-fly".

cp

z_off

xg

motion

direction of

belt

upstream

limit

%belt:part.loc y4

z4
x4

y0

x0

z0

ptp

part.loc

nominal_trans

of %belt

instant_trans

of %belt

to.cam[cam]

xvis

xn xi

yi

(encoder_val-VFEATURE(8))*scale_factor*vers(+xn)

xobj

yg

yobj

grip.trans

AIM

downstream

limit

yvis

yn

vis.loc

rz_off

Figure 3. Robot-Vision and belt-relative transformations for conveyor tracking

754 Industrial Robotics: Theory, Modelling and Control

The robot motion control algorithm for tracking the conveyor belt in order to
pick "on-the-fly" one by one objects recognised and located by vision comput-
ing consists of the following basic steps:

1. Triggering the strobe light (synch./asynch. relative to the read cycle of the
video camera) when image acquisition is requested from a fast digital-input
interrupt line connected to a photocell mounted at the upstream limit of the
CBW. The interrupt line signals that an object has completely entered the
belt window.

2. Recognizing a single object that just completely entered the belt window. Ob-
ject recognition is exclusively based in this approach on the match with
previously learned models of all objects of interest (Lindenbaum, 1997).

3. Locating the object which was recognised, by computing the coordinates of
its centre of mass and the angle between its minimum inertia axis (MIA)
and visx . As can be seen in Fig. 3, the object-attached frame),(objobj yx has the

abscissa aligned with the minimum inertia axis (MIA), and the current loca-
tion of the object in the image plane is computed by the vision section and
returned in vis.loc.

4. Planning the instantaneous destination of the robot. Once the object is recognized
as the instance of a model and located, the related grasping transformation
grip.trans is called. Assuming that the grasping style is such that the projec-
tion of the gripper's centre on the image plane coincides with the object's
centre of mass, the gripper-attached frame),(gg yx will be offset relative to

the object-attached frame along 0z by z_off millimetres and turned with

r_off degrees about 0z . Now, using the relative transformation

to.cam[cam](as output of the camera-robot calibration session) relating the
vision frame),,(visvisvis zyx to the base frame of the robot),,(000 zyx , the cur-

rent destination of the robot (for a frozen conveyor belt) is computed from
the vision data as a composed transformation part.loc, expressing the grip-
per frame relative to the robot base frame:

part.loc = to.cam[cam]:vis.loc:grip.trans

5. Synchronising the encoder belt with the motion of the object recognized in the
belt window. This operation consists into setting the offset of the conveyor
belt at a correct value. The operation

SETBELT %belt = encoder_val(strobe)

Visual Conveyor tracking in High-speed Robotics Tasks 755

establishes the point of interest of the conveyor belt modelled with %belt as
the point corresponding to the current value encoder_val(strobe) of the en-
coder counter at the time the strobe light was triggered. This value is avail-
able immediately after object locating. Thus, as soon as one object is recog-
nized and located, the current belt position, identified by),(ii yx , will be

reset since:

nn

ni

xyzxorscale_fact

strobevalencodervalencoderxyzxyz

=∗∗

∗−+=

)(unit_vect

))(__(
 (3)

6. Tracking and picking the object moving on the belt. This requires issuing a lin-
ear motion command in the Cartesian space, relative to the belt. A com-
posed relative transformation %belt:part.loc, expressing the current com-
puted location of the gripper relative to the instantaneous moving frame

),(ii yx , is defined. Practically, the tracking procedure begins immediately

after the instantaneous position of the belt – expressed by the frame),(ii yx

has been initialized by the SETBELT operation, and consists into periodi-
cally updating the destination of the gripper by shifting it along the nx axis

with encoder counts accumulated during successive sampling periods
,...,,..., 11 +− kkk ttt const1 =−=Δ + kk ttt :

)0 ,0 ,)(

 .:%.:%

1

1

orscale_factttuntencoder_co

locpartbeltlocpartbelt

kk

tt kk

∗−

=

+

+

 ...

BY...SHIFT(
 (4)

MOVES %belt:part.loc ;go towards the moving target
CLOSEI ;grasp "on the fly" the object

7. Once the robot commanded towards a destination relative to the belt, the
gripper will continuously track the belt until a new command will be is-
sued to approach a location which is not relative to the belt.

For belt-relative motions, the destination changes continuously; depending on
the magnitude and the variations of the conveyor speed it is possible that the
robot will not be able to attain the final positions within the default error toler-
ance.

In such cases, the error tolerance must be augmented. In extreme cases it will
be even necessary to totally deactivate the test of final error tolerance. Fig. 4

756 Industrial Robotics: Theory, Modelling and Control

presents the designed robot motion control algorithm for tracking the con-
veyor belt in order to pick "on-the-fly" an object recognized and located by vi-
sion computation inside the a priori defined belt window. A REACT mecha-
nism continuously monitors the fast digital-input interrupt line which signals
that an object has completely entered the belt window. The robot motion rela-
tive to the belt will be terminated:

• when moving the robot towards a non belt-relative location or
• when a window violation occurs.

Example 2:
The following series of instructions will move the robot end-effector towards a
belt-relative location part_2 (the belt is modelled as %belt[1]), open the grip-
per, track the conveyor belt for 5 seconds (in fact the location part_2 on the
belt), close the gripper and finally leave the belt to move towards a fixed loca-
tion.

MOVES %belt[1]:part_2
OPENI
DELAY 5.0
CLOSEI
MOVES fixed_location

When defining the Conveyor Belt Window, a special high-priority routine can
be specified, which will be automatically invoked to correct any window viola-
tion during the process of tracking moving objects. In such situations the robot
will be accelerated (if possible) and the downstream limit temporarily shifted
in the direction of motion of the conveyor belt (within a timeout depending on
the belt's speed) in which the error tolerance must be reached (Espiau, 1992),
(Borangiu, 2002).

Visual Conveyor tracking in High-speed Robotics Tasks 757

 Setup of virtual camera cam

Camera-Robot calibration defines:

to.cam[cam], XY_scale, pix.to.mm

Modelling the conveyor belt by a %belt_variable

Defining nominal_trans, encoder scale_factor,

belt window CBW

No event REACT to fast digital-input interrupt line

from photocell: "object inside CBW"

Timeout

expired

Event-driven interrupt

Triggering the strobe light and image acquisition

Failure or

object of no

interest
Single object recognition by prototype match

Instance of prototype "OBJ"

"OBJ" is successfully located (xc,yc,AIM)

and vis.loc is returned
No

Yes

Setting the offset of the conveyor belt to encoder_val(strobe)

xyzi = xyzn

Calling the grasping transformation grip.trans for "OBJ" and

planning the instantaneous picking transformation part.loc:

part.loc=to.cam[cam]:vis.loc:grip.trans

Delaying motion tracking Destination

inside the CBW

Destination

downstream CBW

Destination

upstream CBW Read encoder_count(Δt)

%belt:part.loc ←SHIFT(%belt:part.loc BY

encoder_count(Δt)*scale_factor,0,0)

Robot moving towards time-variable destination:
MOVES %belt:part.loc

Error tolerance entered for target t = t + Δt
No

Pick part "on-the-fly" : CLOSEI and

move to a non belt-relative destination

Yes

Figure 4. The robot motion algorithm for visual tracking of the conveyor belt

758 Industrial Robotics: Theory, Modelling and Control

3. Tracking conveyors as m≤3 Cartesian axis robots

According to the second tracking method, the ensemble conveyor belt + actua-
tor + sensor is configured as an 3≤m -axis Cartesian robot, which leads to a
problem of cooperation between multiple robots subject to multitasking com-
puter control. The V+ structured programming environment is used for exem-
plifying the multi tasking control of robots visually tracking moving objects on
multiple belts.

3.1 Multitasking control for robot cooperation

Conceptually, the problem is solved by defining a number of user tasks which
attach two types of "robots": the n – d.o.f. manipulator responsible with grasp-
ing on-the-fly objects moving on the conveyor belt, and the 3≤m -axis robot
emulating the conveyor belt under vision control. These user tasks run concur-
rently with the internal system tasks of a multitasking robot controller, mainly
responsible for trajectory generation, axis servoing and system resource man-
agement (Adept, 2001).

In this respect, there are three tasks to be at least defined for the tracking prob-
lem:

1. Task 1: Dynamic re-planning the destination location (grasping the
moving object) for the robot manipulator.

2. Task 2: Continuously moving (driving) the 3≤m -axis vision belt. In
the most general case, the belt moves along any 3D-direction relative
to the robot base frame),,(000 zyx .

3. Task 3: Reading once the belt's location the very moment an object of
interest has been recognised, located and its grasping estimated as col-
lision-free, and then continuously until the object is effectively picked.

3.1.1 Specifying tasks, time slices and priorities

A multitasking robot control system appears to execute all these program tasks
at the same time. However, this is actually achieved by rapidly switching be-
tween the tasks many times each second, each task receiving a fraction of the
total time available. This is referred to as concurrent execution (Zhuang, 1992),
(Borangiu, 2005).

The amount of time a particular program task receives is caused by two pa-
rameters: its assignment to the various time slices, and its priority within the
time slice. One assumes that, in the multitasking operating system, each system
cycle is divided into 16 time slices of one millisecond each, the slices being
numbered 0 through 15. A single occurrence of all 16 time slices is referred to

Visual Conveyor tracking in High-speed Robotics Tasks 759

as a major cycle. For a robot each of these cycles corresponds to one output
from the trajectory generator to the servos.
A number of seven user tasks, e.g. from 0 to 6, will be used and their configu-
ration tailored to suit the needs of specific applications. Each program task
configured for use requires dedicated memory, which is not available to user
programs. Therefore, the number of tasks available should be made no larger
than necessary, especially if memory space for user programs is critical.
When application programs are executed, their program tasks are normally as-
signed default time slices and priorities according to the current system con-
figuration. The defaults can be overridden temporarily for any user program
task, by specifying the desired time slice and priority parameters of the
EXECUTE initiating command.
Tasks are scheduled to run with a specified priority in one or more time slices.
Tasks may have priorities from −1 to 64, and the priorities may be different in
each time slice. The priority meanings are:

−1 Do not run in this slice even if no other task is ready to run.
 0 Do not run in this slice unless no other task from this slice is

ready to run.
1-64 Run in this slice according to specified priority. Higher prior-

ity tasks may lock lower ones. Priorities are broken into the
following ranges:

1-31 Normal user task priorities;
32-62 Used by robot controller's device drivers and system tasks;
63 Used by trajectory generator. Do not use 63 unless you have

very short task execution times, because use of these priori-
ties may cause jerks in the robot trajectories;

64 Used by the servo. Do not use 64 unless you have very short
task execution times, because use of these priorities may
cause jerks in the robot trajectories.

The V+ operating system has a number of internal (system) tasks that compete
with application (user) program tasks for time within each time slice:

• On motion systems, the V+ trajectory generator runs (at the highest priority
task) in slice #0 and continues through as many time slices as necessary to
compute the next motion device set point.

• On motion systems, the CPU running servo code runs the servo task (at in-

terrupt level) every 1 or 2 milliseconds (according to the controller configu-
ration utility).

760 Industrial Robotics: Theory, Modelling and Control

The remaining time is allocated to user tasks, by using the controller configu-
ration utility. For each time slice, you specify which tasks may run in the slice
and what priority each task has in that slice.

3.1.2 Scheduling of program execution tasks

Vision guided robot planning ("object recognition and locating"), and dynami-
cal re-planning of robot destination ("robot tracking the belt") should always
be configured on user tasks 0 or 1 in "Look-and-Move" interlaced robot motion
control, due to the continuous, high priority assignment of these two tasks,
over the first 13 time slices. However, vision guidance and motion re-planning
programs complete their computation in less than the 13 time slices (0-12).
Consequently, in order to give the chance to conveyor-associated tasks ("drive"
the vision belt, "read" the current position of the vision belt") to provide the
"robot tracking" programs with the necessary position update information ear-
lier than the slice 13, and to the high-priority trajectory generation system task
to effectively use this updates, a WAIT instruction should be inserted in the
loop-type vision guidance and motion re-planning programs of tasks 0 and/or
1.
A WAIT condition instruction with no argument will suspend then, once per
loop execution, the motion re-planning program, executing on user task 1, un-
til the start of the next major cycle (slice 0). At that time, the "vision processing
and belt tracking" task becomes runnable and will execute, due to its high pri-
ority assignment.
Due to their reduced amount of computation, programs related to the man-
agement of the conveyor belt should be always assigned to tasks 2, 3, 5 or 6 if
the default priority scheme is maintained for user program tasks, leaving tasks
1 and 2 for the intensive computational vision and robot motion control.
Whenever the current task becomes inactive, the multitasking OS searches for
a new task to run. The search begins with the highest priority task in the cur-
rent time slice and proceeds through in order of descending priority. If multi-
ple programs wait to run in the task, they are run according to relative pro-
gram priorities. If a runnable task is not found, the next higher slice is checked.
All time slices are checked, wrapping around from slice 15 to slice 0 until the
original slice is reached. Whenever a 1 ms interval expires, the system per-
forms a similar search of the next time slice; if this one does not contain a run-
nable task, the currently executing task continues.
If more than one task in the same time slice has the same priority, they become
part of a round-robin scheduling group. Whenever a member of a round-robin
group is selected by the normal slice searching, the group is scanned to find
the member of the group that run most recently. The member that follows the
most recent is run instead of the one which was originally selected.

Visual Conveyor tracking in High-speed Robotics Tasks 761

The V+ RELEASE program instruction may be used to bypass the normal
scheduling process by explicitly passing control to another task. That task then
goes to run in the current time slice until it is rescheduled by the 1 ms clock. A
task may also RELEASE to anyone, which means that a normal scan is made of
all other tasks to find one that is ready to run. During this scan, members of
the original task's round-robin group (if any) are ignored. Therefore, a
RELEASE to anyone cannot be used to pass control to a different member of
the current group.
Round-robin groups are treated as a single task. If any member of the group is
selected during the scan, then the group is selected. The group is scanned to
find the task in the group following the one which ran most recently, and that
task is run. Within each time slice, the task with highest priority can be locked
out only by a servo interrupt. Tasks with lower priority, defined for driving
the conveyor belt and reading position data from its encoder, can run only if
the higher-priority task, defined for vision guidance of the n–d.o.f. robot and
for tracking the 1–d.o.f. robot-like conveyor belt, is inactive or waiting. A user
task waits whenever:

• The program issues an input or an output request that causes a wait.
• The program executes a robot motion instruction while the robot is still

moving in response to a previous motion instruction.
• The program executes a WAIT or WAIT.EVENT program instruction.

If a program is executing continuously without performing any of the above
operations, it locks out any lower-priority tasks in its time slice. Thus, pro-
grams that execute in continuous loops, like vision guidance and motion re-
planning for belt tracking, should generally execute a WAIT (or
WAIT.EVENT) instruction occasionally (for example, once each time through the
loop).
If a program potentially has a lot of critical processing to perform, its task
should be in multiple slices, and the task should have the highest priority in these
slices. This will guarantee the task's getting all the time needed in the multiple
slices, plus (if needed) additional unused time in the major cycle.

Fig. 5 shows the task scheduler algorithm which was designed for an n-d.o.f. ro-
bot tracking a continuously updated object grasping location, and picking the
object "on-the-fly" from a conveyor belt, when motion completes. The object is
recognized and located by vision, and updating of its position is provided by
encoder data reads from the conveyor belt modelled as a 1-d.o.f. robot. The
priority analysis and round-robin member selection are also indicated.
The problem of conveyor tracking with vision guiding for part identification
and locating required definition of three user tasks, to which programs were
associated:

Thank You for previewing this eBook
You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can
access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

