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Structure Based Classification and Kinematic Analysis  
of Six-Joint Industrial Robotic Manipulators 

Tuna Balkan, M. Kemal Özgören and M. A. Sahir Arıkan 

1. Introduction 

In this chapter, a complete set of compact, structure based generalized kine-
matic equations for six-joint industrial robotic manipulators are presented to-
gether with their sample solutions. Industrial robots are classified according to 
their kinematic structures, and their forward kinematic equations are derived 
according to this classification. The purpose of this classification is to obtain 
simplified forward kinematic equations considering the specific features of the 
classified manipulators and thus facilitate their inverse kinematic solutions. 
For the classification, one hundred industrial robots are surveyed. The robots 
are first classified into kinematic main groups and then into subgroups under 
each main group. The main groups are based on the end-effector rotation ma-
trices and characterized by the twist angles. On the other hand, the subgroups 
are based on the wrist point positions and characterized by the link lengths 
and offsets. The reason for preferring the wrist point rather than the tip point 
in this classification is that, the wrist point and rotation matrix combination 
contain the same amount of information as the tip point and rotation matrix 
combination about the kinematic features of a manipulator, and the wrist point 
coordinates are simpler to express in terms of the joint variables. After obtain-
ing the forward kinematic equations (i.e. the main group rotation matrix equa-
tions and the subgroup wrist point equations), they are simplified in order to 
obtain compact kinematic equations using the numerous properties of the ex-
ponential rotation matrices (Özgören, 1987-2002). The usage of the exponential 
rotation matrices provided important advantages so that simplifications are 
carried out in a systematic manner with a small number of symbolic matrix 
manipulations. Subsequently, an inverse kinematic solution approach applica-
ble to the six-joint industrial robotic manipulators is introduced. The approach 
is based on the kinematic classification of the industrial robotic manipulators 
as explained above. In the inverse kinematic solutions of the surveyed indus-
trial robots, most of the simplified compact equations can be solved analyti-
cally and the remaining few of them can be solved semi-analytically through a 
numerical solution of a single univariate equation. The semi-analytical method 

Source: Industrial-Robotics-Theory-Modelling-Control, ISBN 3-86611-285-8, pp. 964, ARS/plV, Germany, December 2006, Edited by: Sam Cubero

O
pe

n 
A

cc
es

s 
D

at
ab

as
e 

w
w

w
.i-

te
ch

on
lin

e.
co

m



150       Industrial Robotics: Theory, Modelling and Control 

is named as the Parametrized Joint Variable (PJV) method. In these solutions, the 
singularities and the multiple configurations of the manipulators indicated by 
sign options can be determined easily. Using these solutions, the inverse 
kinematics can also be computerized by means of short and fast algorithms. 
Owing to the properties of the exponential rotation matrices, the derived sim-
ple and compact equations are easy to implement for computer programming 
of the inverse kinematic solutions. Besides, the singularities and the multiple 
configurations together with the working space limitations of the manipulator 
can be detected readily before the programming stage, which enables the pro-
grammer to take the necessary actions while developing the program. Thus, 
during the inverse kinematic solution, it becomes possible to control the mo-
tion of the manipulator in the desired configuration by selecting the sign op-
tions properly. In this approach, although the derived equations are manipula-
tor dependent, for a newly encountered manipulator or for a manipulator to be 
newly designed, there will be no need to follow the complete derivation pro-
cedure starting from the beginning for most of the cases; only a few modifica-
tions will be sufficient. These modifications can be addition or deletion of a 
term, or just changing simply a subscript of a link length or offset. Even if the 
manipulator under consideration happens to generate a new main group, the 
equations can still be derived without much difficulty by using the procedure 
described here, since the approach is systematic and its starting point is the 
application of the Denavit-Hartenberg convention by identifying the twist an-
gles and the other kinematic parameters. In this context, see (Özgören, 2002) 
for an exhaustive study that covers all kinds of six-joint serial manipulators. 
The presented method is applicable not only for the serial manipulators but 
also for the hybrid manipulators with closed chains. This is demonstrated by 
applying the method to an ABB IRB2000 industrial robot, which has a four-bar 
mechanism for the actuation of its third link. Thus, alongside with the serial 
manipulators, this particular hybrid manipulator also appears in this chapter 
with its compact forward kinematic equations and their inversion for the joint 
variables. Finally, the chapter is closed by giving the solutions to some typical 
trigonometric equations encountered during the inverse kinematic solutions. 
For the solution of inverse kinematics problem, forward kinematic equations 
are required. There are three methods for inverse kinematic solution; namely, 
analytical, semi-analytical, and fully numerical. Presently, analytical methods 
can be used only for certain manipulators with specific kinematic parameter 
combinations such as PUMA 560. For a general case where the manipulator 
does not have specific kinematic parameter combinations, it becomes impossi-
ble to obtain analytical solutions. So, either semi-analytical or fully numerical 
methods have been developed. Since the present general semi-analytical 
methods are rather cumbersome to use (Raghavan & Roth, 1993; Manseur & 
Doty, 1996), fully numerical methods are mostly preferred. However, if the 
forward kinematic equations can be simplified, it becomes feasible to use semi-
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analytical and even analytical methods for a large number of present industrial 
robot types. On the other hand, although the fully numerical methods can de-
tect the singularities by checking the determinant of the Jacobian matrix, they 
have to do this continuously during the solution, which slows down the proc-
ess. However, the type of the singularity may not be distinguished. Also, in 
case of multiple solutions, the desired configurations of the manipulator can 
not be specified during the solution. Thus, in order to clarify the singularities 
and the multiple configurations, it becomes necessary to make use of semi-
analytical or analytical methods. Furthermore, the analytical or semi-analytical 
methods would be of practical use if they lead to compact and simple equa-
tions to facilitate the detection of singularities and multiple configurations. The 
methodology presented in this chapter provides such simple and compact 
equations by making use of various properties of the exponential rotation ma-
trices, and the simplification tools derived by using these properties (Özgören, 
1987-2002). Since different manipulator types with different kinematic parame-
ters lead to different sets of simplified equations, it becomes necessary to clas-
sify the industrial robotic manipulators for a systematic treatment. For such a 
classification, one hundred currently used industrial robots are surveyed (Bal-
kan et al., 1999, 2001). 
The kinematics of robotic manipulators can be dealt with more effectively and 
faster by perceiving their particular properties rather than resorting to general-
ity (Hunt, 1986). After the classification, it is found that most of the recent, 
well-known robotic manipulators are within a specific main group, which 
means that, instead of general solutions and approaches, manipulator depend-
ent solutions and approaches that will lead to easy specific solutions are more 
reasonable. The usage of exponential rotation matrices provide important ad-
vantages so that simplifications can be carried out in a systematic manner with 
a small number of symbolic matrix manipulations and the resulting kinematic 
equations become much simpler especially when the twist angles are either 0° 
or ± 90°, which is the case with the common industrial robots. 
For serial manipulators, the forward kinematics problem, that is, determina-
tion of the end-effector position and orientation in the Cartesian space for 
given joint variables, can easily be solved in closed-form. Unfortunately, the 
inverse kinematics problem of determining each joint variable by using the 
Cartesian space data does not guarantee a closed-form solution. If a closed-
form solution can not be obtained, then there are different types of approaches 
for the solution of this problem. The most common one is to use a completely 
numerical solution technique such as the Newton-Raphson algorithm. Another 
frequently used numerical method is the “resolved motion rate control” which 
uses the inverse of the Jacobian matrix to determine the rates of the joint vari-
ables and then integrates them numerically with a suitable method (Wu & 
Paul, 1982). Runge-Kutta of order four is a common approach used for this 
purpose. As an analytical approach, it is possible to convert the forward kine-
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matic equations into a set of polynomial equations. Then, they can be reduced 
to a high-order single polynomial equation through some complicated alge-
braic manipulations. Finally, the resulting high-order equation is solved nu-
merically. However, requiring a lot of polynomial manipulations, this ap-
proach is quite cumbersome (Wampler & Morgan, 1991; Raghavan & Roth, 
1993).
On the other hand, the approach presented in this chapter aims at obtaining 
the inverse kinematic solutions analytically by manipulating the trigonometric 
equations directly without converting them necessarily into polynomial equa-
tions. In a case, where an analytical solution cannot be obtained this way, then 
a semi-analytical solution is aimed at by using the method described below. 
As explained before, the PJV method is a semi-analytical inverse kinematics 
solution method which can be applied to different kinematic classes of six-joint 
manipulators which have no closed-form solutions. In most of the cases, it is 
based on choosing one of the joint variables as a parameter and determining 
the remaining joint variables analytically in terms of this parametrized joint 
variable. Parametrizing a suitable joint variable leads to a single univariate 
equation in terms of the parametrized joint variable only. Then, this equation 
is solved using a simple numerical technique and as the final step remaining 
five joint variables are easily computed by substituting the parametrized joint 
variable in their analytical expressions. However, for certain kinematic struc-
tures and kinematic parameters two and even three equations in three un-
knowns may arise (Özgören, 2002). Any initial value is suitable for the solution 
and computational time is very small even for an initial condition far from the 
solution. The PJV method can also handle the singular configurations and mul-
tiple solutions. However, it is manipulator dependent and equations are dif-
ferent for different classes of manipulators. PJV works well also for non-
spherical wrists with any structural kinematic parameter combination. 
In this chapter, four different subgroups are selected for the demonstration of 
the inverse kinematic solution method. Two of these subgroups are examples 
to closed-form and semi-analytic inverse kinematic solutions for the most fre-
quently seen kinematic structures among the industrial robots surveyed in 
(Balkan et al., 1999, 2001). Since the manipulators in these two subgroups have 
revolute joints only, the inverse kinematic solution of subgroup 4.4 which in-
cludes Unimate 4000 industrial robot is also given to demonstrate the method 
on manipulators with prismatic joints. The inverse kinematic solution for this 
class of manipulators happens to be either closed-form or needs the PJV 
method depending on the selection of one of its parameters. In addition, the 
inverse kinematic solution for ABB IRB2000 industrial robot, which has a 
closed chain, is obtained to show the applicability of the method to such ma-
nipulators. 
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2. Kinematic Equations for Six-Joint Robots 

In the derivation of the kinematic equations for six-joint manipulators, De-
navit-Hartenberg (D-H) convention is used as shown in Figure 1 (Denavit & 
Hartenberg, 1955), with notation adopted from (Özgören, 2002). 

Figure 1. D-H Convention and Related Notation 

The symbols in Fig. 1 are explained below. 

Jk: Joint k. 
Lk: Link k. 
Ok: Origin of the reference frame Fk attached to Lk.
Ak: Auxiliary point between Lk-1 and Lk.

(k)
iu : ith unit basis vector of Fk ;   i = 1, 2, 3. 

ak: Effective length AkOk of Lk along k
1u .

dk: Distance Ok-1Ak of Lk from Lk-1 along −(k 1)
3u . It is a constant parameter, 

called offset, if Jk is revolute. It is the kth joint variable if Jk is prismatic. It 
is then denoted as sk.
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k: Rotation angle of Lk with respect to Lk-1 about −(k 1)
3u . It is the kth joint 

variable if Jk is revolute. If Jk is prismatic, it is a constant parameter which 
is either 0° or ±90° for common industrial robot manipulators. 

αk: Twist angle of Jk+1 with respect to Jk about (k)
1u . For common industrial 

robot manipulators, it is either 0° or ±90°. 

Among the industrial robots surveyed in this chapter, there is no industrial ro-
bot whose last joint is prismatic. Thus, the wrist point, which is defined as the 
origin of F6 is chosen to be coincident with the origin of F5. That is, O5 = O6. The 
other features of the hand frame F6 are defined as described below. 

=(6) (5)
3 3u u (1)

a6 = 0, d6 = 0, α6 = 0 (2) 

The end-effector is fixed in F6 and assuming that its tip point P is on the axis 

along the approach vector (6)
3u , its location can be described as dp = O6P.

The relationship between the representations of the same vector in two differ-
ent frames can be written as shown below. 

=(a) (a,b) (b)ˆn C  n  (3) 

Here, (a) (b)n , n  are the column representations of the vector n  in the frames Fa

and Fb while (a,b)Ĉ  is the transformation matrix between these two frames. 
In order to make the kinematic features of the manipulators directly visible 
and to make the due simplifications easily, the hand-to-base transformation 

matrix (0,6)Ĉ  and the wrist point position vector (0)r , or the tip point position 

vector (0)p  are expressed separately, rather than concealing the kinematic fea-

tures into the overcompact homogeneous transformation matrices, which are 
also unsuitable for symbolic manipulations. The wrist and tip point position 
vectors are related as follows: 

= +(0) (0) (0,6)
p 3

ˆp r d C u (4)

Here, (0)r and (0)p  are the column matrix representations of the position vec-

tors in the base frame F0 whereas 3u  is the column matrix representation of the 
approach vector in the hand frame F6.
The overall relative displacement from Fk-1 to Fk consists of two rotations and 
two translations, which are sequenced as a translation of sk along −(k 1)

3u , a ro-
tation of k about −(k 1)

3u , a translation of ak along (k)
1u , and a rotation of αk

about (k)
1u . 
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Using the link-to-link rotational transformation matrices, (0,6)Ĉ  can be formu-
lated as follows: 

=(0,6) (0,1) (1,2) (2,3) (3,4) (4,5) (5,6)ˆ ˆ ˆ ˆ ˆ ˆ ˆC C  C  C  C  C  C  (5)

According to the D-H convention, the transformation matrix between two suc-
cessive link frames can be expressed using exponential rotation matrices 
(Özgören, 1987-2002). That is, 

θ α= 3 k 1 k(k-1,k) u uĈ e  e  (6) 

On the other hand, assuming that frame Fb is obtained by rotating frame Fa

about an axis described by a unit vector n  through an angle , the matrix (a,b)Ĉ
is given as an exponential rotation matrix by the following equation (Özgören, 
1987-2002):

θ= = θ θ θ(a,b) n Tˆ ˆC e I cos  + n sin  + n n  (1-cos )  (7) 

Here, Î  is the identity matrix and n  is the skew symmetric matrix generated 

from the column matrix = (a)n  n . This generation can be described as follows. 

= → =

1 3 2

2 3 1

3 2 1

n 0 - n n

n  n                 n  n 0 - n

n - n n 0

 (8) 

Furthermore, if = (a)
kn  u  where (a)

ku  is the kth basis vector of the frame Fa, then 

= kn  u  and 

θ= k(a,b) uĈ   e  (9) 

Here,

= = =1 2 3

1 0 0

u   0  ,       u   1  ,       u   0

0 0 1

 (10)

Using Equation (6), Equation (5) can be written as 

θ α θ α θ α θ α θ α θ= = 3 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 3 5 1 5 3 6(0,6) u u u u u u u u u u uˆ ˆC C e e e e e e e e e e e  (11) 
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On the other hand, the wrist point position vector can be expressed as 

= + + + + +01 12 23 34 45 56r r r r r r r  (12) 

Here, ijr  is the vector from the origin Oi to the origin Oj.

Using the column matrix representations of the vectors in the base frame F0,
Equation (12) can be written as 

= = + + + + +(0) (0,1) (0,1) (0,2) (0,2) (0,3)
1 3 1 1 2 3 2 1 3 3 3 1

ˆ ˆ ˆ ˆ ˆr r d u a C u d C u a C u d C u a C u  

+ + + +(0,3) (0,4) (0,4) (0,5)
4 3 4 1 5 3 5 1

ˆ ˆ ˆ ˆd C u a C u d C u a C u  (13) 

Substitution of the rotational transformation matrices and manipulations using 
the exponential rotation matrix simplification tool E.2 (Appendix A) result in 
the following simplified wrist point equation in its most general form. 

θ θ α θ α θ= + + +3 1 3 1 1 1 3 1 1 1 3 2u u u u u u
1 3 1 1 2 3 2 1r d u a e u d e e u a e e e u  

θ α θ α θ α θ α θ+ +3 1 1 1 3 2 1 2 3 1 1 1 3 2 1 2 3 3u u u u u u u u u
3 3 3 1d e e e e u a e e e e e u  

θ α θ α θ α+ 3 1 1 1 3 2 1 2 3 3 1 3u u u u u u
4 3d e e e e e e u  

θ α θ α θ α θ+ 3 1 1 1 3 2 1 2 3 3 1 3 3 4u u u u u u u
4 1a e e e e e e e u  

θ α θ α θ α θ α+ 3 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4u u u u u u u u
5 3d e e e e e e e e u  

θ α θ α θ α θ α θ+ 3 1 1 1 3 2 1 2 3 3 1 3 3 4 1 4 3 5u u u u u u u u u
5 1a e e e e e e e e e u  (14) 

3. Classification of Six-Joint Industrial Robotic Manipulators 

As noticed in Equations (11) and (14), the general r  expression contains five 

joint variables and the general Ĉ  expression includes all of the angular joint 
variables. On the other hand, it is an observed fact that in the six-joint indus-
trial robots, many of the structural length parameters (ak and dk) are zero (Bal-
kan et al., 1999, 2001). Due to this reason, there is no need to handle the inverse 
kinematics problem in a general manner. Instead, the zero values of ak and dk

of these robots can be used to achieve further simplifications in Equations (11) 
and (14). In order to categorize and handle the simplified equations in a sys-
tematic manner, the industrial robots are grouped using a two step classifica-
tion scheme according to their structural parameters ak, αk, and dk for revolute 
joints or k for prismatic joints. The primary classification is based on the twist 
angles (αk) and it gives the main groups. Whereas, the secondary classification 
is based on the other structural parameters (ak and dk or k) and it gives the 
subgroups under each main group. 
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In the main groups, the simplified r  and Ĉ  expressions are obtained using the 

fact that the twist angles are either 0° or ± 90°. The Ĉ  expression for each main 
group is the same, because the rotation angles ( k) are not yet distinguished at 
this level whether they are constant or not. At the level of the subgroups, the 
values of the twist and constant rotation angles are substituted into the r  and 

Ĉ  expressions, together with the other parameters. Then, the properties of the 
exponential rotation matrices are used in order to obtain simplified equations 
with reduced number of terms, which can be used with convenience for the 
inverse kinematic solutions. The main groups with their twist angles and the 
number of robots in each main group are given in Table 1 considering the in-
dustrial robots surveyed here. The subgroups are used for finer classification 
using the other structural parameters. For the manipulators in this classifica-
tion, the r  expressions are simplified to a large extent especially when zeros 
are substituted for the vanishing structural parameters. 

Table 1. Main Groups of Surveyed Six-Joint Industrial Robots 

3.1 Main Group Equations 

Substituting all the nine sets of the twist angle values given in Table 1 into 
Equations (11) and (14), the main group equations are obtained. The terms of 
r  involving ak and dk are denoted as T(ak) and T(dk) as described below. 

T(ak) = ak e ( 1, ... , k, α1, ... , αk) 1u  (15) 

T(dk) = dk e ( 1, ... , k-1, α1, ... , αk-1) 3u  (16) 

Here, e stands for a product of exponential rotation matrices associated with 
the indicated angular arguments as exemplified by the following terms. 

( ) θ α θ= θ θ α = 3 1 1 1 3 2u u u
2 2 1 2 1 1 2 1T(a )  a e ,  ,  u  a e e e u  (17) 
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( ) θ α= θ α = 3 1 1 1u u
2 2 1 1 3 2 3T(d )  d e ,  u  d e e u  (18) 

Here, the derivation of equations is given only for the main group 1, but the 
equations of the other groups can be obtained in a similar systematic manner 
by applying the exponential rotation matrix simplification tools given in Appendix 
A. The numbers (E.#) of the employed tools of Appendix A during the deriva-

tion of the Ĉ  matrices and the terms (ak) and (dk) are shown in Table 2. 

Table 2. Exponential Rotation Matrix Simplification Tool Numbers (E.#) Applied for Deriva-

tion of Ĉ  Matrices and Terms (ak) and (dk) in Main Group Equations 

Equations of Main Group 1 
Let α  denote the set of twist angles. For the main group 1, α  is 

[ ]α = − ° ° ° − ° ° °
T90 ,  0 ,  90 ,  90 ,  90  ,0 . (19) 

Substituting α  into the general Ĉ  equation results in the following equation. 

θ π θ θ π θ π θ π θ= 3 1 1 3 2 3 3 1 3 4 1 3 5 1 3 6u -u /2 u u u /2 u -u /2 u u /2 uĈ e e e e e e e e e e  (20) 

Using the exponential rotation matrix simplification tools E.4 and E.6, the rota-

tion matrix for the main group 1, i.e. 1Ĉ , can be obtained as follows. 

θ θ θ θ θ= 3 1 2 23 3 4 2 5 3 6u u u u u
1Ĉ e e e e e  (21) 

Here, jk = j + k is used as a general way to denote joint angle combinations. 

Substituting α  into the general r  expression results in the following equation. 
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θ θ π θ π θ= + + +3 1 3 1 1 3 1 1 3 2u u -u /2 u -u /2 u
1 3 1 1 2 3 2 1r d u a e u d e e u a e e e u  

θ π θ θ π θ θ+ +3 1 1 3 2 3 1 1 3 2 3 3u -u /2 u u -u /2 u u
3 3 3 1d e  e e u a e e e e u  

θ π θ θ π θ π θ θ π θ+ +3 1 1 3 2 3 3 1 3 1 1 3 2 3 3 1 3 4u -u /2 u u u /2 u -u /2 u u u /2 u
4 3 4 1d e e e e e u a e e e e e e u  

θ π θ θ π θ π+ 3 1 1 3 2 3 3 1 3 4 1u -u /2 u u u /2 u -u /2
5 3d e  e e e e e e u  

θ π θ θ π θ π θ+ 3 1 1 3 2 3 3 1 3 4 1 3 5u -u /2 u u u /2 u -u /2 u
5 1a e e e e e e e e u  (22) 

The simplifications can be made for the terms T(ak) and T(dk) of Equation (22) 
as shown in Table 3 using the indicated simplification tools given in Appendix 
A.

E.8 T(d2) = d2
θ3 1u

2e  u
E.10, E.6 and E.2 T(a2) = a2

θ θ3 1 2 2u u
1e e u

E.2 and E.8 T(d3) = d3
θ3 1u

2e u
E.4 and E.6 T(a3) = a3

θ θ3 1 2 23u u
1e e u

E.4 and E.6 T(d4) = d4
θ θ3 1 2 23u u

3e e u
E.4 and E.6 T(a4) = a4

θ θ θ3 1 2 23 3 4u u u
1e e e u

E.4, E.6 and E.8 T(d5) = d5
θ θ θ3 1 2 23 3 4u u u

2e e e u
E.4, E.6 and E.10 T(a5) = a5

θ θ θ θ3 1 2 23 3 4 2 5u u u u
1e e e e u

Table 3. Simplifications of the terms T(ak) and T(dk) in Equation (22) 

Replacing the terms T(ak) and T(dk) in Equation (22) with their simplified 
forms given in Table 3, the wrist point location for the main group 1, i.e. 1r , can 

be obtained as follows: 

θ θ θ θ θ θ θ= + + + + +3 1 3 1 3 1 2 2 3 1 3 1 2 23u u u u u u u
1 1 3 1 1 2 2 2 1 3 2 3 1r d u a e u d e u a e e u d e u a e e u

θ θ θ θ θ θ θ θ+ + +3 1 2 23 3 1 2 23 3 4 3 1 2 23 3 4u u u u u u u u
4 3 4 1 5 2d e e u a e e e u d e e e u  

θ θ θ θ+ 3 1 2 23 3 4 2 5u u u u
5 1a e e e e u  (23) 

The simplified equation pairs for Ĉ  and r  pertaining to the other main groups 
can be obtained as shown below by using the procedure applied to the main 
group 1 and the appropriate simplification tools given in Appendix A. The 
subscripts indicate the main groups in the following equations. In these equa-
tions, dij denotes di+dj. Note that, if Jk is prismatic, then the offset dk is to be 
replaced with the joint variable sk as done in obtaining the subgroup equations 
in  Subsection 3.2. 

θ θ θ θ π= 3 1 2 234 3 5 2 6 1u u u u -u /2
2Ĉ e e e e e  (24) 
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θ θ θ θ θ θ= + + + +3 1 3 1 3 1 2 2 3 1 2 23u u u u u u
2 1 3 1 1 234 2 2 1 3 1r d u a e u d e u a e e u a e e u

θ θ θ θ θ θ θ+ + +3 1 2 234 3 1 2 234 3 1 2 234 3 5u u u u u u u
4 1 5 3 5 1a e e u d e e u a e e e u  (25) 

θ θ θ θ θ= 3 1 2 2 3 34 2 5 3 6u u u u u
3Ĉ e e e e e  (26) 

θ θ θ θ θ θ= + + + +3 1 3 1 3 1 2 2 3 1 2 2u u u u u u
3 1 3 1 1 2 2 2 1 34 3r d u a e u d e u a e e u d e e u

θ θ θ θ θ θ θ θ θ+ + +3 1 2 2 3 3 3 1 2 2 3 34 3 1 2 2 3 34u u u u u u u u u
3 1 4 1 5 2a e e e u a e e e u d e e e u  

θ θ θ θ+ 3 1 2 2 3 34 2 5u u u u
5 1a e e e e u  (27) 

θ θ θ θ θ θ π= 3 1 2 2 3 3 2 4 3 5 2 6 1u u u u u u -u /2
4Ĉ e e e e e e e  (28) 

θ θ θ θ θ θ= + + + +3 1 3 1 3 1 2 2 3 1 2 2u u u u u u
4 1 3 1 1 2 2 2 1 3 3r d u a e u d e u a e e u d e e u

θ θ θ θ θ θ θ θ θ θ+ + +3 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 3 3 2 4u u u u u u u u u u
3 1 4 2 4 1a e e e u d e e e u a e e e e u  

θ θ θ θ θ θ θ θ θ+ +3 1 2 2 3 3 2 4 3 1 2 2 3 3 2 4 3 5u u u u u u u u u
5 3 5 1d e e e e u a e e e e e u  (29) 

θ θ θ= 3 1234 2 5 3 6u u u
5Ĉ e e e  (30) 

θ θ θ θ θ= + + + + +3 1 3 12 3 123 3 1234 3 1234u u u u u
5 1234 3 1 1 2 1 3 1 4 1 5 2r d u a e u a e u a e u a e u d e u

θ θ+ 3 1234 2 5u u
5 1a e e u  (31) 

θ θ θ θ π= 3 1 2 2 3 345 2 6 1u u u u -u /2
6Ĉ e e e e e  (32) 

θ θ θ θ θ θ= + + + +3 1 3 1 3 1 2 2 3 1 2 2u u u u u u
6 1 3 1 1 2 2 2 1 345 3r d u a e u d e u a e e u d e e u

θ θ θ θ θ θ θ θ θ+ + +3 1 2 2 3 3 3 1 2 2 3 34 3 1 2 2 3 345u u u u u u u u u
3 1 4 1 5 1a e e e u a e e e u a e e e u  (33) 

θ θ θ θ π= 3 12 2 34 3 5 2 6 1u u u u -u /2
7Ĉ e e e e e  (34) 

θ θ θ θ θ= + + + +3 1 3 12 3 12 3 12 2 3u u u u u
7 12 3 1 1 2 1 34 2 3 1r d u a e u a e u d e u a e e u

θ θ θ θ θ θ θ+ + +3 12 2 34 3 12 2 34 3 12 2 34 3 5u u u u u u u
4 1 5 3 5 1a e e u d e e u a e e e u  (35) 

θ θ θ θ θ= 3 12 2 3 3 4 2 5 3 6u u u u u
8Ĉ e e e e e  (36) 

θ θ θ θ θ θ θ= + + + + +3 1 3 12 3 12 3 12 2 3 3 12 2 3u u u u u u u
8 12 3 1 1 2 1 3 2 3 1 4 3r d u a e u a e u d e u a e e u d e e u

θ θ θ θ θ θ θ θ θ θ+ + +3 12 2 3 3 4 3 12 2 3 3 4 3 12 2 3 3 4 2 5u u u u u u u u u u
4 1 5 2 5 1a e e e u d e e e u a e e e e u  (37) 

θ θ θ θ π= 3 1 2 23 3 45 2 6 1u u u u -u /2
9Ĉ e e e e e  (38) 

θ θ θ θ θ θ= + + + +3 1 3 1 3 1 2 2 3 1 2 23u u u u u u
9 1 3 1 1 23 2 2 1 3 1r d u a e u d e u a e e u a e e u

θ θ θ θ θ θ θ θ+ + +3 1 2 23 3 1 2 23 3 4 3 1 2 23 3 45u u u u u u u u
45 3 4 1 5 1d e e u a e e e u a e e e u  (39) 
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3.2 Subgroups and Subgroup Equations 

The list of the subgroups of the nine main groups is given in Table 4 with the 
non-zero link parameters and the number of industrial robots surveyed in this 
study. In the table, the first digit of the subgroup designation indicates the un-
derlying main group and the second non-zero digit indicates the subgroup of 
that main group (e.g., subgroup 2.6 indicates the subgroup 6 of the main group 
2). The second zero digit indicates the main group itself. The brand names and 
the models of the surveyed industrial robots are given in Appendix B with 
their subgroups and non-zero link parameters. If the joint Jk of a manipulator 
happens to be prismatic, the offset dk becomes a joint variable, which is then 
denoted by sk. In the column titled “Solution Type”, CF denotes that a closed-
form inverse kinematic solution can be obtained analytically and PJV denotes 
that the inverse kinematic solution can only be obtained semi-analytically us-
ing the so called parametrized joint variable method. The details of these two 
types of inverse kinematic solutions can be seen in Section 4.

Table 4. Subgroups of Six-Joint Robots 

Using the information about the link lengths and the offsets, the simplified 
subgroup equations are obtained for the wrist locations as shown below by us-
ing again the exponential rotation matrix simplification tools given in Appen-
dix A. In these equations, the first and second subscripts associated with the 
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wrist locations indicate the related main groups and subgroups. For all sub-
groups of the main groups 1 and 2, the rotation matrix is as given in the main 
group equations. 

θ θ θ θ= +3 1 2 2 3 1 2 23u u u u
11 2 1 4 3r a e e u d e e u  (40) 

θ θ θ θ θ= + +3 1 3 1 2 2 3 1 2 23u u u u u
12 2 2 2 1 4 3r d e u a e e u d e e u  (41) 

θ θ θ θ θ= + +3 1 3 1 2 2 3 1 2 23u u u u u
13 1 1 2 1 4 3r a e u a e e u d e e u  (42) 

θ θ θ θ θ θ= + +3 1 2 2 3 1 2 23 3 1 2 23u u u u u u
14 2 1 3 1 4 3r a e e u a e e u d e e u  (43) 

θ θ θ θ θ= + +3 1 3 1 2 2 3 1 2 23u u u u u
15 23 2 2 1 4 3r d e u a e e u d e e u  (44) 

θ θ θ θ θ θ θ= + + +3 1 3 1 2 2 3 1 2 23 3 1 2 23u u u u u u u
16 1 1 2 1 3 1 4 3r a e u a e e u a e e u d e e u  (45) 

θ θ θ θ θ θ θ= + +3 1 2 2 3 1 2 23 3 1 2 23 3 4u u u u u u u
17 2 1 4 3 5 2r a e e u d e e u d e e e u  (46) 

θ θ θ θ θ θ θ θ= + + +3 1 3 1 2 2 3 1 2 23 3 1 2 23 3 4u u u u u u u u
18 2 2 2 1 4 3 5 2r d e u a e e u d e e u d e e e u  (47) 

θ θ θ θ θ θ θ= + + +3 1 3 1 2 2 3 1 2 23 3 1 2 23u u u u u u u
19 1 1 2 1 3 1 4 3r a e u a e e u a e e u d e e u  (48) 

3 1 2 23 3 4u u u
5 2d e e e uθ θ θ+

θ θ θ θ θ θ θ θ= + + + +3 1 3 1 2 2 3 1 2 23 3 1 3 1 2 23u u u u u u u u
110 1 1 2 1 3 1 3 2 4 3r a e u a e e u a e e u d e u d e e u

θ θ θ+ 3 1 2 23 3 4u u u
5 2d e e e u  (49) 

θ θ θ θ θ= + +3 1 2 2 3 1 2 23 3 1u u u u u
21 2 1 3 1 4 2r a e e u a e e u d e u  (50) 

θ θ θ θ θ θ= + +3 1 2 2 3 1 2 23 3 1 2 234u u u u u u
22 2 1 3 1 4 1r a e e u a e e u a e e u  (51) 

θ θ θ θ θ θ= + +3 1 2 2 3 1 2 23 3 1 2 234u u u u u u
23 2 1 3 1 5 3r a e e u a e e u d e e u  (52) 

θ θ θ θ θ θ θ= + + +3 1 3 1 2 2 3 1 2 23 3 1 2 234u u u u u u u
24 2 2 2 1 3 1 5 3r d e u a e e u a e e u d e e u  (53) 

θ θ θ θ θ θ θ θ= + + + +3 1 3 1 3 1 2 2 3 1 2 23 3 1 2 234u u u u u u u u
25 1 1 2 2 2 1 3 1 5 3r a e u d e u a e e u a e e u d e e u   (54) 

θ θ θ θ θ θ θ θ= + + + +3 1 3 1 2 2 3 1 2 23 3 1 3 1 2 234u u u u u u u u
26 1 1 2 1 3 1 4 2 5 3r a e u a e e u a e e u d e u d e e u  (55) 
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The constant joint angles associated with the prismatic joints are as follows for 
the subgroups of the main group 3: For the subgroups 3.1 and 3.2 having s1, s2,
and s3 as the variable offsets, the joint angles are 1 = 0°, 2 = 90°, 3 = 0° or 90°.
For the subgroups 3.3 and 3.4, having s3 as the only variable offset, 3 is either 
0° or 90°. This leads to the following equations: 

′θ θ θ
′θ θ θ

′ ′θ θ θ

θ = °
= = =

θ = °

1 4 2 5 3 6

1 34 2 5 3 6

1 4 2 5 3 6

u u u
3u u u

31 32 u u u
3

e e e        for   0ˆ ˆC C e e e
e e e       for   90

 (56) 

Here, ′θ = θ + °4 4 90  and ′θ = θ + °5 5 90 . 

= + +31 3 1 2 2 1 3r s u s u s u  (57) 

θ
′ ′+ + θ = °

′= + + − =
′ ′+ + θ = °

1 3
3 1 2 2 1 3 3u

32 3 1 2 2 1 3 3 3
3 1 2 2 1 3 3

s u s u s u        for   0
r s u s u s u a e u

s u s u s u       for   90
 (58) 

Here, ′ = −1 1 3s s a , ′ = +2 2 3s s a , and ′ = + +3 3 1 4s s a d . 

θ θ θ θ θ

′θ θ θ θ θ

θ = °
= =

θ = °

3 1 2 2 3 4 2 5 3 6

3 1 2 2 3 4 2 5 3 6

u u u u u
3

33 34 u u u u u
3

e e e e e        for   0ˆ ˆC C
e e e e e       for   90

 (59) 

θ θ θ= +3 1 3 1 2 2u u u
33 2 2 3 3r d e u s e e u  (60) 

θ θ θ θ θ θ θ= + +3 1 2 2 3 1 2 2 3 1 2 2 3 34u u u u u u u
34 2 1 3 3 5 2r a e e u s e e u d e e e u

θ θ θ θ θ θ θ

′θ θ θ θ θ θ θ

+ + θ = °
=

+ + θ = °

3 1 2 2 3 1 2 2 3 1 2 2 3 4

3 1 2 2 3 1 2 2 3 1 2 2 3 4

u u u u u u u
2 1 3 3 5 2 3

u u u u u u u
      2 1 3 3 5 2 3

a e e u s e e u d e e e u        for   0

a e e u s e e u d e e e u    for   90
 (61) 

Here, ′θ = θ + °4 4 90 . 

The constant joint angles associated with the prismatic joints, for the sub-
groups of the main group 4 are as follows: For the subgroup 4.1 having s1, s2,
and s3 as the variable offsets, the joint angles are 1 = 0°, 2 = 90°, 3 = 0° or 90°.
For the subgroup 4.2 having s2 as the only variable offset, 2 is either 0° or 90°.
For the subgroups 4.3 and 4.4 having s3 as the only variable offset, 3 is either 
0° or 90°. This leads to the following equations: 
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′θ θ θ π
′θ θ θ θ π

′θ θ θ

θ = °
= =

θ = °

2 4 3 5 2 6 1

1 3 2 4 3 5 2 6 1

3 4 2 5 3 6

u u u -u /2
3u u u u -u /2

41 u -u u
3

e e e e       for   0
Ĉ e e e e e

e e e                 for   90
 (62) 

θ
′ ′ ′+ + θ = °

′ ′= + + + =
′ ′′+ + θ = °

1 3
3 1 2 2 1 3 3u

41 3 1 2 2 1 3 4 2
3 1 2 2 1 3 3

s u s u s u        for   0
r s u s u s u d e u

s u s u s u        for   90
 (63) 

Here, ′ = −1 1 2s s a , ′′ ′= +1 1 4s s d , ′ = +2 2 4s s d , and ′ = +3 3 1s s a . 

θ θ θ θ π

′θ θ θ θ θ π

θ = °
=

θ = °

3 13 2 4 3 5 2 6 1

3 1 1 3 2 4 3 5 2 6 1

u u u u -u /2
2

42 u u u u u -u /2
2

e e e e e               for   0
Ĉ

e e e e e e        for   90
 (64) 

Here, ′θ = θ + °4 4 90 . 

θ θ
θ θ θ θ

θ θ θ

+ θ = °
= + =

+ θ = °

3 1 3 13

3 1 3 1 2 2 3 3

3 1 3 1 1 3

u u
2 2 4 2 2u u u u

42 2 2 4 2 u u u
2 2 4 2 2

s e u d e u           for   0
r s e u d e e e u

s e u d e e u    for   90
 (65) 

θ θ θ θ π

′θ θ θ θ θ π

θ = °
= =

θ = °

3 1 2 24 3 5 2 6 1

3 1 2 2 1 4 3 5 2 6 1

u u u u -u /2
3

43 44 u u -u u u -u /2
3

e e e e e                 for   0ˆ ˆC C
e e e e e e        for   90

 (66) 

Here, ′θ = θ + °5 5 90 . 

θ θ θ θ θ θ= +3 1 2 2 3 1 2 2 3 3 2 4u u u u u u
43 3 3 5 3r s e e u d e e e e u

θ θ θ θ

θ θ θ θ θ

+ θ = °
=

+ θ = °

3 1 2 2 3 1 2 24

3 1 2 2 3 1 2 2 1 4

u u u u
3 3 5 3 3

u u u u -u
3 3 5 3 3

s e e u d e e u               for   0

s e e u d e e e u        for   90
 (67) 

θ θ θ θ θ θ θ θ= + +3 1 2 2 3 1 2 2 3 1 2 2 3 3 2 4u u u u u u u u
44 2 1 3 3 5 3r a e e u s e e u d e e e e u

θ θ θ θ θ θ

θ θ θ θ θ θ θ

+ + θ = °
=

+ + θ = °

3 1 2 2 3 1 2 2 3 1 2 24

3 1 2 2 3 1 2 2 3 1 2 2 1 4

u u u u u u
2 1 3 3 5 3 3

u u u u u u -u
2 1 3 3 5 3 3

a e e u s e e u d e e u              for   0

a e e u s e e u d e e e u      for   90
 (68) 

The constant joint angle 3 associated with the prismatic joint J3 for the sub-
group of the main group 5 is either 0° or 90°. This leads to the following equa-
tions:

θ θ θ
θ θ θ

′θ θ θ

θ = °
= =

θ = °

3 124 2 5 3 6

3 1234 2 5 3 6

3 124 2 5 3 6

u u u
3u u u

51 u u u
3

e e e        for   0
Ĉ e e e

e e e        for   90
 (69) 
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Here, ′θ = θ + °124 124 90 . 

θ θ= + +3 1 3 12u u
51 1 1 2 1 3 3r a e u a e u s u  (70) 

For the subgroup of the main group 6, the rotation matrix is as given in the 
main group equations and the wrist point location is expressed as 

θ θ θ θ θ θ= +3 1 2 2 3 3 3 1 2 2 3 34u u u u u u
61 3 1 4 1r a e e e u a e e e u  (71) 

The constant joint angles associated with the prismatic joints for the subgroup 
of the main group 7 are as follows: The joint angle 2 is 90° for the prismatic 
joint J2 and the joint angle 3 is either 0° or 90° for the prismatic joint J3. This 
leads to the following equations: 

′θ θ θ θ π
′θ θ θ θ π

′ ′θ θ θ θ π

θ = °
= =

θ = °

3 1 2 4 3 5 2 6 1

3 1 2 34 3 5 2 6 1

3 1 2 4 3 5 2 6 1

u u u u -u /2
3u u u u -u /2

71 u u u u -u /2
3

e e e e e      for   0
Ĉ e e e e e

e e e e e      for   90
   (72) 

Here, ′θ = θ + °1 1 90  and ′θ = θ + °4 4 90 . 

θ θ= + −3 1 3 1u u
71 2 3 2 2 3 1r s u a e u s e u  (73) 

For the subgroups of the main group 8, the rotation matrix is as given in the 
main group equations and the wrist point locations are expressed as 

θ θ θ θ= + +3 1 3 12 3 12 2 3u u u u
81 1 1 3 2 4 3r a e u d e u d e e u  (74) 

θ θ θ θ θ= + + +3 1 3 12 3 12 3 12 2 3u u u u u
82 1 1 2 1 3 2 4 3r a e u a e u d e u d e e u  (75) 

For the subgroup of the main group 9, the rotation matrix is as given in the 
main group equations and the wrist point location is expressed as 

θ θ θ θ θ θ θ= + + +3 1 3 1 2 2 3 1 2 23 3 1 2 23u u u u u u u
91 1 1 2 1 3 1 45 3r a e u a e e u a e e u d e e u

3 1 2 23 3 4u u u
4 1a e e e uθ θ θ+  (76) 
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