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1. Introduction and framework

The idea of robots acting as human companions is not a particularly new or original one.
Since the notion of “robot” was created, the idea of robots replacing humans in dangerous,
dirty and dull activities has been inseparably tied with the fantasy of human-like robots
being friends and existing side by side with humans. In 1989, Engelberger (Engelberger,
1989) introduced the idea of having robots serving humans in everyday environments. Since
then, a considerable number of mature robotic systems have been implemented which claim
to be servants, personal assistants (see a survey in Fong et al., 2003). The autonomy of such
robots is fully oriented towards navigation in human environments and/or human-robot
interaction.

Interaction is facilitated if the robot behaviour is as natural as possible. Two aspects of this
are important. The first is to facilitate tasks, which involve direct physical cooperation
between humans and robots. The second issue is that robot independent movements must
appear familiar and predictable to humans. Furthermore, in order to be more effective
towards a seemingly interaction, a similar appearance to humans is an important
requirement. These considerations initiated probably the design of humanoid robots. One
can mention here commercial robots like QRIO by Sony as well as prototypes like Alpha
(Bennewitz et al., 2005), Robox (Siegwart et al., 2003), Minerva (Thrun et al., 2000) or Mobot
(Nourbakhsh et al., 2003).

These systems addressed various aspects of human-robot interaction designed by a
programmer. This includes all or parts of situation understanding, recognition of the human
partner, understanding his intention, and coordination of motion and action and multi-
modal communication. Such systems are able to communicate with its a non-expert user in a
human-friendly intuitive way by employing the bandwidth of human communication and
interaction modalities, typically through H/R interfaces, speech or gestures recognition. It is
an evident fact that gestures are natural and rich means, which humans employ to
communicate with each other, especially valuable in environments where the speech-based
communication may be garbled or drowned out. Communicative gestures can represent
either acts or symbols. This includes typically gestures recognition for interaction between
humans and robots e.g. waving hands for good-bye, acting hello, and gestures recognition
for directions to humanoid e.g. pointing out, stop motion. Unfortunately, a few of the
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designed robotic systems exhibit elementary capabilities of gesture-based interaction and
future developments in the robotic community will be undoubtedly devoted to satisfy this
need.

Besides communication process, another and potentially deeper issue is the flexibility as
humanoid robots are expected to evolve in dynamic and various environments populated
with human beings. Most of the designed robotic systems lack learning representations and
the interaction is often restricted to what the designer has programmed.

Unfortunately, it seems impossible to create a humanoid robot with built-in knowledge of
all possible states and actions suited to the encountered situations. To face this problem, a
promising line of investigation is to conceptualize cognitive robots i.e. permanent learners,
which are able to evolve and grow their capacities in close interaction with non-expert users
in an open-ended fashion. Some recent platforms e.g. Biron (Maas et al., 2006) or Cog
(Fitzpatrick et al., 2003) enjoy these capabilities.

They have no completion and continue to learn as they face new interaction situations both
with their environments and the other agents. Basically, they discover a human centred
environment and build up an understanding of it. Typically, the robot companion follows a
human master in his/her private home so as to familiarise it with its habitat. This human
master points out specific locations, objects and artefacts that she/he believes are necessary
for the robot to remember. Once such a robot has learnt, all this information, it can start
interacting with its environment autonomously, for instance to share/exchange objects with
humans.

The robot must also learn new tasks and actions relatively to humans by observing and try
to imitate them to execute the same task. Imitation learning (Asfour, 2006), (Shon et al., 2005)
addresses both issues of human-like motion and easy teaching of new tasks: it facilitates
teaching a robot new tasks by a human master and at the same time makes the robot move
like a human. This human instructor must have been logically beforehand identified among
all the possible robot tutors, and just then granted the right to teach the robot. Activities and
gestures imitation (Asfour, 2006; Nakazawa et al., 2002) is logically an essential important
component in these approaches.

These reminders stress that activities/ gestures interpretation and imitation, object exchange
and person following are essential for a humanoid companion. Recall that two generally
sequential tasks are involved in the gestures interpretation, namely the tracking and
recognition stages while gestures imitation learning proceeds also through two stages:
tracking, and reproduction. All these human-robot interaction modalities require, as
expected, advanced tracking functionalities and impose constraints on their accuracies, or
on the focus of interest. Thus, person following task requires coarse tracking of the whole
human body and image-based trackers is appropriate in such situation. These trackers
provide coarse tracking granularity but are generally fast and robust. Tracking hands in
image plane is also sufficient to interpret many symbolic gestures e.g. a “hello” sign. On the
other side, tracking hands when performing manipulation tasks requires high accuracy and so
3D-based trackers. More globally, many tasks concerning manipulation but also interaction
rely on tracking of the whole upper human body limbs, and require inferring 3D information.
From these considerations, the remainder of the paper reports both on 2D and 3D tracking
of the upper human body parts or hands from a single camera mounted on mobile robot as
most of humanoid robots embed such exteroceptive sensor. This set of trackers is expected
to fulfil the requirements of most of the aforementioned human-robot interaction modalities.
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Tracking human limbs from a mobile platform has to be able to cope with: (i) automatic
initialization and re-initialization after target loss or occlusions, (ii) dynamic and cluttered
environments encountered by the robot during its displacements.

The paper is organized as follows. Section 2 gives a brief state-of-art related to human body
parts tracking based on one or multiple cameras. This allows to introduce our approach and
to highlight particle filters in our context. Our guiding principle to design both 2D and 3D
trackers devoted to mobile platform is also introduced. Section 3 sums up the well-known
particle filtering formalism and describes some variants which enable data fusion in this
framework. The latter involve visual cues which are described in section 4. Sections 5 and 6
detail our strategies dedicated to the 2D and 3D tracking of human hands and their
generalization to the whole upper human body parts. Section 7 presents a key-scenario and
outlines the visual functions depicted in this paper i.e. trackers of human limbs and face
recognition as trackers are classically launched as soon as the current user is identified as
human master. These visual functions are expected to endow a universal humanoid robot
and to enable it to act as a companion.

Considerations about the overall architecture, implementation and integration in progress
on two platforms are also presented. This concerns: (i) person recognition and his/her
coarse tracking from a mobile platform equipped with an arm to exchange objects with
humans, (ii) fine gestures tracking and imitation by a HRP2 model as a real platform which
is recently available at LAAS. Last, section 8 summarizes our contribution and opens the
discussion for future extensions.

2. Related works on human body parts tracking

The literature proposes a plethora of approaches dedicated to the tracking of human body
parts. Related works can be effectively organized into two broad categories, 2D or image-
based tracking, and 3D tracking or motion capture. These categories are outlined in the two
next subsections with special emphasis on particle filtering based approaches. Recall that
activities/ gestures tracking is currently coupled with recognition. Though a state of art
related to activities/ gestures recognition goes outside the scope of this paper, the interested
reader is referred to the comprehensive surveys (Pavlovic, et al., 1997; Wu et al., 1999).

2.1 2D or image-based tracking

Many 2D tracking paradigms of the human body parts have been proposed in the literature
which we shall not attempt to review here exhaustively. The reader is referred to (Gavrila,
1999; Eachter et al., 1999) for details. One can mention Kalman filtering (Schwerdt et al.,
2000), the mean-shift technique (Comaniciu et al., 2003) or its variant (Chen et al., 2001), tree-
based filtering (Thayanathan et al., 2003) among many others. Beside these approaches, one
of the most successful paradigms, focused in this paper, undoubtedly concerns sequential
Monte Carlo simulation methods, also known as particle filters (Doucet et al., 2000).

Particle filters represent the posterior distribution by a set of samples, or particles, with
associated importance weights. This weighted particles set is first drawn from the state
vector initial probability distribution, and is then updated over time taking into account the
measurements and a prior knowledge on the system dynamics and observation models.

In the Computer Vision community, the formalism has been pioneered in the seminal paper
by Isard and Blake (Isard et al., 1998a), which coins the term CONDENSATION for
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conditional density propagation. In this scheme, the particles are drawn from the dynamics
and weighted by their likelihood w.r.t. the measurement. CONDENSATION is shown to
outperform Kalman filter in the presence of background clutter.

Following the CONDENSATION algorithm, various improvements and extensions have
been proposed for visual tracking. Isard et al. in (Isard et al., 1998c) introduce a mixed-state
CONDENSATION tracker in order to perform multiple model tracking. The same authors
propose in (Isard et al., 1998b) another extension, named ICONDENSATION, which has
introduced for the first time importance sampling in visual tracking. It constitutes a
mathematically principled way of directing search, combining the dynamics and
measurements. So, the tracker can take advantage of the distinct qualities of the information
sources and re-initialize automatically when temporary failures occur. Particle filtering with
history sampling is proposed as a variant in (Torma et al., 2003). Rui and Chen in (Rui et al.,
2001) introduce the Unscented Particle Filter (UPF) into audio and visual tracking. The UPF
uses the Unscented Kalman filter to generate proposal distributions that seamlessly
integrate the current observation. Partitioned sampling, introduced by MacCormick and
Isard in (MacCormick et al., 2000a), is another way of applying particle filters to tracking
problems with high-dimensional configuration spaces. This algorithm is shown to be well
suited to track articulated objets (MacCormick et al., 2000b). The hierarchical strategy (Pérez
et al., 2004) constitutes a generalization.

2.2 3D tracking or motion capture

In the recent years, special devices such as data glove (Sturman et al. 1994), immersive
environment (Kehl et al., 2004) and marker-based optical motion capturing system
(generally Elite or VICON) are commonly used, in the Robotics community, to track the
motion of human limbs. Let us mention some developments, which aim at analyzing raw
motion data, acquired from the system VICON and reproduct them on a humanoid robot to
imitate dance (Nakazawa et al., 2002) or walking gait (Shon et al., 2005). Using such systems
is not intuitive and questionable in human-robot interaction session. Firstly, captured
motion cannot be directly imported into a robot, as the raw data must be converted to its
joint angle trajectories. Secondly, usual motion capture systems are hard to implement while
using markers is restrictive.

Like many researchers of the Computer Vision community, we aim at investigating marker-
less motion capturing systems, using one or more cameras. Such a system could be run
using conventional cameras and without the use of special apparel or other equipment. To
date, most of the existing marker-less approaches take advantage of the a priori knowledge
about the kinematics and shape properties of the human body to make the problem
tractable. Tracking is also well supported by the use of 3D articulated models which can be
either deformable (Heap et al., 1996; Lerasle et al.,1999; Kakadiaris et al., 2000; Metaxas et al.,
2003; Sminchisescu et al., 2003) or rigid (Delamarre et al., 2001; Giebel et al., 2004; Stenger et
al., 2003). In fact, there is a trade-off between the modelling error, due to rigid structures, the
number of parameters involved in the model, the required precision, and the expected
computational cost. In our case, the creation of a simple and light approach that would be
adequate to for a quasi-real-time application was one of the ideas that guided the
developments. This motivated our choice of using truncated rigid quadrics to represent the
limbs' shapes. Quadrics are, indeed, quite popular geometric primitives for use in human
body tracking (Deutcher et al., 2000; Delamarre et al., 2001; Stenger et al., 2003). This is due
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to the fact that they are easily handled, and can be combined to create complex shapes, and
their projections are conic sections that can be obtained in closed form. Our projection
method that will be depicted later, although being inspired from (Stenger et al., 2001) has
the advantage that it requires less computational power than this one.

Two main classes of 3D model-based trackers can be considered, 3D reconstruction-based
approaches (Delamarre et al., 2001; Urtasum et al., 2004) and appearance-based approaches,
being both widely investigated. While the former performs a reconstruction of the largest
possible number of points of the tracked object or structure and then tries to match them in
3D space, the latter tries to solve the problem of in which configuration should the target be
for its representation being the currently observed one. Normally some characteristic
features of the object are used to in the construction of a model-to-image fitting process.
Our work that is presented in this paper is focused on the use of this kind of approach
making no assumptions about clothing and background structure.

To cope with the lack of discriminant visual features, the presence of clutter, and the frequent
occurrence of mutual occlusions between limbs, one solution is to base the observation model
on multiple views (Delamarre et al., 2001; Deutscher et al., 2000; Gavrila et al., 1996; Lerasle et
al., 1999; Stenger et al., 2001; Urtasun et al., 2004). Another solution (Gongalves et al., 1995;
Park et al. 2993; Sidenbladh et al., 2000; Sminchisescu et al., 2003), which is the one we have
chosen, is to use a single view and increase the reliability and specificity of the observation
model. To do so, a robust and probabilistically motivated integration of multiple measurement
modalities is of great help. There are several examples in the literature of such integration like,
for example edges and colour cues in (Stenger et al., 2003), edges/silhouette and motion cues
in (Sminchisescu et al., 2003) or edges, texture and 3D data cues in (Giebel et al., 2004). In our
case, we propose an observation model that combines edges and motion cues for the quadrics
limbs, with local colour and texture patches on clothing acting as natural markers. Finally and
inspired from (Sminchisescu et al., 2003), we add joints limits and self-body collision removal
constraints to the overall model.

Regarding the tracked movements, some approaches rely on simplifications brought in
either by using sophisticated learnt motion models, such as walking (Urtasun et al., 2004), or
by restricting movements to those contained roughly in a fronto-parallel plane (Sidenbladh
et al., 2000). Both simplification choices are well suited to monocular approaches. No
specific motion models are used in this work, as we want to be able to track general human
motions. In such unconstrained setup, a monocular estimation process suffers necessarily
from the inevitable multi-modality of the observation process.

Each of these solutions produces a local minimum in the observation function, by
consequence when any single-hypothesis-tracker is started in a position of configuration
space too far from the good one, it may simply be trapped in one of the false minima, with
the consequent tracking failure target loss.

Reliable tracking requires a powerful multiple hypothesis tracker capable of finding and
following a significant number of minima. Local descent search strategies (Delamarre et al.,
2001; Lerasle et al., 1999; Kakadiaris et al., 2000; Rehg et al., 1995; Urtasum et al., 2004) do
search a local minimum, but with multi-modality there is no guaranty that the globally most
representative one is found. Like others (Deutscher et al., 2000; Poon et al., 2002; Wu et al.,
2001), we address these problems by employing particle-filtering techniques for the
following reasons.
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Particle filtering generates random sampling points according to a proposal distribution,
which may contain multiple modes encoding ““the good places to look at". Such
probabilistic framework allows the information from different measurements sources to be
fused in a principled manner. Although this fact has been acknowledged before, it has not
been fully exploited for 3D trackers. Combining a host of cues such as colour, shape, and
even motion, may increase the reliability of estimators dedicated to track human limbs.

In what concerns the computational cost, particle filters techniques normally require a
substantial computation power, especially in high state-space dimensionality cases, which
make the number of required samples to explode. Consequently, large efforts have been
devoted to tackle such problem by reducing both the model's dimension through PCA (Wu
et al., 2001; Uratasum et al., 2004), and the number of samples by testing stochastic sampling
“variants" (Deutscher et al., 2000; Sminchisescu et al., 2003).

2.3 Problem statement and guiding principle

2D or 3D human tracking from a mobile platform is a very challenging task, which imposes
several requirements. First, the sensor's setup, is naturally embedded on the autonomous
robot. By consequence from the camera point of view all scene objects move, this precludes
the use of some useful techniques like background subtracting for isolating the target
objects. As the robot is expected to evolve in environments that are highly dynamic,
cluttered, and frequently subjected to illumination changes, several hypotheses must be
handled simultaneously by the trackers. This is due to the multi-modality that appears in
the statistical distributions of the measured parameters, as a consequence of the clutter or
the changes in the appearance of the target. Consequently, several hypotheses must be
handled simultaneously in the developed trackers, and a robust integration of multiple
visual cues is required to efficiently localize the good likelihood peaks. Finally, on-board
computational power is limited so that only a small percentage of these resources can be
allocated to tracking, the remaining part being required to enable the concurrent execution
of other functions as well as decisional routines within the robot's architecture. Thus, care
must be taken to design efficient algorithms.

The particle-filtering framework is well suited to the above requirements and is widely used
in the literature both for 2D or 3D tracking purpose. The popularity of this framework is due
to its simplicity, ease of implementation, and modelling flexibility. This framework makes
no restrictive assumptions about the probability distributions and enables the fusion of
diverse measurements in a simple way. Clearly, combining a host of cues may increase our
trackers versatility and reliability. Finally, from the numerous particle-filtering strategies
proposed in the literature, one is expected to fit to the requirements of each tracker
modality. These considerations lead us to investigate on particle filtering strategies for data
fusion. The creation of simple and light monocular-based trackers that would adequate to
for a quasi-real time application was another motivation that guided our developments.

3. Particle filtering algorithms for data fusion

3.1 Generic algorithm

Particle filters are sequential Monte Carlo simulation methods for the state vector estimation
of any Markovian dynamic system subject to possibly non-Gaussian random inputs
(Arulampalam et al.,, 2002). The aim is to recursively approximate the posterior density
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function (pdf) of the state vector Lk at time k conditioned on the set of measurements
Z1:k = Z1,-- -, Zk through the linear point-mass combination
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A generic particle filter or SIR is shown on Table 1. The particles 7 evolve stochastically
over the time, being sampled from an importance density (), which aims at adaptively
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exploring “‘relevant" areas of the state space. Their weights @i are updated thanks to
plr 125 00) and pleel=i’), respectively the state dynamics and measurement functions, so as
to guarantee the consistency of the approximation (1). In order to limit the degeneracy
phenomenon, which says that after few instants the weights of all but one particle tend to
zero, step 8 inserts a resampling process. Another solution to limit this effect in addition to
re-sampling is the choice of a good importance density.
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Table 1. Generic particle filtering algorithm (SIR)

3.2 Importance sampling from either dynamics or measurements: basic strategies

The CONDENSATION algorithm is instanced from the SIR algorithm as
alealel s = w1500, A difference relative to the SIR algorithm is that the re-sampling
step 8 is applied on every cycle. Resampling by itself cannot efficiently limit the degeneracy
phenomenon as the state-space is blindly explored without any knowledge of the
observations. On the other side, the ICONDENSATION algorithm (Isard et al., 1998),
considers an importance density 4 (), which classically relates to the importance function

(1)) . . . . .
7(xy"|%) defined from the current image. However, if a particle drawn exclusively from the
image is inconsistent with its predecessor in terms of state dynamics, the update formula
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leads to a small weight. An alternative consists in sampling the particles according the
measurements, dynamics and the prior, so that, with @ € [0; 1]
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3.3 Towards the “optimal” case: the Auxiliary Particle Filter
The Auxiliary Particle Filter (Pitt et al., 1999) noted APF depicted by the algorithm of Table 2
is another variant that aims to overcome some limitations of the ““blind exploration". This

algorithm considers an auxiliary density plzelii’), where Mk characterise the density of €k

conditioned on zyy (step 4). Compared to the CONDENSATION scheme, the advantage of
this filter is that it naturally generates points from the sample at k-1 which, conditioned on
the current measure, are most likely to be close to the true state and so improve the estimate
accuracy. In practice, it runs shghtly slower than the CONDENSATION as we need to
evaluate the auxiliary weights *« iy (step 4) and to perform two weighted bootstraps (steps 4
and 9) rather than one. However, the improvement in sampling will usually dominate these
small effects. By making proposals that have high conditional likelihoods, we reduce the
cost of sampling many times from particles, which have very low likelihoods and so will not
be re-sampled at the second process stage. This improves the statistical efficiency of the
sampling procedure and it means that we can reduce substantially the number N of
particles.
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Table 2. Auxiliary Particle Filter (APF)

4. Importance and measurement functions

Importance functions 7(-) involve generally discriminant but possibly intermittent visual
cues while measurement functions P(21%) involve cues which must be persistent but are
however more prone to ambiguity for cluttered scene (Pérez et al., 2004).
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Combining or fusing multiple cues enables the tracker to better benefit from distinct
information, and confers robustness w.r.t temporary failures. Measurement and importance
functions are depicted hereafter as well as some considerations regarding data fusion.

4.1 Measurement functions

4.1.1 Shape cue

The use of shape cues requires indeed that the class of targets to be tracked is known a priori
and that contour models can be learnt beforehand, i.e. that coarse 2D ou 3D models of the
targeted limbs can be used. For simple view-based shape representation, human limbs are
therefore represented by coarse silhouette contours (Figure 1). For 3D tracking, a
preliminary 3D model projection and hidden parts removal is required (Delamarre et al,
2001; Deutscher et al., 2001; Menezes et al 2005a, Sminchisescu et al., 2003).

Figure 1. Examples of silhouette templates

The shape-based likelihood is classically computed using the sum of the squared distances
between model points #(J) and the nearest closest edges 2(J), which lie on the normals that
pass through the points (7). These measurement points are chosen uniformly distributed
along the model.

N

5 e 1
pl25]2) r-xu(m,_, ] D=3 lati) 2001 @
oA P J=l

where As is a weight dedicated to further 3D tracking purpose (see section 6.2), j indexes the
Nb model points, and T s a standard deviation being determined a priori.

A variant (Giebel et al., 2004) consists in converting the edge image into a Distance
Transform image, noted I which is used to peek the distance values. The advantage of
matching our model contours against a DT image rather than using directly the edges image
is twofold. Firstly, the similarity measure D is a smoother function of the model pose
parameters. Secondly, this reduces the involved computations as the DT image can be
generated only once, independently of the number N of particles used in the filter. The
distance D becomes

Ng
1 ~— ¥
D= \P 2_, Ipr(i), 3)

=1

where 107(7) is the associated value in the DT image. Figure 1 (a) and (b) shows two plots
of these two likelihoods for an image-based tracker where the target is a 2D elliptical
template corresponding coarsely to the head of the right subject in the input image. As
expected, the distance (3) appears to be less discriminant to clutter but is shown to enjoy
least time consumption for ' = (M.
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Figure 2. Likelihoods for 2D tracker for shape (a)-(b), shape and optical flow (c), shape and
colour (d)

4.1.2 Shape and motion cues combination

In our context, and contrary to the background, which is assumed to remain static, the
human limbs are expected to be moving, possibly intermittently. To cope with cluttered
scenes and reject false background attractors, we favour the moving edges, if they exist, as
they are expected to correspond to the moving target. As the target can be temporarily
stopped, the static edges are not completely rejected, but only made less attractive than the
moving ones. The points # () in (2) receive the additional constraint that the corresponding
optical flow vectors [ (z(il) must have nonzero norm. The new likelihood p(=""%|z) involves
the following similarity measure

Ny
D = g; 3. l#) = 20l +pr(z(), )
J_

where 1207} =0 (resp. 1) if Tl #0 (resp. if [l=lih=0) and >0 terms a penalty.
Figure 2-(c) plots this more discriminant likelihood function for the example seen above. The
target is still the subject on the right, but is assumed to be moving.

Regarding the similarity measure (3), shape and motion cues are combined by using two DT

images, where the second one I5r(J) is obtained by filtering out the static edges, based on
the local optical flow vector. The distance D becomes

N
1= A
D= -J,-H:F-%mm(I,«_r,r[_”.h.fnr[ﬂ}. ®)
where weight values K < 1 make moving edges more attractive.

4.1.3 Colour cue

Clothes colours create a clear distinction between the observed persons but also the limbs
(head, hands and feet, trunk of sleeves) for a given person. Consequently, using clothing
patches of characteristic colour distributions, i.e. natural markers, seems very promising.
Reference colour models are associated with these targeted ROIs. For a given ROI, we
denote Mres and 7% two Nai-bin normalized histograms in channel ¢ corresponding
respectively to the target and a region Bx related to any state x. The colour likelihood model
must be defined so as to favour candidate histograms h
Wref. The likelihood has a form similar to (2), provided that D terms the Bhattacharyya
distance (Pérez et al., 2004) between the two histograms. The latter can also depict the
similarity of several colour patches related to faces but also clothes, each with its own

c
z close to the reference histogram
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where Ap,c are weighting factors dedicated to further 3D tracking purpose (see section 6.2).
This multi-part extension is more accurate thus avoiding the drift, and possible subsequent
loss, experienced sometimes by the single-part version (Pérez et al., 2002). Figure 2-(d) plots

this likelihood function P(“#) for the above example. Let us note that, from (6), we can

also decline a likelihood value (2" |2) relative to textured patches based on the intensity
component.

4.1.4 Multiple cues fusion
Assuming the measurement models to be mutually independent given the state. Given M

1 M . .
measurement sources (£ 1-<<1 2 ], the global measurement function can be factorized as

M
oz, 2Me) e H plz™|z). ?)

m=]
As mentioned before, data fusion is also required for 3D tracking in order to efficiently
localize the good likelihood peak in the state space. Figure 3-left shows the plot of the

-

likelihood PL=”|¥) involving the distance (3) and obtained by sweeping a subspace of the
configuration space formed by two parameters of a human arm 3D model. Figure 3-middle

plots an approximation of the coloured multi-patches likelihood p(z"17) entailed in our
tracker. The reference colour ROI corresponds to the marked hand. Fusing shape, motion
and colour, as plotted in Figure 3-right, is shown to be more discriminant as expected.

B

fr._ N %b ‘ i

Figure 3. Likelihood plots for 3D tracking: shape cue, colour cue, both shape and colour cues
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Clearly, mixing all these cues into the measurement function of the underlying estimation
scheme helps our 2D or 3D trackers to work under a wide range of conditions encountered
by our robot during its displacements.

4.2 Importance function

4.2.1 Shape cue

This importance function (.) considers the outputs from face or hand detectors. Our face
detection system is based on the AdaBoost algorithm and uses a boosted cascade of Haar-
like features. Each feature is computed by the sum of all pixels in rectangular regions, which
can be computed very efficiently using integral images. The idea is to detect the relative
darkness between different regions like the region of the eyes and the cheeks (Figure 4-left).

AL

i §

Figure 4. First Haar features for faces (Viola et al., 2001) and for hands

Originally, this idea was developed by Viola et al. in (Viola et al., 2001) to reliably detect
faces, in the range of [-45,45] degrees of out-of-plane rotation, without requiring a skin
colour model. This widely used detector works quickly and yields high detection rates.

This idea was extended for detecting hands. Our classifier was trained with 2000 images
containing upright hands, and 6000 images without hands and used as negative samples.
This hand detector exhibits a detection rate slightly smaller than the previous, mainly due to
the lack of discriminant contrasts in the hand. Figure 4-right shows example of Haar-like
feature used in this context. A video relative to hand detection can be downloaded from the
following URL http:/ /www.isr.uc.pt/~paulo/HRI.

Let us characterize the associated importance functions. Given Ng detected faces or hands,

and Py ={m,vi)i=1,....1 Vi the centroid coordinates of each such region. The associated
importance function 7(x/z"] at location * = (t, %) follows, as the Gaussian mixture proposal
NB
m(x]2%) x Z.f\f(x:pi,(liag{aﬁl,afr_))‘ 8)
i=1
where V1 #.%) denotes the Gaussian distribution with mean # and covariance .

4.2.2 Colour cue

Human skin colours have a specific distribution in colour space. Training images from the
Compaq database (Jones et al., 1998) enables to construct the associated distributions. The
detection of skin-colored blobs is performed by subsampling the input image prior to
grouping the classified skin-like pixels. Parts of the segmented regions are filtered regarding
their aspect ratio. Then, the importance function =(x/=“) is defined from the resulting blobs
by a Gaussian mixture similar to (8).



Towards an Interactive Humanoid Companion with Visual Tracking Modalities 379

4.2.3 Multi-cues mixture

In a mobile robotic context, the efficiency of the above detection modules is influenced by
the variability of the environment clutters and the change of viewing conditions. Therefore,
the importance function 7(-) can be extended to consider the outputs from any of the M
detectors, i.e.

M

1
r(xlz®..... M= — Y (x|’ 9
m(x|z', ) ”Z. (x|2*) ©)

5. Image-based tracking dedicated to upper human body parts

5.1 Preliminary works for hands tracking

Preliminary investigations (Menezes et al., 2004c) deal with an image-based tracker suitable
to estimate fronto-parallel motions of the hand e.g. when performing a ““hello" or a ““halt"
sign. The aim is to fit the view-based template relative to the targeted hand all along the
video stream, through the estimation of its image coordinates (u,v), its scale factor s, and its
orientation £. All these parameters are accounted for in the state vector X related to the k-
th frame. With regard to the dynamics model #(%il%s-1} | the image motions of observed
people are difficult to characterize over time. This weak knowledge is thus formalized by
defining the state vector as *« = [t v 4. fi] and assuming that its entries evolve according to
mutually independent random walk models, viz. #*k/%i-1) = Mxl%i 1. X where V1s £ terms
the Gaussian distribution with mean # and covariance £ = diaglf.af. a3, o)

Complex filtering strategies are not necessary in this tracker and we opt logically for the
CONDENSATION algorithm as it enjoys the least time consumption. The tracker is
launched automatically when detecting hands after agreement between both the Haar-like
features based detector and the skin blobs detector outcomes. The particle-weighting step
entails the likelihood (2™*|%) based on the similarity measure (4) and a hand silhouette
template (Figure 1). Characteristics and parameter values reported in Table 3 are used in the
likelihoods, proposal and state dynamics involved in our hand tracker.

. ]

Symbol Meaning Value

- Particle filtering strategy CONDENSATION
N Number of particles 100

(nbL, nbC) Image resolution (320,240)

o, standard deviation in p( M )y ) 36

N, Number of model points in similarity measure 30

P Penalty in similarity distance 012

Table 3. Characteristics and parameter values for our image-based hand tracker

The running time of this tracker is about 50fps on a PentiumIV-3GHz. Figure 5 shows some
image-based tracking snapshots from a sequence involving heavy cluttered background.
The entire video can be found at the URL http://www.isr.uc.pt/paulo/HRI. This
elementary and specific tracker has not been integrated in the Jido's software architecture
(detailed in section 7.1).
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Figure 5. Image-based tracking of hand in heavy cluttered background

5.2 Extension to the upper human body limbs

Same guiding principles, namely data fusion in an appropriate particle filtering strategy,
were used to develop an image-based tracker dedicated to the upper human body parts.
This tracker can typically be launched for: (i) person following i.e. coordinating the robot's
displacements, even if only coarsely, with those of the tracked robot user, (2) people
perception in the robot vicinity, for instance to heckle them. This coarse human tracking is
used to plan how to position the robot with respect to human beings in a socially acceptable
way.

Unfortunately, more than one authorised person can be in robot vicinity, what could make
the tracker continuously switch from the targeted person to another. Therefore, for re-
identifying individuals information based on face recognition and clothing colour are
logically entailed in the characterization of the tracker. These permit to distinguish
individuals but also to recover the targeted person after temporary occlusions or out-of-
sight. Moreover, any person must be, normally recognized among the potential human
masters database before receiving the grant to learn the robot.

5.2.1 Face recognition

This function aims to classify bounding boxes F of detected faces (see section 4.2) into
either one class C out of the set {Ci}i<renr - corresponding to M users faces presumably
learnt offline - or into the void class C@. Our approach, clearly inspired by (Turk et al.,
1991), consists in performing PCA, and keeps as eigenface bases the first eigenvectors
accounting on a certain average of the total class variance. Our evaluations are performed
on a face database that is composed of 6000 examples of M=10 individuals acquired by the
robot in a wide range of typical conditions: illumination changes, variations in facial
orientation and expression, etc. The database is separated into two disjoint sets: (i) the
training set (dedicated to PCA) containing 100 images per class, (ii) the test set containing
500 images per class. Each image is cropped to a size of 30x30 pixels. To improve the
method, two lines of investigations have been pursued.
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Figure 6. Example of face recognition
Firstly, evaluations highlight that the Distance-From-Face Space (DFFS) error norm leads to
the best performances in term of classification rate. For a given face { F (), j € {1,..30x30}},
the DFFS criteria is written as follows

30x30

9 =Y |F(G) - F()I (10)
j=1

where Fr is the reconstructed image after projection of F onto a PCA basis. For a set of M
learnt tutors (classes) noted {Ci}1212a and a detected face F , we can define for each class
Ci, the distance &) = %(F, ;) and an a priori probability P(¢|F) of labelling to Ci

F)=1and ¥Wl, P(C}|F) =0whenVl, & > 1

P(Cy |
VI, PCI|F) = s&Z0ED - otherwise, (1)

where T is a threshold predefined automatically, Corefers the void class and h terms the
Heaviside - or “'step" -- function: h(x)=1 if x>0, 0 otherwise.

Secondly, from the Heseltine et al. investigations in (Heseltine et al., 2002), we evaluate and
select the most meaningful image pre-processing in terms of false positives and false
negatives. We plot ROC curves based on different image pre-processing techniques for our
error norm % . These ROC curves are shown as the sensitivity (the ratio of true positives
over total true positives and false negatives) versus the false positive rate. Histogram
equalization is shown to outperform the other techniques for our database (Figure 7).

Figure 7. ROC curves image for different prletp.;(-).cessing techniques
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Figure 6 shows a snapshot of detected (red)/recognized (green) faces with associated
probabilities for a targeted person named Sylvain. More details on the face recognition
process can be found in (Germa et al. 2007) and at the URL http:/ /www.laas.fr/~tgerma.
This face classifier relates to the module HumRec in the Jido's software architecture (see
section 7.1).

5.2.2 Image-based tracking

This tracker is inspired from previously developed ones detailed in (Brethes et al., 2005). It
involves the state vector ¥« = [ts 4.5 - the orientation @k being set to a known constant.
Regarding the filtering strategy, we opt for the ICONDENSATION scheme, which allows
automatic initialization, and aid recovery from transient tracking failures thanks to detection
modules. Let us characterize both importance and measurement functions involved in the
tracker. The importance function mixes, thanks to (9) the outputs from the colour blobs and
face detectors. The importance function (7) becomes

Ng

n(xil2) o 3 P(CUIF:) N (x; pi. ding(0,, 0% ) (12)
i=1

Figure 8. A two-colour patch template template

Two colour models frefi and ref: are considered in the colour-based likelihood 31{35.3 |'-"Jr:|,
respectively for the head and the torso of the guided person (Figure 19 and 10). Their
initializations are achieved according to frames, which lead to (Cil-F) probabilities egal to
one. In the tracking loop, the colour model hret. is re-initialized with the initial values when
the user verification is highly confident, typically (€%, = I. When the appearance of these
two ROIs is supposed to change in the video stream, the target reference model is updated
from the computed estimates through a first-order filtering process i.e.

'irEr_'Jr..i.' e {i - H-]‘h':{eff.':— L + H'h}'.':xg_lr (13)

where K weights the contribution of the mean state histogram el to the target model
Wresk-1, and index p has been omitted for compactness reasons. The models updating can
lead to drifts with the consequent loss of the target. To avoid such tracker failures, the global
measurement model fuses, thanks to (7), colour but also shape cues. The shape-based
likelihood %K%k} entails the similarity distance (3) and the head silhouette template
(Figure 1). Characteristics and parameter values describing the likelihoods, state dynamics
are listed in Table 4.
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Due to the efficiency of the face recognition proposal (12), good tracking results are achieved
with a reasonably small number of particles i.e. N=150 particles. A PentiumIV-3GHz
requires about 40 fps to process the tracking.

Figure 9 and 10 show snapshots of two typical sequences in our context. All regions --
centred on the yellow dots -- close to detected faces with high recognition probabilities
corresponding to the person on the background are continually explored. Those - in blue
colour -- that do not comply with the targeted person are discarded during the importance-
sampling step. Recall that, for large range out-of-plane face rotations (= |43°1), the proposal
continues to generate pertinent hypotheses from the dynamic and the skin blobs detector.
The green (resp. red) rectangles represent the MMSE estimate in step 7 of Table 1 with high
(resp. low) confidence in the face recognition process. The proposal generates hypotheses
(yellow dots) in regions of significant face recognition probabilities.

Symbol Meaning Value
- Particle filtering strategy ICONDENSATION
N Number of particles 150
(nbL, nbC) | Image resolution (320, 240)
(v, 3) Coeff. in importance function 7 (ke |xk—1; 2k) (0.3, 0.6)
(0y,0,,0,) | Standard deviation in random walk models (11,6,1/0.1)
(T, 00,) Standard deviation in importance function (X« 1=%) (6, 6)
(Cu,s00,) Standard deviation in importance function m(xx|2%) (6, 6)
N, Number of model points in similarity measure 15
o, Standard deviation in shape-based likelihood »(zilx:) | 1.5
Ng Number of patches in P(% [Xk) 2
T, Standard deviation in color based likelihood P(2i Ix) | 0.03

Number of colour bins per channel involved in
Nhi o *("|x ) 32

2k Xk . ]

K Coeff. For reference histograms Wrep: ey .2 update (0.1, 0.05)

Table 4. Characteristics and parameter values for our image-based upper human body parts
tracker

{3
S

Figure 9. Tracking scenario including two persons with target out-of-sight. Target loss
detection and automatic re-initialization
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