
24

Projective Reconstruction and Its Application in
Object Recognition for Robot Vision System

Ferenc Tél and Béla Lantos
Budapest University of Technology and Economics

Hungary

1. Introduction

More and more applications (path planning of a robot, collision avoidance methods) require
3D description of the surround world. This chapter describes a 3D projective reconstruction
method and its application in an object recognition algorithm.
The described system uses 2D (color or grayscale) images about the scene taken by
uncalibrated cameras, tries to localize known object(s) and determine the (relative) position
and orientation between them. The scene reconstruction algorithm uses simple 2D
geometric entities (points, lines) produced by a low-level feature detector as the images of
the 3D vertices and edges of the objects. The features are matched across views (Tél & Tóth,
2000). During the projective reconstruction the 3D description is recovered. The developed
system uses uncalibrated cameras, therefore only projective 3D structure can be detected
defined up to a collineation. Using the Euclidean information about a known set of
predefined objects stored in database and the results of the recognition algorithm, the
description could be updated to a metric one.
Projective reconstruction methods
There are many known solutions to the projective reconstruction problem. Most of the
developed methods use point features (e.g. vertices), but there are extensions to use higher
order features, such as lines and curves (Kaminski & Shashua, 2004). The existing methods
can be separated into three main groups. The view tensors describe the algebraic
relationships amongst coordinates of features in multiple images that must be satisfied in
order to represent the same spatial feature in 3D scene (Faugeras & Mourrain, 1995). These
methods estimate fundamental matrix from two views (Armangué et al., 2001) or trifocal
tensor from three views (Torr & Zisserman, 1997). The factorization based methods use the fact
that collecting the weighted homogeneous (point) projection vectors into a large matrix
(measurement matrix), the rank must be four, because it is a product of two rank four
matrices. An iterative solution to solve this problem can be found in (Han & Kanade 2000).
In bundle adjustment methods the reprojection errors between original image feature locations
and an estimated projection of spatial feature locations are minimized. The solution for the
problem can be found applying e.g. nonlinear least squares algorithm (Levenberg-
Marquardt).
Object recognition methods
The aim of object recognition methods is to recognize objects in the scene from a known set
of objects, hence some a-priori information is required about the objects. These types of O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.i-
te

ch
on

lin
e.

co
m

Source: Computer Vision, Book edited by: Xiong Zhihui,
ISBN 978-953-7619-21-3, pp. 538, November 2008, I-Tech, Vienna, Austria

www.intechopen.com

 Computer Vision

442

methods are called model based object recognition methods, where predefined object
databases are used to store the required information about the objects. There are many
classification types of the applied (and stored) object models, such as object-centered or
viewer-centered models, physical or geometrical models, rigid or deformable models, etc.
The dimensionality of the used information is also changed in different recognition systems,
there are 2D only, mixed and 3D only systems. The developed algorithms are usually
evaluated against set of different criteria, such as search complexity, discriminative power
and robustness. The appearance based methods use 2D images as object representations. Using
multiple views, the stored information can be reduced to a minimal set. Here the intensity
distribution of the images is used as the basis of the comparison of the similarity of the
projected intensity image among views. The two different strategies are global ones, e.g.
eigenface (Belhumeur et al., 1997) or local approach, where local properties of the images
(neighborhood of edges or corner points) are used to improve the discriminative power, e.g.
GLOH (Mikolajczyk & Schmid, 2005)).
The aspect graph methods use the changes in the projected geometry of the objects and group
views bounded by transitions of the geometry (Schiffenbauer, 2001). The information
reduction is based on the determination of general views, which are equivalent with each
other.
The indexing based methods use those properties of the data that are invariant against a
selected group of transformations. In this case the transformation describes the relationship
between the object data as stored in the database and scene information, therefore the
transformations could be rigid (translation and rotation), similarity (rigid and scaling), etc.,
up to the most general projective one (collineation). The most widely used methods are
based on the geometric hashing (Wolfson & Rigoutsos, 1997). In this case subsets of features
(points) are selected that can be used to form a basis and define local coordinate system with
that basis. Calculating the coordinates of all of the remaining features in this coordinate
system and quantizing the calculated coordinates a hash table is constructed. During the
query a similar method is applied and vote is generated into the respecting entry of the hash
table.
Euclidean update methods
The last step of the reconstruction is (if the robot control application requires) the update of

the reconstructed data from projective to a metric one. There are several algorithms that

address this issue. One group of applications uses known a-priori information to recover

metric information. In (Boufama et al., 1993) e.g. the coordinates of known points, points

laying on the plane of the given (reference) frame, known alignment of points on vertical or

horizontal line and known distance between points are used to involve metrical information

into the reconstruction. In (Faugeras, 1995) an update sequence is described, that converts

the reconstruction from projective to affine, then from affine to Euclidean. The proposed a-

priori information is either the known motion of the camera, parallelity of lines (for affine)

or angle between lines (for Euclidean) reconstruction.

The other type of methods uses the hypothesis of fixed (but unknown) intrinsic camera

parameters. These algorithms are known camera self-calibration methods. This yields the

intrinsic parameters of the cameras using only imaging information. (Hartley, 1993)

supposes that the cameras have common calibration matrices and uses nonlinear

minimizations to calculate camera matrices. A huge nonlinear minimization is achieved to

get the final description.

www.intechopen.com

Projective Reconstruction and Its Application in Object Recognition for Robot Vision System

443

The chapter is divided in sections as follows. Section 2 gives an overview of the most
important methods of projective reconstruction. The main part of the chapter is section 3
dealing with object recognition based on a new indexing method. Section 4 presents a
method of Euclidean reconstruction assuming uncalibrated cameras for robot applications if
the goal is to find the relative position and orientation between the gripper and the
recognized object. Section 6 contains the conclusions and some directions of future
developments. Section 7 is the Appendix summarizing the basic results of projective
geometry and notations used in the chapter.

2. Projective reconstruction

The developed system uses two types of reconstruction algorithms, the first uses point
features only and the other uses point and line features together.

2.1 Cost function for points
Using the pinhole camera model the projection equation for points can be written into linear

form jiijij QPq =ρ . In this case the scale factor ijρ denotes the projective depth of the given

point. If there are m cameras and Pn points in the scene, then the number of projected

image points (and scale factors) are Pnm× . But only Pnm+ are independent amongst

them, therefore the projective depths should be decomposed into camera dependent and
feature dependent parts. The decomposition equation can be written as a product of two

other quantities: jiij γπρ = . Using this decomposition, the projection of a point is described

by jiijji QPq =γπ . This decomposition has some advantages: i) the system is described with

the minimum number of parameters, therefore the parameterization is consistent. ii) the

number of unknowns is greatly reduced. E.g. 120)(43),(40,3 =<<≤→== ijjiP NNnm ργπ .

If the ijρ projection depths were known, the joint projection matrices iP and the projective

shape jQ could be determined by using a rank 4 decomposition method, this is the base of

the factorization methods.
In order to minimize a physically meaningful quantity, the weighted reprojection error used
in the cost function has the form

 ∑ ∑= =
−=⋅ m

i

n

j
jiijjiijP

P
E

1 1

22)(QPqγπω (1)

where the unknowns are jiji QP ,,,γπ .

2.2 Cost function for points and lines
At first sight it seems a natural choice to extend the decomposition algorithm to lines simply
writing the line projection equations into similar form as in the points-only case using the

line projection matrix iG , see (A7) in Appendix:

 ∑ ∑= =
−=⋅ m

i

n

j
jiijjiijL

L
E

1 1

22)(ΛGlλπω

www.intechopen.com

 Computer Vision

444

But unfortunately i) the projective depth could not directly be interpreted for lines, ii) the
mapping between elements of the point and the line projection matrices is a non-linear
function, iii) there exists no distance metric that can easily (linearly) be expressed with the
terms of 2D line.
Therefore the original error function (1) was modified. The calculation of projective depths
was eliminated using a cross product instead of difference, namely () 0~ =×→ jiijjiij QPqQPq . This error is an algebraic distance, it describes the incidence

relation between the true (2D feature point) and the projected point. For lines, similar error
metric (geometric configurations) was defined:

• The incidence relation of 2D line feature and a projected 3D point is 0),(=tkiik ΛQPl ,

where),(tk ΛQ is the t’th point on the Λ 3D line in Plücker representation (A3). The

points can be extracted from Plücker matrix using SVD, see (A5) and (A25). This form

can be used during the calculation of P matrices (resection phase).

• The identity relation of the 2D line feature and a projected 3D line is 0)(=× kiik ΛGl .

This form can be used during the calculation of Λ vectors (intersection phase).

• The containment relation of 3D line and a plane. The plane can be determined as a

backprojected 2D line: ik
T
iik lPS = . The line kΛ lies on the plane if 0)(=kik ΛSU , where

)(ikSU is defined by (A10) in Appendix. This form can be used during the calculation

of Λ vectors (intersection phase).

2.3 Minimization of the cost functions

It can be seen, that the cost functions)(⋅PE and)(⋅LE are nonlinear in the unknowns and

their minimization is similar. A possible solution could be the use of the Levenberg-
Marquardt method and general initial values to directly minimize this cost function. But
fortunately the parameters to be estimated can be separated into different groups, because
they are "independent" from each other (e.g. 3D features are independent from each other,
because they depend only on the objects in the scene and they are not influenced by the
projections). This is the well-known resection-intersection method that holds every group of
parameters fixed, except those, that are currently minimized. Therefore the minimization of

)(⋅PE can be achieved in repeated steps. After every iteration the revaluation of the ωij

weighting factors are achieved and the actual value of the cost function is calculated. If the
cost is less than a desired threshold (or maximum allowed number of iterations is reached),
the algorithm terminates. The estimation of the given entity can be calculated by making the

derivative of)(⋅PE by the respecting entity to zero and the solution can be found in closed

form for each of the features, see (Tél & Lantos, 2007) for details.
For the more general mixed case the detailed calculations are as follows. The error function
for the intersection phase is

 ∑ ∑∑ ∑ = == =
+×=⋅ m

i

n

k
ikiik

m

i

n

j
jiijijQI

LP
fE

1 1

22
,

1 1

22
,),()()(lPQPq Λωω

where)(),(kiikikif ΛGllP ×= or kikikif ΛSUlP)(),(= .

During this phase, the Pi (therefore the Gi) projection matrices are held fixed. After some
manipulation the)(⋅IE can be written into the following form:

www.intechopen.com

Projective Reconstruction and Its Application in Object Recognition for Robot Vision System

445

∑ ∑∑ ∑ = == =
+=⋅ LP n

k

m

i
kikI

T
ikI

T
kik

n

j

m

i
jijI

T
ijI

T
jijQIE

1 1
,,

2
,

1 1
,,

2
,)(ΛBBΛQAAQ Λωω

where iijijI PqA ×=][, and iikikI GlB ×=][, or)(, ikikI SUB = . The estimation for the j’th

feature can be calculated by making the derivative of)(⋅IE by jQ and kΛ to zero,

respectively. After the differentiation the solution for each iQ and kΛ can be found in

closed form. During the calculation of jQ an additional constraint must be introduced, in

order to eliminate trivial all zero case. The solution of the problem for jQ is the normalized

eigenvector corresponding to the smallest eigenvalue of the matrix ∑== m

i
ijI

T
ijIijQijR

1
,,

2
,, AAC ω

During the calculation of kΛ lines, two additional constraints must be fulfilled. The first

one is the elimination of the trivial (all zero) case, the second one is the Plücker constraint
for vector kΛ , see (A3). The measurement error part is similar to the point-case but here the

matrix is ∑== m

i
ikI

T
ikIikikI

1
,,

2
,, BBD Λω . The error function with the constraint can be written into

the matrix equation 0)(, =+ kikI
T
k ΛΔDΛ α . Taking the derivative by kΛ and rearranging

the terms yields):(αα −= kkikI ΔΛΛD α=, . The matrix Δ in (A4) is invertible and

ΔΔ =−1 , therefore the (approximate) solution of the problem for kΛ is the vector

corresponding to the smallest singular value of the matrix ikI ,ΔDD =Δ .

The error function for the resection phase is

∑ ∑∑ ∑ = == =
+×=⋅ m

i

n

k
kiikik

m

i

n

j
jiijijQR

LP
tE

1 1

22
,

1 1

22
,)),(()()(Λωω Λ QPlQPq

During this phase the jQ and jΛ entries are held fixed. Again the cameras are independent

from each other. After some manipulation)(⋅RE can be rewritten into the form

i

n

k

T
ikRikRik

n

i
ijR

T
ijRijQ

m

i

T
iR

LP
ttE pggAAp ⎟⎟⎠

⎞⎜⎜⎝
⎛ +=⋅ ∑∑∑ === 1

,,
2

,
1

,,
2

,
1

)()()(Λωω

where

⎟⎟
⎟⎟

⎠

⎞

⎜⎜
⎜⎜

⎝

⎛

−
−

−
=

TT
ijij

T
ijij

T
ijij

TT
ijij

T
ijij

T
ijij

T

ijR

uv

uw

vw

4

4

4

,

0QQ

Q0Q

QQ0

A and ()TT
j

T
j

T
jijR tLctLbtLa),(),(),(, QQQg = .

The estimation for the i’th camera can be calculated by making the derivative of)(⋅RE by iP

to zero. Note, that in this case the error function contains only the “point-form” P of the
projection matrices. An additional constraint must be introduced, in order to eliminate
trivial 0p = case. The solution of the problem is the normalized eigenvector corresponding

to the smallest eigenvalue of the matrix

∑∑ ==
+= LP n

k

T
ikRikRik

n

i
ijR

T
ijRijQiR tt

1
,,

2
,

1
,,

2
,,)()(ggAAC Λωω

www.intechopen.com

 Computer Vision

446

2.4 Initialization of the entities
The parameters of the cost function are estimated using an iterative method, therefore an
initial estimation for its values is required. The developed initialization algorithm:
1. Choosing a subset (pair) of views and subset of points that can be seen on all of the

selected images (note: the developed algorithm chooses the views that have the largest
number of point correspondences). Using these points a rank 4 factorization method is
achieved. This gives initial estimation for the given projection matrices and for selected
points.

2. Calculate the projection matrix of a new (not yet processed) view using the points
detected on that view and have the spatial coordinates already determined. This can be
achieved in closed form using SVD.

3. Calculate the spatial coordinates of the not-yet initialized points, that have projection on
the images with determined projection matrix, by using triangulation-like method
(Hartley & Sturm, 1997). This means the determination of a point which has minimal
distance from the rays connecting the image points and the camera focal points in least
squares sense. The solution can be found using SVD.

4. In order to initialize the line features, the algorithm uses the fact that ij
T
iij lPM = yields

a plane that goes through the optical center of the camera and the projected image of
the line. Theoretically these planes intersect in the spatial line. Taking more than two

views, the solution can be found using SVD. The matrix ()Tmjij MMA A= is a rank

2 matrix, therefore the two left null vectors yield two points whose join yields the
desired line equation.

The algorithm repeats steps 2 and 3 until all of the projection matrices are calculated.

2.5 Minimization remarks
The two developed algorithms have some common properties.

• Handling of missing data (features having no projection on the given view) during the
minimization is simple, the algorithms skip those entries in the error function that do
not have valid qij, lik respectively.

• In order to eliminate the effect of the outliers (caused by badly matched feature
projections), the camera matrices are estimated only from some subsets of the features
in each iteration cycle. These features are selected in a random way and the projection
matrix yielding the smallest reprojection error is used in the further steps. The ωij
weights can be used to make the algorithm more robust, e.g. decrease the influence of
features with larger error.

3. Object recognition

The developed object recognition method uses permutation and projective invariant based
indexing to recognize known object(s) in the scene. A verification step is achieved to finalize
the results.

3.1 Invariants
During the recognition process two sets of entities are used. The first one is the feature sets
of the object as stored in the object database. The second one is the features of the recovered

www.intechopen.com

Projective Reconstruction and Its Application in Object Recognition for Robot Vision System

447

scene. Some elements (a subset) represent the same entity in different context (e.g. two
representations of the geometric primitives in different coordinate systems). In order to
determine the pairing of the two representations of the same entities the process requires the
usage of those properties which are not changing (invariant) between representations.

Formally this can be written into the following form. Let T∈T denote the (linear)

transformation between representations and G denote the geometric structure that

describes the configuration. The number of functionally independent invariants can be
calculated as

)dim()dim()dim(GI TTGN +−= , (2)

where GT denotes the isotropy subgroup (if exists), that leaves G unaffected using T and

)dim(⋅ denotes the dimension of the given entity.

In case of projective invariants the relation between the two representations (Euclidean
object database vs. output of the projective reconstruction) can be described with a 3D
projective transformation (collineation). The number of parameters which describe the used
entities are as follows.

• 3D point can be described with a 4-vector determined up to a scale. The degree of
freedom is 3.

• 3D line can be described with a 6-vector determined up to a scale and a constraint
(Plücker). The degree of freedom is 4.

• 3D projective transformation can be described with a 4x4 matrix determined up to a
scale. The degree of freedom is 15.

Using these values the minimum number of entities to determine the invariant(s) is:

• 6 points yield 301536 =+−× independent invariant

• 4 points and a line yield 1015)434(=+−+× independent invariant

• 2 points and 3 lines yield 3015)4332(=+−×+× independent invariants

• 3 points and 2 lines yield 2015)4233(=+−×+× independent invariants

• 4 lines yield 211544 =+−× independent invariants

The basic element of the projective invariants is the cross ratio and its generalizations for
higher dimensions, see (A12), (A14) and (A15). In the following, using the different geometric
configurations to calculate invariants, it is supposed that the elements are in general positions.
Apart from the trivial degenerate cases, the nontrivial configurations will be determined.
An invariant could be undetermined, if one or more determinants are zero. This means
coincident point(s) and/or lines. All of these cases are eliminated from further investigation.
Invariants of 6 points
As shown in (2) and also e.g. in (Quan, 1995), the number of independent solutions is 3.
Using the ratio of product of determinants, a possible combination of independent
invariants are:

||||

||||

54216321

64215321
1

QQQQQQQQ

QQQQQQQQ

⋅
⋅=I ,

||||

||||

54316321

64315321
2

QQQQQQQQ

QQQQQQQQ

⋅
⋅=I

||||

||||

54326321

64325321
3

QQQQQQQQ

QQQQQQQQ

⋅
⋅=I

www.intechopen.com

 Computer Vision

448

There are many ways to create a geometric configuration to represent the situation from

which it is possible to calculate the cross ratio. Taking two points 1Q and 2Q as the axis,

and using the remaining points 6,5,4,3, =iiQ , four planes (pencil of planes) can be formed.

The cross ratio of these planes can be determined as the cross ratio of points created as the
intersection of these planes with an arbitrary line not intersecting the axis.
Invariant of 4 points and a line

Let 2,1,, =iiLQ denote two arbitrary distinct points on the line. In this case the invariant in

the determinant form is:

||||

||||

322,1,412,1,

422,1,312,1,

QQQQQQQQ

QQQQQQQQ

LLLL

LLLLI ⋅
⋅=

The geometrical situation is similar to the 6 point case, but the axis of the pencil of planes is
the line.
Invariants of 3 points and 2 lines

Let the two lines be denoted by L and K , and 2,1,, ,, =iiKiL QQ are two points on these

lines, respectively. As shown above, there must be two independent invariants for this
configuration.

||||

||||

212,1,312,1,

312,1,212,1,
1

QQQQQQQQ

QQQQQQQQ

KKLL

KKLLI ⋅
⋅= ,

||||

||||

212,1,322,1,

322,1,212,1,
2

QQQQQQQQ

QQQQQQQQ

KKLL

KKLLI ⋅
⋅=

A possible geometric configuration to determine the cross ratio is the three planes formed

by L and points 3,2,1, =iiQ , and the plane generated by the three points. Using the line

K to cut through these planes, the intersection of the line and the planes gives four points.
The other invariant can be determined by interchanging the role of the lines.
Invariants of 2 points and 3 lines

Let 3,2,1, =iiL and 2,1, =jjQ , be the three lines and two points, respectively.

Geometrically, four planes could be defined from a pair of a point and a line. For example,

let the four planes:),(11 QL ,),(21 QL ,),(12 QL and),(22 QL . The remaining line 3L

intersects these planes and the four intersection points on the line determine the cross ratio.
The other two invariants could be calculated using lines 1,3 and 2,3 in plane definition.
Invariants of 4 lines

Let 4,3,2,1, =iiL be the four lines. This configuration has 211544 =+−× projective

invariants, because there is an isotropy subgroup of any collineation of 3D projective space
that leaves the four lines in place (Hartley, 1992). Algebraically the invariants can be written as:

||||

||||

2,41,42,21,22,31,32,11,1

2,41,42,31,32,21,22,11,1
1

QQQQQQQQ

QQQQQQQQ

⋅
⋅=I

||||

||||
I

2,41,42,21,22,31,32,11,1

2,41,42,31,32,21,22,11,1
2

QQQQQQQQ

QQQQQQQQ

⋅
⋅=

where ji ,Q denotes the j’th point on the line iL .

3.2 Projective and permutation Invariants
It is shown in (A13), that there are six possible values for the cross ratio for four collinear
points. Using higher dimensional configurations, the situation is worse, 6 points has 6!=720

www.intechopen.com

Projective Reconstruction and Its Application in Object Recognition for Robot Vision System

449

possible labeling. Therefore in order to use the invariants for indexing in the object database,
the complexity of the query must be reduced. This means that the effect of labeling
(permutations of the geometric entities) must be eliminated.
As it was shown previously, the invariants of different geometric configurations of points
and lines can be written as the ratio of product of determinants. According to the simplest

generalization of the form, at least 3+N points required in an N -dimensional space, thus

||||

||||
),,,,,,(

2121321

3121221
32121 +++

++++++ ⋅
⋅=

NNNN

NNNN
NNNNI

QQQQQQQQ

QQQQQQQQ
QQQQQQ

AA
AA… .

It can be seen, that in this case the changing of the labeling of the first 1−N points leaves

the value of the invariant intact (the sign changes of the four determinants cancel each
other), the permutation of the last four points yields the six different values. Therefore the
permutations inside the invariant can be separated as

)),,,(),,(()),,,,,((32121113211 +++−+++ = NNNNNNNNN II QQQQQQQQQQQ πππ ……

where π denotes the permutations of the elements. Interchanging the elements between π1

and π2 yields other invariants. Putting together, the projective and permutation invariants
must fulfill two requirements:

• Problem 1: Eliminate the effect of the six possible values of the cross ratio. This can be
accomplished using algebraic or stereographic permutation invariants.

• Problem 2: Eliminate the effect of interchanging the elements between 1π and 2π .

Permutation invariants for cross ratio
In the solutions proposed by (Meer et al, 1998), (Csurka & Faugeras, 1999), the elimination of
the effect of the different labeling inside the cross ratio is achieved in an algebraic way using
higher order symmetric polynomials. The developed method follows a different method,
applies a stereographic projection and a periodic function to give a solution for Problem 1.
Stereographic permutation invariants for cross ratio
As it can be seen in Fig. 1 (left), the plot of the six possible permutations of the cross ratio is

symmetrical to the value 5.0 and (projectively) ∞ . By pairs equating the three basic

functions (occurs in cross-ratio) }1,/1,{ xxx − yields 1/1 ±=→= xxx and 5.01 =→−= xxx ,

the mapping of these values could be calculated. (Note that the third possible combination

xx −= 1/1 does not give real solution.)

Fig. 1. Effect of permutations inside cross ratio (left), stereographic projection (right)

www.intechopen.com

 Computer Vision

450

Considering Table 1 (note, that in projective manner the values ∞ and −∞ represents the

same) it can be concluded, that the key values of the six mappings are),2,1,5.0,0,1(∞− ,

because they form a closed set respecting to these mappings. In order to generate
permutation invariants, application of such periodic function(s) is required that gives same
value to the six possible combinations of the basic functions. This could be achieved in a two
step process.

X -1 0 0.5 1 2 ∞
1/x -1 ∞ 2 1 0.5 0

1-x 2 1 0.5 0 -1 ∞

Table 1. Key values mappings inside cross ratio

Stereographic projection
In order to define a periodic function, the mapping of the infinite line (possible values of
cross ratios) onto a circle is required. This could be achieved with the stereographic
projection (used in the developed system, Fig. 1, right) or gnomonic projection. The
parameters of the circle can be determined from the following constraints

• The values in the same pair must be mapped on the opposite side of the circle

• The infinity on the line must be mapped into the “north pole”. Therefore the value 0.5
must be on the “south pole” (at point P).

• The arrangement of the (six) key values must be symmetrical.

• The mapping is continuous.
This yields, that the values)0,1,,2,1,5.0(−∞ are mapped onto the angles

)3/5,3/4,,3/2,3/,0()(πππππ=POB1 , respectively. Note, that the)()(2 POBPNB 11 =× ,

because)(POB1 is the central angle and)(PNB1 is the respecting inscribed angle. The

radius of the circle can be determined as
))(tan(22

))(tan(
PNA

PA
r

r

PA
PNA

1
1 −=→−= .

Substituting the values ,5.0,1(== PA)3/1))(tan(,6/)(== PNBPNB 11 π gives

4/3=r . The PDF (probability density function) of the stereographic permutation

invariants is shown in Fig. 2.

Fig. 2. Probability density function of stereographic permutation invariants

www.intechopen.com

Projective Reconstruction and Its Application in Object Recognition for Robot Vision System

451

Fig. 3. The effect of nonlinear periodic functions (upper line) to the approximations of
uniformly distributed PDF (lower line)

Application of a periodic function
Using the output of the stereographic mapping, the aim is to define a periodic function that

fulfills the 5,,0)),6/(()(…=+= kkIJIJ pp π requirement. From the practical point of view,

the outputs of the tested functions are mapped into]1,0[interval. In order to apply a simple

(Euclidean) distance function during the indexing, a nonlinear transformation must be
defined such a way, that the output density must be close to the uniform one. Amongst the

several possibilities, the following functions (whose period is π/6, against xx =))(arcsin(sin

whose period is 2π) are tested (see Fig. 3 and note, the first row shows only one period of
functions):

•)3(sin2
1 IJp =

• |))3(arcsin(sin|)/2(2 IJp π=

•)|))3(arcsin(sin|)/2(arcsin()/2(3 IJp ππ=

• 86.0)))6/((6)((57.04 +−−= πIJIJJ pbpbp , where

)|))3(arcsin(sin|)/1(arcsin()/1(IJpb ππ=

Examining the PDF of the invariants applying the different functions, it can be seen that the
Jp4 gives the PDF closest (most similar) to the uniform distribution.
The output of the periodic function gives the solution to the Problem 1.
Elimination of the effect of element interchanges
The next step is to eliminate the effect of interchanging the elements between two
permutation groups (giving solution to the Problem 2). The number of possible combinations

is ⎟⎠⎞⎜⎝⎛ +
4

3N . Therefore the permutation invariant is not a single value but a vector J . In order

www.intechopen.com

 Computer Vision

452

to remove the effect of the initial labeling of 3+N points, the vector must be sorted. The
applicability of the following configurations is checked: 6 points, 1 line + 4 points, 2 lines + 3
points, 3 lines + 2 points, 4 lines, 5 lines.
Configuration: 6 points
In case of six points, interchanging the elements between the permutation groups yields the
invariant vector

⎟⎟⎠
⎞
⎟⎟⎠
⎞⎜⎜⎝

⎛
−−
−−⎟⎟⎠

⎞⎜⎜⎝
⎛

−
−⎟⎟⎠

⎞⎜⎜⎝
⎛

−
−⎟⎟⎠

⎞⎜⎜⎝
⎛

−
−⎟⎟⎠

⎞⎜⎜⎝
⎛

−
−⎟⎟⎠

⎞⎜⎜⎝
⎛

⎟⎟⎠
⎞⎜⎜⎝

⎛
−
−⎟⎟⎠

⎞⎜⎜⎝
⎛

−
−⎟⎟⎠

⎞⎜⎜⎝
⎛⎟⎟⎠

⎞⎜⎜⎝
⎛

−
−⎟⎟⎠

⎞⎜⎜⎝
⎛

−
−⎜⎜⎝

⎛
⎟⎟⎠
⎞⎜⎜⎝

⎛=

)II)(1I(

)II)(1I(
J,

)II(I

)II(I
J,

II

II
J,

)1I(I

)1I(I
J,

1I

1I
J,

I

I
J

,
)1I(I

)1I(I
J,

1I

1I
J,

I

I
J),I(J,

)1I(I

)1I(I
J,

1I

1I
J,

I

I
J),I(J),I(JS

231

132

231

132

23

13

32

23

3

2

3

2

31

13

3

1

3

1
3

21

12

2

1

2

1
21J

 (3)

where 1I , 2I and 3I are the invariants belonging to the permutation group

)6,5,4,3()2,1(21 ππ of points,)(⋅S denotes the sorting operator. The number of points in the

configuration is six but the vector J has 15 elements. Therefore no one-to-one mapping

exists between the points and the elements of the vector. Instead, the mapping exists
between pairs of points and the respecting vector element. The first five elements in (3)
depend on 6,,2),(1 …=iiQQ , the next four depend on 6,,3),(2 …=iiQQ , and so on.

Finally the last element depends on)(65QQ . This means, that building a 6x6 table,

according to the indexing with J , the ordering of the points between two sets of respecting

six point configurations can be determined in the following way.
We describe our concept for the 6-point case. Similar technique can be used for other feature

combinations. The object database contains objects and the objects contain also points, from

which different subsets containing 6 points can be built. The database contains Euclidean

information belonging to the subset of points. From this information using the the

homogeneous coordinates of the points the invariants can be computed. By using the

nonlinear function Jp4 the 15 (normalized) components of the vector J can be computed and

sorted and the permutation p after sorting can be determined. This pair of J and p are

precomputed and stored in the database before application. In the scene we can choose 6

point features and from their 3D projective coordinates we can determine another pair of J

and p in a similar way during application. The basis for finding corresponding sets of points

are the J’s both in object database and scene. The J’s are compared using Euclidean distance

and a tolerance. Corresponding sets of points are marked and the collineation mapping

points from scene into points from database is determined. This collineation makes it

possible to map further points from the scene into database and check for correspondence.

Thus the set of corresponding points belonging to the same object can be enlarged. In the

success indices a and b identify the sets in database and scene, respectively. The main

problem is that the order of the points in database and scene may be different. The details

are as follows.

After sorting of the vectors aJ and bJ , let ap and bp contain the permutation indices of

the elements, therefore if 15,,1),()(…== iii ba JJ , then element indexed by)(iap

corresponds to)(ibp . Defining the vector V according to Table 2 yields that the pair ())(iapV corresponds to ())(ibpV , e.g. }3,2{)6())1((== VpV a corresponds to

www.intechopen.com

Projective Reconstruction and Its Application in Object Recognition for Robot Vision System

453

}5,4{)13())1((== VpV b . Let A be a 66× (symmetric) table, where () ())())((ii ab pVpVA = .

The i’th point in the set 'a' corresponds to j’th point in the set 'b', iff every element in the i’th
row of A contains the index j.
For example a query from the scene into the database contains the sorted vector and
permutation:

()9739.09517.07257.07185.07054.04341.04270.0

3269.03196.00667.00420.00344.00322.00247.00075.0Ja A=

()133154521181149710126pa =

The resulted entry from the database gives:

()9816.09513.07315.07219.07037.04367.04270.0

3309.03209.00909.00572.00468.00441.00338.00103.0Jb A=

()912162107811541514313pb =

The vector V is given in detailed form in Table 2.

I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

V 1,2 1,3 1,4 1,5 1,6 2,3 2,4 2,5 2,6 3,4 3,5 3,6 4,5 4,6 5,6

Table 2. Possible pairings in the six points configuration

Using the permutation vectors 6)1(=ap corresponds to 13)1(=bp , yields that pair 2,3

corresponds to pair 4,5. Write 2,3 into the position 4,5 (and 5,4) of the 66× table and
continuing the process gives the results in Table 3.

 1 2 3 4 5 6

1 * 5,6 1,6 3,6 2,6 4,6

2 5,6 * 1,5 3,5 2,5 4,5

3 1,6 1,5 * 1,3 1,2 1,4

4 3,6 3,5 1,3 * 2,3 3,4

5 2,6 2,5 1,2 2,3 * 2,4

6 4,6 4,5 1,4 3,4 2,4 *

Table 3. Determine correspondences in six points configuration

Searching for the common elements row-wise (e.g. 6 in the first row in Table 3) gives the
final pairings of the features: 1-6, 2-5, 3-1, 4-3, 5-2, 6-4.
A fault tolerant method is also developed. For example some numerically close elements in
the corresponding vectors are swapped by sorting process, hence the table does not yield a
valid solution, see the cells underlined in Table 4.
The solution to the problem is the following. Fill another 6x6 table from the original one
such that the element in (i,j) contains the number of occurrences of j’th value in i’th row of
the original table. Then repeat the following process:
1. Search for a maximum value in this new table. The row-column index gives the pairing.
2. Fill the row and the column with zeros of the pair already found. If the current

maximum value is less than the desired parameter (tipically 4, tolerating only one mis-
match), the pairing is not possible.

www.intechopen.com

 Computer Vision

454

 1 2 3 4 5 6 1 2 3 4 5 6

1 * 5,6 1,5 3,5 4,5 2,5 1 1 1 1 5 1

2 5,6 * 1,6 3,6 4,6 2,6 1 1 1 1 1 5

3 1,5 1,6 * 2,3 1,4 1,2 4 2 1 1 1 1

4 3,5 3,6 2,3 * 3,4 1,3 1 1 5 1 1 1

5 4,5 4,6 1,4 3,4 * 2,4 1 1 1 5 1 1

6 2,5 2,6 1,2 1,3 2,4 *

2 4 1 1 1 1

Table 4. Determine correspondences in six points configuration (fault tolerant version)

Configuration: 1 line, 4 points
The calculation of the permutation invariant from the projective one is very simple,

applying the function ()⋅J to the only one projective invariant. But no method is currently

known to determine pairings from permutation and projective invariants, therefore this type
of configuration is not used during indexing.
Configuration: 2 lines, 3 points
As mentioned earlier, the geometric configuration for this case could be traced back to the
five coplanar points case. Therefore the results of (Meer et al, 1998) could be used, namely
interchanging the elements between the permutation groups yields the vector

 ⎟⎟⎠
⎞

⎜⎜⎝
⎛

⎟⎟⎠
⎞⎜⎜⎝

⎛
−
−⎟⎟⎠

⎞⎜⎜⎝
⎛

−
−⎟⎟⎠

⎞⎜⎜⎝
⎛=

)1(

)1(
,

1

1
,),(),(

21

12

2

1

2

1
212

II

II
J

I

I
J

I

I
JIJIJSDJ (4)

The elements of the vector can be determined by exchanging the first element with the

elements at 5,,2 … , respectively.

But this is unnecessary, because the lines and points can be clearly distinguished, therefore
the first element should only be exchanged with the second and the third one. Interchanging

the two lines means applying II /1→ mapping of the invariant (see the algebraic form).

This means, that the permutation invariant vector should contain only

⎟⎟⎠
⎞

⎜⎜⎝
⎛

⎟⎟⎠
⎞⎜⎜⎝

⎛=
2

1
21),(),(

I

I
JIJIJSJ .

If the pairing of the points and lines between two sets is required, the simplest solution is to
calculate the vector defined in (4), because there is a one-to-one mapping between the five

points and the five elements of D2J . A possible additional check is to pair points generated

by line intersection with a similar one.
Configuration: 3 lines, 2 points
This configuration yields six planes, because a plane can be formed from a line and a point,
where the point and the line are not coincident. In the projective 3D space the points and
planes are dual to each other (principle of duality), therefore the results of the six points case
can be used.
Configuration: 4 lines
The calculation of the permutation invariant from the projective one is simple, applying the
appropriate function to the projective invariants. But no method is currently known to
determine pairings from permutation and projective invariants, therefore this type of
configuration is not used during indexing.

www.intechopen.com

Projective Reconstruction and Its Application in Object Recognition for Robot Vision System

455

Configuration: 5 lines
In order to be able to use line only configuration, from which the pairing can be determined,
compound configuration must be used. The simplest one is 5 lines in general position. From
5 lines five different 4-lines configuration can be extracted. A 4-lines configuration gives two
independent invariants. Applying a function 5,,1,),(2,1, …=→ iJJJf iii yields five different

invariants. From these invariants the pairing could be determined.
Let the i’th configuration be the one from which the i’th line is excluded (1st configuration is
built from lines 2,3,4,5, etc.). Let the unsorted 5-vectors be aJ and bJ . Let the permutation

vectors containing the output of the sorting be ba pp , , respectively. This means that the

))((iaa pJ invariant equals to))((ibb pJ , therefore the (eliminated) lines)(iap ,)(ibp

correspond to each other.

3.3 Object database
The aim of the application of the object database is to recognize known, predefined
(previously stored) object(s) in the scene. The stored information in the database is the
invariant vectors computed from the 3D Euclidean description of the objects represented by
homogeneous coordinates as described in the previous section. During the query the input
is computed from the output of the projective reconstruction of the scene. The two sets of
invariants must be paired (matched) in order to determine the corresponding feature
configurations. Some additional attributes also stored that is required during verification.
The developed system uses different tables for each of the possible configurations (six
points, etc.). The attributes are the name of the candidate object, type and id of the stored
features and the permutation of the features. These values will be used in a later processing
step (verification).
Metric definition and feature transformation
The usage of the database algorithms (indexing) requires the definition of a metric that
describes the similarity of the feature combinations. A definition of a metric uses a distance

function ()⋅d that describes the (dis)similarity of the elements between two sets, where

0=d denotes identical configurations and the dissimilarity is larger as d increasing.

Therefore d forms a metric, because i) d is a non-negative (real) number, ii) the relation is

symmetrical, iii) fulfills the triangle inequality. In order to be able to compare the two
feature sets, application of a feature transformation is required. This feature transformation
maps the configuration properties into a D-dimensional vector space, where the distance
between the vectors is defined. The distance between feature vectors must somehow
correspond to the original (theoretical) distance between the features from them it was
derived (eliminating false positives). Usually this means, that the distance between vectors
is the lower bound of the original distance (this means that the small vector distance may
yield dissimilar feature distance, but similar feature combinations always yield small vector
distance). The properties used in the feature transformation are task dependent, in this case
the feature configuration is described by an invariant vector defined in previous section.
Therefore the feature transformation maps from features (described by its coordinates) into
(vector)space of invariants. Many distance function can be created that fulfill the
requirement of the definition. The most widely used functions can be described as

p
D

i

p
ii baL

/1

1

)()(⎟⎟⎠
⎞⎜⎜⎝

⎛ −=⋅ ∑= .

www.intechopen.com

 Computer Vision

456

Using the different values of p yields the Manhattan metric)1(=p , Euclidean metric)2(=p

and maximum metric)(∞=p . In the developed system the Euclidean metric is used.

Query into the database
The query process extracts those elements from the database that are closest to the querying
element (exact matching is not probable due to noise during feature detection). This is the
well-known nearest neighbors (kNN) problem. In our case the invariants are higher
dimensional vector valued entities. The standard R-tree algorithm is very inefficient for
higher dimensions (Moenne-Loccoz, 2005), due to the curse of dimensionality. The developed
method uses X-tree (Berchtold et al., 1996). The query into the database extracts the closest
candidates to the query vector (typically 2-5 are used). A tolerance is applied to eliminate the
truly false matches. The remaining candidates are further processed in the verification step.

3.4 Verification
Because of the feature transformation the query eliminates only the false positives (those
configurations, that are surely do not yield a valid answer to the query), the remaining
candidates must be post-processed with a verification process. (Note: the query process
should yield sufficiently small number of candidates in order to prevent the post-processing
of the whole database.)
Collineation between 3D feature sets
Denote H the 44× matrix of the invertible linear transformation (collineation), ii YX , the

4-length coordinate vector of corresponding 3D homogeneous points. Let the corresponding
line pair be iL and iK , described by ii KL ,44× skew-symmetric Plücker matrices, see

(A5). Let ri ,LX be points on the line iL and si ,KY be points on the line iK , respectively.

Let pi ,KΩ be planes that contains iK . If the iX and iY , iL and iK represent the same

entities in different coordinate frames (related by H), then the relation between them can be

written into the form ii HXY ~ and T
ii HHLK ~ , or using the entity-dependent scaling

factors with equality iii HXY =μ , T
iii HHLK =ν . The aim is to determine H from a given

set of point and line pairs in a noisy environment (LS solution is preferable), in a closed
form. The solution must handle any number of combinations of points and lines. The
unknowns are the 16 elements of the H matrix (and optionally the),,1(Pi ni …=μ scaling

factors for points and the),,1(Li ni …=ν scaling factors for lines).

Geometric solution
Using point and line pairs together, the equations contain the unknowns in quadratic or

mixed form. Therefore the direct applications of these functions are not advisable. Instead

geometric constraints are introduced in order to calculate the desired collineation. Let H be

assumed in vector form

=×116h () ()TTTTTTHHH 4321)4,4()4,1()1,1(hhhh=AA

Point-point relations
For points, the constraint equation is the scaling factor free algebraic distances

 0)()(=− T
aii

T
bii bYaY hXhX

www.intechopen.com

Projective Reconstruction and Its Application in Object Recognition for Robot Vision System

457

where the pairs { , } {4,1},{4,2},{4,3},{2,3},{3,1},{1,2}a b = .

The part of the coefficient matrix belonging to this point pair is

⎟⎟
⎟⎟
⎟⎟
⎟⎟

⎠

⎞

⎜⎜
⎜⎜
⎜⎜
⎜⎜

⎝

⎛

−− −−
−−

BBBB

BBBB

44

44

44

44

44

44

00)2()1(
0)3(0)1(
0)3()2(0

)3()4(00
)2(0)4(0
)1(00)4(

iiii

iiii

iiii

iiii

iiii

iiii

YY
YY
YY

YY
YY
YY

XX
XX
XX

XX
XX
XX

 (5)

Line-line relations
In order to eliminate the higher order members of the cost function, the line-type entities
should be eliminated, points and planes relations must be used. The points on the line and
planes, whose intersection is the given line can be extracted from the Plücker matrix of the
line using SVD, see (A5) and (A25). Any linear combination of two points and two lines can
be used as pairs instead of the original ones (resulted from SVD).
The two possible constraint types are:

• The transformed points ri ,LX should lie on the plane si ,KΩ . Algebraically this means () 0,, =s
T

r ii KL ΩHX where 2,1, =sr . The part of the coefficient matrix belongs to this

configuration is

 ⎟⎟
⎟
⎠
⎞

⎜⎜
⎜
⎝
⎛

BBBB

BBBB
rsrsrsrs iiiiiiii ,,,,,,,,)4()3()2()1(LKLKLKLK XΩXΩXΩXΩ (6)

A plane can be constructed from a transformed point ri ,LX and the line si ,KΩ . If the point

lies on the line, the plane equation must be invalid, 0Ω = . Using the representation in (A5),

let ()T
iO

T
iD

T
i ,, KKK = , where iD,K and iO,K are 3-vectors. The plane can be generated

using the matrix
[] ⎟⎟⎠

⎞⎜⎜⎝
⎛ −= ×

0K

KK
ΛK

iO

iOiD
i

,

,,
. Applying to the transformed point, the plane

equation becomes ()rr iii ,, LKK HXΛΩ = where 2,1=r . The part of the coefficient matrix

belongs to this configuration is

 ⎟⎟
⎟
⎠
⎞

⎜⎜
⎜
⎝
⎛

BBBB

BBBB
rrrr iiiiiiii ,,,,)4,1()3,1()2,1()1,1(LKLKLKLK XΛXΛXΛXΛ (7)

Estimation of H
The equations (4), (5) and (6) yield linear constraints for the elements of the collineation H .
Collecting these coefficients into a matrix A , the equations can be written into the form

0Ah = . Applying an additional constraint 1=h in order to avoid the trivial

solution 0h = , the problem can be solved in a closed form, using SVD, as the vector
corresponding to the smallest singular value.

www.intechopen.com

Thank You for previewing this eBook
You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can
access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

