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1. Introduction 

1.1 Robot manipulators 
Robot manipulators are well-known as nonlinear systems including strong coupling 
between their dynamics (Craig, 1996). These characteristics, in company with: 1) structured 

uncertainties caused by model imprecision of link parameters, payload variation, etc., and 2) 
unstructured uncertainties produced by un-modeled dynamics –such as nonlinear friction and 
external disturbances– make the motion control of rigid-link manipulators a complicated 
problem (Spong & Vidiasagar, 1989). Practice trajectory control is required in many of the 
sophisticated applications of manipulators (e.g. machining, welding, complex assembly). On 
the other hand, robot manipulators have to face various uncertainties in their dynamics and 
they are required to handle various tools and, hence, the dynamic parameters of the robots 
vary during operation. Thus, it is difficult to initiate an appropriate mathematical model for 
employing model-based control strategies. 
In general, the intelligent control approaches can attenuate the effects of structured 
parametric uncertainty and unstructured disturbance by using their powerful learning 
ability without a detailed knowledge of the controlled plant in the design processes. On the 
other hand, many intelligent control algorithms could have been found for the robot control 
system without including the actuator dynamics, while, actuator dynamics carry out a 
significant role in the complete robot dynamics and ignoring them may cause detrimental 
effects, especially in the case of high-velocity moment, highly varying loads, friction, and 
actuator saturations (Chang et al., 2008), (Chang & Yen, 2009). Since the electrical actuators 
are highly controllable in comparison with the other one, they are more convenient for 
driving manipulators. Also, in practical applications, the voltages or currents of the 
electrical actuators are accessible for applying control commands and consequently, torque-
based control design confronts implementation problems when one intends to apply the 
torque control commands directly to actuators. Additionally, one constraint in the robot 
controller designs is saturation nonlinearity of actuators which is less considered in control 
design of robot manipulators. 

1.2 Sliding mode control 
Sliding mode control (SMC) is a variable-structure, robust control strategy which is capable 

in controlling different class of uncertain systems including nonlinear systems, MIMO 

systems, and even discrete time systems (Utkin, 1978), (Zhang et al., 2008). Such 
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uncertainties may be structured, unstructured, or may result from nondeterministic features 

of the plant. A sliding mode controller is essentially high gain switching controller. The idea 

is to keep the trajectory of the system on a particular surface in the phase space. In a two 

dimensional system this would reduce to following a line in the phase plane. The SMC law 

is formulated using a Lyapunov approach that guarantees robustness despite the presence 

of bounded modeling uncertainties (Slotin & Li, 1991). 

However, sliding mode control has a good deal of advantages such as insensitivity to 

parameter variations, disturbance rejection and fast dynamic responses (Zhang et al., 2008). 

Despite these merits, SMC suffers from some disadvantages. Actually, the sliding mode 

control law consists of two main parts. The first part is the equivalent control law which 

involves inverse dynamics of model nonlinearities that demonstrates the dependency of 

SMC on the dynamical model of the plant. The second part is the robustifying term which has 

discontinuous nature and may employ unnecessary high control gain to overcome 

uncertainties and disturbances. However, this discontinuity may lead to chattering 

phenomenon that can excite un-modeled high-frequency plant dynamics and harm the 

overall control system. Also, using high control gain may cause saturating the actuators. 

Accordingly, several methods have been developed for improving the SMC performance 

which the most significant of them is intelligent control approach (Kaynak et al., 2001) 

mainly includes fuzzy logic control and neural network control. 

1.3 Fuzzy control 
Fuzzy control is based on fuzzy logic and is a nonlinear control strategy which uses 

heuristic information. In the fuzzy control design methodology, human thinking and expert 

knowledge are incorporated into a fuzzy system that emulates the decision-making process 

of the human. Basically, a fuzzy system in general or fuzzy control in especial comprises five 

main parts: 1) fuzzyfication of inputs, 2) fuzzy control rules, 3) fuzzy implication, 4) fuzzy 

reasoning and 5) defuzzification (Lee, 1990), (Wang, 1997). 

Fuzzy control represents efficient performance in absence of uncertainties and disturbance 

and where the plant dynamics were well-described with mathematical equations. Moreover, 

stability of the fuzzy control systems is hard to analyze and needs strong mathematical 

procedures. Therefore, it seems reasonable to enhance fuzzy control efficiency by using of 

incorporating well-organized nonlinear control methods (e.g. sliding mode control). 

1.4 Neural network control 
Prominent features of neural networks (NN) have drawn much attention in control research 

areas especially in robot control systems (Lewis, 1998). Some of this features that are closely 

related to control design strategies are: 

• Universal approximation: neural networks can approximate smooth nonlinear functions 

with any degree of accuracy. This feature may be utilized in nonlinear control systems. 

• Learning and adaptation: neural networks can be trained off-line with adequate amount 

of data or they can be adapted on-line with appropriate adaptation laws. This property 

is applied to identification concerns. 

• MIMO characteristic: neural networks can accept many inputs and can produce required 

number of outputs. So they are appropriate for MIMO control systems. 
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There are many other distinguished features as parallel processing, hardware 
implementation and data fusion etc. that we neglect them here. Also, fuzzy logic may be 
employed for constructing special networks like fuzzy-neural-networks. Alternatively, 
neural networks may be exerted to fuzzy control design like neuro-fuzzy control systems. 
In the reminder of this chapter three methods are proposed for controller designs. In the first 
case, sliding mode control plays the main role and fuzzy logic is employed for tuning the 
controller gains. In the second case, fuzzy control and sliding mode control have the parallel 
mission in control strategy. Finally, the third case proposes the sliding mode control method 
by using adaptive neural network approach. 

2. Sliding mode control using fuzzy approach 

2.1 Sliding_mode_PID controller design by using of fuzzy tuning 
This section addresses a chattering free sliding mode control (SMC) for a robot manipulator 
including PID part with a fuzzy tunable gain. The main idea is that the robustness property 
of SMC and good response characteristics of PID are combined with fuzzy tuning gain 
approach to achieve more acceptable performance. For this purpose, in the first stage, a PID 
sliding surface is considered such that the robot dynamical equations can be rewritten in 
terms of sliding surface and its derivative and the related control law of the SMC design will 
contain a PID part. The stability guarantee of this sliding mode PID-controller is proved by a 
lemma using Lyapunov direct method. Then, in the second stage, in order to decrease the 
reaching time to the sliding surface and deleting the oscillations of the response, a fuzzy 
tuning system is used for adjusting both controller gains including sliding controller gain 
parameter and PID coefficients (Ataei & Shafiei, 2008). 

2.1.1 Mathematical model of the system 
The dynamical equation of an n-link robot manipulator in the standard form is as follows 

(Spong & Vidiasagar, 1989): 

 ( ) ( , ) ( ) dM q q C q q q G q τ τ+ + + =$$ $ $  (1) 

where ( ) n nM q R ×∈  is the completed inertia matrix, the vectors , , nq q q R∈$ $$  are the position, 

velocity and angular acceleration of the robot joints, respectively. Moreover, the matrix 

( , ) n nC q q R ×∈$  is the matrix of Coriolis and centrifugal forces and ( ) nG q R∈  is the gravity 

vector. Also, n

d Rτ ∈  denotes the vector of disturbance and un-modeled dynamics, and 

finally, τ  is the torque vector. In the following, two conventional properties of the robot 

manipulators are considered. 

Property 2.1. The inertia matrix ( )M q  is symmetric and positive definite, TM M= . 

Property 2.2. The matrix of ( 2 )M C−$  is skew-symmetric, i.e. for any vector of X , we have 

( 2 ) 0TX M C X− =$ . 

2.1.2 Sliding mode control with PID 
The objective of the tracking control is to design such a control law, for obtaining the 

suitable input torque τ , that the position vector q  could track the desired trajectory dq . In 

this regard, the tracking error vector is defined as follows: 
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 de q q= −  (2) 

In order to apply the SMC, the sliding surface is considered as relation (3) which contains 
the integral part in addition to the derivative term: 

 1 2 0

t

s e e edtλ λ= + + ∫$  (3) 

where iλ  is diagonal positive definite matrix. Therefore, 0s = is a stable sliding surface and 

0e→  as t →∞ . The robot dynamical equations can be rewritten based on the sliding 
surface (in term of filtered error) as: 

 dMs Cs f τ τ= − + + −$  (4) 

Where 

 1 2 1 2 0
( ) ( )

t

d df M q e e C q e edt Gλ λ λ λ= + + + + + +∫$$ $ $  (5) 

Now, the control input can be considered as: 

 ˆ sgn( )vf K s K sτ = + +  (6) 

where 

 GedteqCeeqMf
t

dd
ˆ)(ˆ)(ˆˆ

0
2121

++++++= ∫λλλλ $$$$  (7) 

is an estimation of f and 
0

t

v v v vK s K e K e K edtλ λ= + + ∫$  is the outer PID tracking loop, and 

,vK K are diagonal positive definite matrices and are defined such that the stability 

conditions are guaranteed. The sgn(s) is also the sign function.  
We have also: 

 1 2 1 2 0
( ) ( )

t

d df M q e e C q e edt G Fλ λ λ λ= + + + + + + ≤∫# # ## $$ $ $  (8) 

where ˆf f f= −# , ˆM M M= −#  , ˆC C C= −# ,and ˆG G G= −# . Vector F can also be selected as 

the following relation: 

 1 2 1 2 0
( ) (

t

d dF M q e e C q e edt Gλ λ λ λ= + + + + + +∫# ## $$ $ $  (9) 

In order to govern the system states ( , )e e$ to reach the sliding surface 0s = in a limited time 

and to remain there, the control law should be designed such that the following sliding 
condition is satisfied (Slotin & Li, 1991): 

 1/21
( ) , 0

2
T Td

s Ms s s
dt

η η⎡ ⎤ < − >⎣ ⎦  (10) 

This aim is fulfilled in the following lemma. 
Lemma 2.1. In the SMC design of a system with dynamical equation (1) and sliding surface 
(3), if the control input τ  is selected as (6), by considering F as (9) and 

11 22( , , , )nnK diag K K K= … with the following components: 
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 , 1,2, ,ii v D i
K F K s T i nη⎡ ⎤= + + + =⎣ ⎦ …  (11) 

Then, the sliding condition (10) is satisfied by equation (4). 

Proof: Consider the following Lyapunov function candidate: 

 
1

2
TV s Ms=  (12) 

Since M is positive definite, for 0s ≠ we have 0V > and by taking derivative from relation 

(12) and regarding the symmetric property of M, it can be written: 

 
1

2
T TV s Ms s Ms= +$ $ $  (13) 

By substituting (4) into (13) and considering that ( 2 ) 0Ts M C s− =$ , we have: 

 
1

( ) ( )
2

T T T T

d dV s Ms s Cs s f s fτ τ τ τ= − + + − = + −$ $  (14) 

By replacing the relation (6) into (14), V$ can be rewritten as: 

 
1

ˆ( sgn( )) ( )
n

T T

d v d v ii i

i

V s f f K s K s s f K s K sτ τ
=

= + − − − = + − −∑#$  (15) 

Since the following inequality (16) is valid and by regarding the relation (11), we have: 

 v D d vF K s T f K sτ+ + ≥ + −#  (16) 

 [ ]ii d v i iK f K sτ η≥ + − +#  (17) 

Finally, it can be concluded that: 

 
1

n

i i

i

V sη
=

≤ −∑$  (18) 

This indicates that V is a Lyapunov function and the sliding condition (10) has been 

satisfied. 

The use of sign function in the control law leads to high oscillations in control torque which 

is undesired phenomenon and is called chattering. To overcome this drawback, there are 

some solutions that one of them is using the following saturation function instead of sign 

function in the discontinuous part of the control law: 

 

1

1

s

s s
sat s

s

ϕ
κ ϕϕ ϕ

ϕ

⎧ ≥⎪⎛ ⎞ ⎪= − < <⎨⎜ ⎟⎝ ⎠ ⎪⎪− ≤ −⎩
 (19) 
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By this, there is a boundary layer ϕ  around the sliding surface such that once the state 

trajectory reaches this layer, then it will be remaining there.  

2.1.3 Fuzzy gain tuning 
As mentioned before, by using a high gain in SMC, i.e. K, the sensitivity of the controller to 
the model uncertainties and external disturbances can be reduced. Moreover, a high gain in 
PID part of the control system ( )vK can reduce the reaching time to sliding surface and 

tracking error. However, increasing the gain causes the increment of the oscillations in the 
input torque around the sliding surface. Therefore, if this gain can be tuned based on the 
distance of the states to the sliding surface, a more acceptable performance can be achieved. 
In the other words, the value of gain should be selected high when the state trajectory is far 
from the sliding surface and when the distance is decreasing, its value should be decreased. 
This idea can be accomplished by using fuzzy logic in combination with SMC to tune the 
gain adaptively. 
For this purpose, two-input one-output fuzzy system is designed whose inputs are s  and s$  

which are the distance of state trajectories to the sliding surface and its derivative, 
respectively. The membership functions of these two inputs are shown in Fig. 1. The output 
of the fuzzy system is denoted by fuzzK and has been shown in Fig. 2. For applying these 

gains to the control input, the normalization factors N and vN  are used as the following 

relations: 

 fuzzK N K= ⋅  (20) 

 v v fuzzK N K= ⋅  (21) 

These factors can be selected by trial and error such that the stability condition (17) is 
satisfied. 
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Fig. 1. The membership functions, (a) input s , (b) input s$  

The maximum values of K and Kv are limited according to the system actuators power, and the 

minimum value of K should not be less than the provided amount in relation (17). The fuzzy 

rule base has been given in table 1 in which the following abbreviations have been used: NB: 

Negative Big; NS: Negative Small; Z: Zero; PS: Positive Small; PB: Positive Big; M: Medium. 

For example, when s is negative small (NS) and s$ is positive (P), then fuzzK is small (S). 
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Fig. 2. The membership functions of the output fuzzK  

PB PS Z NS NB 
s  

s$  

B S M B B N 

B M S M B Z 

B B M S B P 

Table 1. The fuzzy rule base for tuning fuzzK  

Simulation example 2.1. In order to show the effectiveness of the proposed control law, it is 
applied to a two-link robot with the following parameters: 

 2 2

2

2 cos cos
( )

cos

q q
M q

q

α β γ β γ
β γ β
+ + +⎡ ⎤= ⎢ ⎥+⎣ ⎦  )22(  

 2 2 1 2 2

1 2

sin ( )sin
( , )

sin 0

q q q q q
C q q

q q

γ γ
γ
− − +⎡ ⎤= ⎢ ⎥⎣ ⎦
$ $ $

$
$

 )23(  

 1 1 1 1 2)

1 1 2

cos cos(
( )

cos( )

q q q
G q

q q

αδ γδ
γδ

+ +⎡ ⎤= ⎢ ⎥+⎣ ⎦  )24(  

where 2
1 2 1( )m m aα = + , 2

2 2m aβ = , 2 1 2m a aγ = , 1g aδ = , and 1m , 2m , 1 .7a = , 2 .5a = are the 

masses and lengths of the first and second links, respectively. The masses are assumed to be 

in the end of the arms and the gravity acceleration is considered as 9.8g = . Moreover, the 

masses are considered with 10% uncertainty as follow:   

 0

0

1 1 1 1

2 2 2 2

,  .4

,  .2

m m m m

m m m m

= + Δ Δ ≤
= + Δ Δ ≤  (25) 

where 
01 4m = and 

02 2m = , and M̂ , Ĉ , and Ĝ  are estimated. The desired state trajectory is: 

 
1 cos

2 cosd

t
q

t

π
π

−⎡ ⎤= ⎢ ⎥⎣ ⎦  (26)  
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and the disturbance torque is considered as: 

 
0.5sin 2

0.5sin 2d

t

t

πτ π
⎡ ⎤= ⎢ ⎥⎣ ⎦  (27) 

which leads to 
0.5

0.5DT
⎡ ⎤= ⎢ ⎥⎣ ⎦ . 

The design parameters are determined as follow: 

 1

15 0

0 15
λ ⎡ ⎤= ⎢ ⎥⎣ ⎦ , 2

40 0

0 40
λ ⎡ ⎤= ⎢ ⎥⎣ ⎦  (28) 

Values of ϕ  and η  are selected as 0.167ϕ = and [ ]0.1 0.1
Tη = . Moreover, the factors N 

and vN  are selected as: 

 
50 0

0 5
N

⎡ ⎤= ⎢ ⎥⎣ ⎦ , 
5 0

0 10vN
⎡ ⎤= ⎢ ⎥⎣ ⎦  (29) 

In order to show the improvement due to the proposed method, the simulation results of 

applying this method are compared with the related results of the conventional SMC. The 

tracking error and control law in the case of conventional SMC have been shown in Fig. 3 

and Fig. 4, respectively. The corresponding graphs for the case of applying fuzzy SMC-PID 

are also provided in Fig. 5 and 6.  
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Fig. 3. The tracking errors in the case of using conventional SMC 

As it can be seen from these figures, the proposed fuzzy SMC-PID has faster response and 

less tracking error in comparison with conventional SMC. In order to show more clearly the 

difference between the tracking errors in two cases, the enlarged graphs have been provided 

in Fig. 7 and 8. 
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Fig. 4. The control inputs in the case of using conventional SMC 
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Fig. 5. The tracking errors in the case of using Fuzzy SMC-PID 
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Fig. 6. The control inputs in the case of using Fuzzy SMC-PID 
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Fig. 7. The enlargement of the tracking errors in the case of using conventional SMC 
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Fig. 8. The enlargement of the tracking errors in the case of using Fuzzy SMC-PID 
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2.2 Incorporating sliding mode and fuzzy control 
In this section, a combined controller includes SMC term and fuzzy term is proposed for set-

point tracking of robot manipulators. Some practical issues, such as existence of joint 

frictions, restriction on input torque magnitude due to saturation of actuators, and modeling 

uncertainties have been considered here. Design procedure contains two steps. First, SMC 

design is accomplished and system stability in this case is provided by Lyapunov direct 

method. When the tracking error would be less than predefined value then a sectorial fuzzy 

controller (SFC), (Calcev, 1998), is responsible for control action. Designing of this kind of 

fuzzy controller is exactly the same as in which has performed in (Santibanez et al., 2005). 

This proposed controller has following advantages. 1) There are less tracking errors versus 

traditional SMC in condition that the control input is limited, 2) the chattering is avoided, 3) 

convergence of tracking error is more rapid than fuzzy controller designed in (Santibanez et 

al., 2005) and modeling uncertainty is considered here (Shafiei & Sepasi, 2010). 

2.2.1 Mathematical model and problem formulation 
This time the friction of joint is considered and is added to dynamical equation (1) as: 

 ( ) ( , ) ( ) ( , )M q q C q q q G q F q τ τ+ + + =$$ $ $ $  (30) 

where ( , ) nF q Rτ ∈$  stands for the friction vector which is as follows (Cai & Song, 1994): 

 ( , ) sgn( ) 1 sgn( ) ( ; )i i i i ci i i i sif q bq f q q sat fτ τ⎡ ⎤= + + −⎣ ⎦$ $ $ $  (31) 

 

where ( , )i if q τ$ , 1,2, ,i n= A , denotes the i-th element of ( , )F q τ$  vector. ib , cif  and  sif  are 

the viscous, Coulomb and static friction, respectively. The sat(·; ·) indicates saturation 

function with following equation.  

( ; )

r if x r

sat x r x if r x r

r if x r

>⎧⎪= − ≤ ≤⎨⎪− < −⎩
 

 

In the following, ( )M q , ( , )C q q$  and ( )G q  might be shown by M , C , and G , respectively in 

where it would be requisite. 
Now, the boundedness properties are defined as below:  

 { }sup ( ) , 1, ,
n

i i
q R

g q g i n
∈

≤ = A  (32) 

where ig  stands for the i-th element of ( )G q  and ig  is finite nonnegative constant. Assume 

that the maximum torque that joint actuator can supply is maxτ . Therefore: 

 max , 1, ,i i i nτ τ≤ = A  (33) 

and each actuator satisfies the following condition:  

 max
i i sig fτ > +  (34) 
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In robot modeling, one can well determine the terms ( )M q  and ( )G q  but it is difficult in 

most cases obtaining the parameters of ( , )C q q$  and ( , )F q τ$  exactly. So, in present section, the 

matrix C  is considered as follows: 

 ˆC C C= + Δ  (35) 

where Ĉ  denotes estimation of C , and CΔ  is bounded estimation error which has the 

following relation: 

 , ,0.1i j i jC CΔ ≤  (36) 

where ,i jC  stands for elements of the matrix C . Also the vector F is supposed as an external 

disturbance with the following unknown upper bound: 

 upF F≤  (37) 

where the operator ⋅  denotes Euclidean norm. 

If one considers the desired point which joint position must be held on it as dq , then the 

position error could be defined as: 

 dq q q= −#  (38) 

Here, the set-point tracking problem refers to define the control law such that error e would 
be driven toward the inside of an arbitrary small region around zero with maintaining the 
torques within the constraints (33). In succeeding subsections, this aim will be attained. 

2.2.2 Sliding mode controller design 
The following sliding surface is considered for designing SMC controller. 

 s e eλ= +$  (39) 

where de q q q= − = −#  is error vector and λ  is supposed symmetric positive definite matrix 

such that s=0 would become a stable surface. The reference velocity vector " rq$ " is defined as 

in (Slotin & Li, 1991): 

 r dq q eλ= −$ $  (40) 

Thus, one can interpret sliding surface as: 

 rs q q= −$ $  (41) 

Here, the SMC controller design is expressed by lemma 2.2. 
Lemma 2.2. Consider the system with dynamic equation (30) and sliding surface and 
reference velocity defined by (39) and (40), respectively. If one chooses the control law 
below, 

 ˆ sgn( )K sτ τ= −  (42) 

www.intechopen.com



Sliding Mode Control of Robot Manipulators via Intelligent Approaches    

 

147 

such that 

 ˆˆ
r rMq Cq Gτ = + +$$ $  (43) 

and 

 i r iK Cq≥ Δ + Γ$  (44) 

then the sliding condition (10) is satisfied. In the last inequality, Ki denotes the element of 
sliding gain vector K and Γ  is design parameter vector which must be selected such 

that i up iF ηΓ ≥ + . 

Proof: Consider the following Lyapunov function candidate: 

 
1

2
TV s Ms=  (45) 

Since M is positive definite, for 0s ≠ we have 0V > and by taking time derivative of the 

relation (45) and regarding the symmetric property of M, it can be written: 

 
1

2
T TV s Ms s Ms= +$ $$  (46) 

from (40), gives: 

 
1

( )
2

T T

rV s Mq Mq s Ms= − +$ $$$ $$  (47) 

By substituting (30) in (47) and considering asymmetry property ( 2 ) 0Ts M C s− =$ , we have: 

 ( )T

r rV s Cq G F Mqτ= − − − −$ $ $$  (48) 

Now, applying (42) and (43) yields: 

 
1

( )
n

T

r i i

i

V s Cq F K s
=

= Δ + −∑$ $  (49) 

Finally, from relation (44) it can be concluded that:  

 
1

n

i i

i

V sη
=

≤ −∑$  (50) 

This indicates that V is a Lyapunov function and the sliding condition (10) has been 
satisfied. 

Note that, in general, the sign function is replaced by saturation function as ( )sat /s ϕ , 

where ϕ  denotes boundary layer thickness. 

2.2.3 Fuzzy controller design 
In this section, the SFC class of fuzzy controller studied in (Santibanez et al., 2005) is 
considered which has two-input one-output rules used in the formulation of the knowledge 
base. These IF-THEN rules have following form: 
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 1 2 1 2

1 1 2 2IF is and is THEN isl l l lx A x A y B  (51) 

where [ ] 2
1 2 1 2

T
x x x U U U= ∈ = × ⊂ ℜ  and y V∈ ⊂ℜ . For each input fuzzy set jl

jA  in 

j jx U⊂  and output fuzzy set 1 2l lB  in y V⊂ , exist an input membership function ( )lj
j

j
A

xμ  

and output membership function 
1 2

( )l lB
yμ  shown in Fig. 10 and Fig. 11, respectively.  

 

 

Fig. 9. Input membership functions 

 

 

Fig. 10. Output membership functions 

The fuzzy system considered here has following specifications: Singleton fuzzifier, 
triangular membership functions for each inputs, singleton membership functions for the 
output, rule base defined by (51), (see Table. 2), product inference and center average 
defuzzifier.  
 

PB PS ZE NS NB 
    1x

 2x  

ZE ZE NS NB NB NB 

ZE ZE NS NB NB NS 

PS PS ZE NS NS ZE 

PB PB PS ZE ZE PS 

PB PB PS ZE ZE PB 

Table 2. The fuzzy rule base for obtaining output y 

Thus, one can compute the output y in terms of inputs as follows (Wang, 1997): 

 

1 2

1 2

1 2

2

1

1 2 2

1

( )

( ) ( , )

( )

lj
j

lj

j

l l

j
Ajl l

j
Ajl l

y x

y x x x

x

μ
ϕ μ

=

=

⎛ ⎞⎜ ⎟⎝ ⎠= = ⎛ ⎞⎜ ⎟⎝ ⎠

∑∑
∑∑

∩

∩
 (52) 
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Special properties of this input-output mapping ( )y x  for x1, x2 are given in (Santibanez et 

al., 2005). 

Lemma 2.3. For the system with dynamical equation (30), if one chooses the following 

control law, 

 ( , ) ( )q q G qτ ϕ= +$# #  (53) 

where q#  is defined as (38) and dq q q= −$# $ $ is velocity error vector, then the closed-loop system 

shown in Fig. 11 becomes stable. 

Proof: the stability analysis is based on the study performed in (Calcev 1998) and is fully 

discussed in (Santibanez et al., 2005), so it is omitted here. Note that for constant set-point 

we have 0dq =$ , hence q q= −$# $ . 

 

 

Fig. 11. Closed-loop system in the case of fuzzy controller (Santibanez et al., 2005) 

2.2.4 Incorporating SMC and SFC 
Each of the two controllers explained in last two subsections drives the robot joint angles to 

desired set-point in finite time and according to the Lemma 2.2 and 2.3 the closed-loop 

system is stable in both cases. In this section, for utilizing advantages of both sliding mode 

control and sectorial fuzzy control, and also minimizing the drawbacks of both of them, the 

following control law is proposed: 

 e

e

ˆ sgn( ) when q

( , ) ( ) when qe e

K s

y q q G q

τ ατ α
⎧ − ≥⎪= ⎨ + <⎪⎩ $

 (54) 

where α  is strictly positive small parameter which can be determined adaptively or set to a 

constant value. So, while the magnitude of error is greater than or equal to α , SMC drives 

the system states, errors in our case, toward sliding surface and as soon as the magnitude of 

error becomes less than α , then the SFC which is designed independent of initial 

conditions, controls the system. Since the SMC shows faster transient response, the response 

of the system controlled by (54) is faster than the case of SFC. Additionally, in spite of the 

torque boundedness, since the SFC controls the system in the steady state, the proposed 

controller (54) has less set-point tracking error. Also, since near the sliding surface the 

proposed controller switch from SMC to SFC, therefore, the chattering is avoided here. 
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Simulation example 2.2. In order to show the effectiveness of the proposed control law, it is 
applied to a two-link direct drive robot arm with the following parameters (Santibanez et 
al., 2005): 

2 2

2

2.351 0.168cos( ) 0.102 0.084 cos( )
( )

0.102 0.084 cos( ) 0.102

q q
M q

q

+ +⎡ ⎤= ⎢ ⎥+⎣ ⎦  

2 2 2 1 2

2 1

0.084sin( ) 0.084sin( )( )ˆ ( , )
0.084sin( ) 0

q q q q q
C q q

q q

− − +⎡ ⎤= ⎢ ⎥⎣ ⎦
$ $ $

$
$

 

1 1 2

1 2

3.921sin( ) 0.186sin( )
( ) 9.81

0.186sin( )

q q q
G q

q q

+ +⎡ ⎤= ⎢ ⎥+⎣ ⎦  

1 1 1 1

2 2 2 2

2.288 8.049sgn( ) 1 sgn( ) sat( ;9.7)
( )

0.186 1.734sgn( ) 1 sgn( ) sat( ;1.87)

q q q
F q

q q q

τ
τ

⎡ ⎤⎡ ⎤+ + −⎣ ⎦⎢ ⎥= ⎢ ⎥⎡ ⎤+ + −⎣ ⎦⎣ ⎦
$ $ $

$
$ $ $

 

ˆC C C= + Δ  

(55) 

According to the actuators manufacturer, the direct drive motors are able to supply torques 

within the following bounds: 

 

max
1 1

max
2 2

150[Nm]

15[Nm]

τ τ
τ τ

≤ =
≤ =  (56) 

The desired set-point is, 

 [ ]Tdq π π= −  (57) 

which is applied as a step function at time zero. The SMC design parameters are as below: 

 
10 0

0 10
λ ⎡ ⎤= ⎢ ⎥⎣ ⎦ , 

140

8

⎡ ⎤Γ = ⎢ ⎥⎣ ⎦  and 5φ =  (58)  

For SFC case, according to Fig. 9 and Fig. 11, 2 1 0 1 2{ , , , , }
jx j j j j jp p p p p p= − − is fuzzy partition of 

the input universe of discourse and 2 1 0 1 2{ , , , , }yp y y y y y= − −  is for output universe of 

discourse. Now, SFC design parameters are given by following equations (Santibanez et al., 

2005): 

1

2

{ 180, 4,0,4,180}

{ 180, 2,0,2,180}

q

q

p

p

= − −
= − −

#

#
 

1

2

{ 360, 270,0,270,360}

{ 360, 270,0,270,360}

q

q

p

p

= − −
= − −

$#

$#

 

1

2

{ 109, 90,0,90,109}

{ 13, 9,0,9,13}

y

y

p

p

= − −
= − −  

(59) 

For our proposed controller (54), the constant 0.3α =  is supposed. Additionally, to show the 

improvement achieved from applying the proposed method of this section (incorporating 
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SMC and SFC), the simulation results of applying this method are compared with the 

related results of the SMC case and SFC case, separately. The error vector and control law in 

the case of conventional SMC have been shown in Fig. 12 and Fig. 13, respectively.  
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Fig. 12. Error vector in the case of SMC 
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Fig. 13. The control torques in the case of SMC 

The tracking error in this case is about 0.1(rad) and when one choose the thinner boundary 
layer to decrease this error, chattering will be occurred. The corresponding graphs for the 
case of applying SFC are also provided in Fig. 14, and Fig. 15. 
In the case of control law proposed in the present section, Fig. 16 and Fig. 17 illustrate the 

error vector and control law, respectively. The tracking error is about 0.002 in this state of 

affairs. 
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