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1. Introduction

More and more applications (path planning of a robot, collision avoidance methods) require
3D description of the surround world. This chapter describes a 3D projective reconstruction
method and its application in an object recognition algorithm.

The described system uses 2D (color or grayscale) images about the scene taken by
uncalibrated cameras, tries to localize known object(s) and determine the (relative) position
and orientation between them. The scene reconstruction algorithm uses simple 2D
geometric entities (points, lines) produced by a low-level feature detector as the images of
the 3D vertices and edges of the objects. The features are matched across views (Tél & Téth,
2000). During the projective reconstruction the 3D description is recovered. The developed
system uses uncalibrated cameras, therefore only projective 3D structure can be detected
defined up to a collineation. Using the Euclidean information about a known set of
predefined objects stored in database and the results of the recognition algorithm, the
description could be updated to a metric one.

Projective reconstruction methods

There are many known solutions to the projective reconstruction problem. Most of the
developed methods use point features (e.g. vertices), but there are extensions to use higher
order features, such as lines and curves (Kaminski & Shashua, 2004). The existing methods
can be separated into three main groups. The view tensors describe the algebraic
relationships amongst coordinates of features in multiple images that must be satisfied in
order to represent the same spatial feature in 3D scene (Faugeras & Mourrain, 1995). These
methods estimate fundamental matrix from two views (Armangué et al., 2001) or trifocal
tensor from three views (Torr & Zisserman, 1997). The factorization based methods use the fact
that collecting the weighted homogeneous (point) projection vectors into a large matrix
(measurement matrix), the rank must be four, because it is a product of two rank four
matrices. An iterative solution to solve this problem can be found in (Han & Kanade 2000).
In bundle adjustment methods the reprojection errors between original image feature locations
and an estimated projection of spatial feature locations are minimized. The solution for the
problem can be found applying e.g. nonlinear least squares algorithm (Levenberg-
Marquardt).

Object recognition methods

The aim of object recognition methods is to recognize objects in the scene from a known set
of objects, hence some a-priori information is required about the objects. These types of
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methods are called model based object recognition methods, where predefined object
databases are used to store the required information about the objects. There are many
classification types of the applied (and stored) object models, such as object-centered or
viewer-centered models, physical or geometrical models, rigid or deformable models, etc.
The dimensionality of the used information is also changed in different recognition systems,
there are 2D only, mixed and 3D only systems. The developed algorithms are usually
evaluated against set of different criteria, such as search complexity, discriminative power
and robustness. The appearance based methods use 2D images as object representations. Using
multiple views, the stored information can be reduced to a minimal set. Here the intensity
distribution of the images is used as the basis of the comparison of the similarity of the
projected intensity image among views. The two different strategies are global ones, e.g.
eigenface (Belhumeur et al., 1997) or local approach, where local properties of the images
(neighborhood of edges or corner points) are used to improve the discriminative power, e.g.
GLOH (Mikolajczyk & Schmid, 2005)).

The aspect graph methods use the changes in the projected geometry of the objects and group
views bounded by transitions of the geometry (Schiffenbauer, 2001). The information
reduction is based on the determination of general views, which are equivalent with each
other.

The indexing based methods use those properties of the data that are invariant against a
selected group of transformations. In this case the transformation describes the relationship
between the object data as stored in the database and scene information, therefore the
transformations could be rigid (translation and rotation), similarity (rigid and scaling), etc.,
up to the most general projective one (collineation). The most widely used methods are
based on the geometric hashing (Wolfson & Rigoutsos, 1997). In this case subsets of features
(points) are selected that can be used to form a basis and define local coordinate system with
that basis. Calculating the coordinates of all of the remaining features in this coordinate
system and quantizing the calculated coordinates a hash table is constructed. During the
query a similar method is applied and vote is generated into the respecting entry of the hash
table.

Euclidean update methods

The last step of the reconstruction is (if the robot control application requires) the update of
the reconstructed data from projective to a metric one. There are several algorithms that
address this issue. One group of applications uses known a-priori information to recover
metric information. In (Boufama et al., 1993) e.g. the coordinates of known points, points
laying on the plane of the given (reference) frame, known alignment of points on vertical or
horizontal line and known distance between points are used to involve metrical information
into the reconstruction. In (Faugeras, 1995) an update sequence is described, that converts
the reconstruction from projective to affine, then from affine to Euclidean. The proposed a-
priori information is either the known motion of the camera, parallelity of lines (for affine)
or angle between lines (for Euclidean) reconstruction.

The other type of methods uses the hypothesis of fixed (but unknown) intrinsic camera
parameters. These algorithms are known camera self-calibration methods. This yields the
intrinsic parameters of the cameras using only imaging information. (Hartley, 1993)
supposes that the cameras have common calibration matrices and uses nonlinear
minimizations to calculate camera matrices. A huge nonlinear minimization is achieved to
get the final description.
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The chapter is divided in sections as follows. Section 2 gives an overview of the most
important methods of projective reconstruction. The main part of the chapter is section 3
dealing with object recognition based on a new indexing method. Section 4 presents a
method of Euclidean reconstruction assuming uncalibrated cameras for robot applications if
the goal is to find the relative position and orientation between the gripper and the
recognized object. Section 6 contains the conclusions and some directions of future
developments. Section 7 is the Appendix summarizing the basic results of projective
geometry and notations used in the chapter.

2. Projective reconstruction

The developed system uses two types of reconstruction algorithms, the first uses point
features only and the other uses point and line features together.

2.1 Cost function for points

Using the pinhole camera model the projection equation for points can be written into linear
form pjq;; =P;Q; . In this case the scale factor p;; denotes the projective depth of the given
point. If there are m cameras and np points in the scene, then the number of projected
image points (and scale factors) are mxnp. But only m+np are independent amongst

them, therefore the projective depths should be decomposed into camera dependent and
feature dependent parts. The decomposition equation can be written as a product of two
other quantities: py; = 7;y; . Using this decomposition, the projection of a point is described

by 7;7,q;; =P;Q; . This decomposition has some advantages: i) the system is described with

the minimum number of parameters, therefore the parameterization is consistent. ii) the
number of unknowns is greatly reduced. E.g. m=3,np =40 - N(7;,7;) <43 <<N(p;;)=120.

If the p;; projection depths were known, the joint projection matrices P; and the projective
shape Q; could be determined by using a rank 4 decomposition method, this is the base of

the factorization methods.
In order to minimize a physically meaningful quantity, the weighted reprojection error used
in the cost function has the form

~

B m 1p 2 2
Ep()= 51 j§1 @ij "7[1‘7 j9ij ‘PiQJ'" '

where the unknowns are z;,y j/Pi ,Q i

2.2 Cost function for points and lines

At first sight it seems a natural choice to extend the decomposition algorithm to lines simply
writing the line projection equations into similar form as in the points-only case using the
line projection matrix G;, see (A7) in Appendix:

m np 2
£0- 8 3 offriit -G |
=1j=1
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But unfortunately i) the projective depth could not directly be interpreted for lines, ii) the
mapping between elements of the point and the line projection matrices is a non-linear
function, iii) there exists no distance metric that can easily (linearly) be expressed with the
terms of 2D line.

Therefore the original error function (1) was modified. The calculation of projective depths
was eliminated wusing a cross product instead of difference, namely
q; ~PQ;—>q; x(PZ-Q j):O. This error is an algebraic distance, it describes the incidence
relation between the true (2D feature point) and the projected point. For lines, similar error
metric (geometric configurations) was defined:

e The incidence relation of 2D line feature and a projected 3D point is 1;P;Q(A,t)=0,

where Q;(A,t) is the t'th point on the A 3D line in Pliicker representation (A3). The

points can be extracted from Pliicker matrix using SVD, see (A5) and (A25). This form
can be used during the calculation of P matrices (resection phase).
o The identity relation of the 2D line feature and a projected 3D line is 1; x(G;A;)=0.

This form can be used during the calculation of A vectors (intersection phase).
e  The containment relation of 3D line and a plane. The plane can be determined as a

backprojected 2D line: S = PiTlik . The line A lies on the plane if U(S;;)A; =0, where
U(S;) is defined by (A10) in Appendix. This form can be used during the calculation

of A vectors (intersection phase).

2.3 Minimization of the cost functions
It can be seen, that the cost functions Ep(-) and E;(-) are nonlinear in the unknowns and

their minimization is similar. A possible solution could be the use of the Levenberg-
Marquardt method and general initial values to directly minimize this cost function. But
fortunately the parameters to be estimated can be separated into different groups, because
they are "independent" from each other (e.g. 3D features are independent from each other,
because they depend only on the objects in the scene and they are not influenced by the
projections). This is the well-known resection-intersection method that holds every group of
parameters fixed, except those, that are currently minimized. Therefore the minimization of
Ep(:) can be achieved in repeated steps. After every iteration the revaluation of the wj
weighting factors are achieved and the actual value of the cost function is calculated. If the
cost is less than a desired threshold (or maximum allowed number of iterations is reached),
the algorithm terminates. The estimation of the given entity can be calculated by making the
derivative of Ep(:) by the respecting entity to zero and the solution can be found in closed
form for each of the features, see (Tél & Lantos, 2007) for details.

For the more general mixed case the detailed calculations are as follows. The error function
for the intersection phase is

mnp 2 mon o, 2
Ei()=2 X2 wQ,i,'"‘li;‘ X(PiQ]‘)" +3 Yol f P 1)
i=1j=1 i=1k=1
where f(P;, L) =L x(GiA) or f(P;,1j)=U(Sj)A .

During this phase, the P; (therefore the G;) projection matrices are held fixed. After some
manipulation the E;(-) can be written into the following form:
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np m
() Zl )y C‘)Q 1]Q] AI 1]AI UQJ + Z ZCOA 1kAk BI 1kBI ik Ak
j=1li= =1li=1
where Aj;i=[q;].P; and B =[13].G; or Bj; =U(Sy). The estimation for the j'th
feature can be calculated by making the derivative of Ej() by Q; and Ay to zero,
respectively. After the differentiation the solution for each Q; and A can be found in
closed form. During the calculation of Q j an additional constraint must be introduced, in

order to eliminate trivial all zero case. The solution of the problem for Q; is the normalized

eigenvector corresponding to the smallest eigenvalue of the matrix Cp, ;; Z a)Q UA LiALij

During the calculation of Aj lines, two additional constraints must be fulfllled. The first

one is the elimination of the trivial (all zero) case, the second one is the Pliicker constraint
for vector Ay, see (A3). The measurement error part is similar to the point-case but here the

m
matrix is Dy j = Za)}l/ikBlT,ikB 1,ik - The error function with the constraint can be written into
i=
the matrix equation A{ (Dy i +aA)Ay =0 . Taking the derivative by Aj and rearranging
the terms yields (¢:=-a) DjjAp=aAA;. The matrix A in (A4) is invertible and
A7 = A, therefore the (approximate) solution of the problem for A, is the vector
corresponding to the smallest singular value of the matrix D 4 = ADy j .

The error function for the resection phase is

m np 2 m np 2 2
Er()= 21 > ®pi "qij X(Pin)" + Zl kzla’A,ik (1 PiQy (A, 1))
i i=1k=

During this phase the Q; and A; entries are held fixed. Again the cameras are independent

from each other. After some manipulation Eg(-) can be rewritten into the form

Er()= zlpl [; wq, 1]AR 1]AR it ZCOA ik8(E)R, ik 8(t )R 1k]P1

0} —w;QF  v.QL
T T ( T T )T
where Ap ;i =| w;Qj 0y -u;;Qj; | and gg ;i = aQ] (Lt) bQj(L,t) cQj(L1)) .
T T T
-0;Qj  u;Qj 04

The estimation for the i"th camera can be calculated by making the derivative of Eg(-) by P;

to zero. Note, that in this case the error function contains only the “point-form” P of the
projection matrices. An additional constraint must be introduced, in order to eliminate
trivial p=0 case. The solution of the problem is the normalized eigenvector corresponding

to the smallest eigenvalue of the matrix

Z wQ 1]AR 1]AR ij + Z@A 1kg( )R 1kg(t)R ik

i=
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2.4 Initialization of the entities

The parameters of the cost function are estimated using an iterative method, therefore an

initial estimation for its values is required. The developed initialization algorithm:

1. Choosing a subset (pair) of views and subset of points that can be seen on all of the
selected images (note: the developed algorithm chooses the views that have the largest
number of point correspondences). Using these points a rank 4 factorization method is
achieved. This gives initial estimation for the given projection matrices and for selected
points.

2. Calculate the projection matrix of a new (not yet processed) view using the points
detected on that view and have the spatial coordinates already determined. This can be
achieved in closed form using SVD.

3. Calculate the spatial coordinates of the not-yet initialized points, that have projection on
the images with determined projection matrix, by using triangulation-like method
(Hartley & Sturm, 1997). This means the determination of a point which has minimal
distance from the rays connecting the image points and the camera focal points in least
squares sense. The solution can be found using SVD.

4. In order to initialize the line features, the algorithm uses the fact that M;; = PiTlij yields

a plane that goes through the optical center of the camera and the projected image of
the line. Theoretically these planes intersect in the spatial line. Taking more than two

views, the solution can be found using SVD. The matrix A=[M;; -+ M, )T is a rank

2 matrix, therefore the two left null vectors yield two points whose join yields the
desired line equation.
The algorithm repeats steps 2 and 3 until all of the projection matrices are calculated.

2.5 Minimization remarks

The two developed algorithms have some common properties.

¢ Handling of missing data (features having no projection on the given view) during the
minimization is simple, the algorithms skip those entries in the error function that do
not have valid q;;, 1ix respectively.

e In order to eliminate the effect of the outliers (caused by badly matched feature
projections), the camera matrices are estimated only from some subsets of the features
in each iteration cycle. These features are selected in a random way and the projection
matrix yielding the smallest reprojection error is used in the further steps. The
weights can be used to make the algorithm more robust, e.g. decrease the influence of
features with larger error.

3. Object recognition

The developed object recognition method uses permutation and projective invariant based
indexing to recognize known object(s) in the scene. A verification step is achieved to finalize
the results.

3.1 Invariants
During the recognition process two sets of entities are used. The first one is the feature sets
of the object as stored in the object database. The second one is the features of the recovered
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scene. Some elements (a subset) represent the same entity in different context (e.g. two
representations of the geometric primitives in different coordinate systems). In order to
determine the pairing of the two representations of the same entities the process requires the
usage of those properties which are not changing (invariant) between representations.
Formally this can be written into the following form. Let T eT denote the (linear)
transformation between representations and G denote the geometric structure that
describes the configuration. The number of functionally independent invariants can be
calculated as

N; =dim(G) - dim(T) +dim(Tg), ?)

where T denotes the isotropy subgroup (if exists), that leaves G unaffected using T and
dim(-) denotes the dimension of the given entity.

In case of projective invariants the relation between the two representations (Euclidean

object database vs. output of the projective reconstruction) can be described with a 3D

projective transformation (collineation). The number of parameters which describe the used

entities are as follows.

¢ 3D point can be described with a 4-vector determined up to a scale. The degree of
freedom is 3.

e 3D line can be described with a 6-vector determined up to a scale and a constraint
(Pliicker). The degree of freedom is 4.

e 3D projective transformation can be described with a 4x4 matrix determined up to a
scale. The degree of freedom is 15.

Using these values the minimum number of entities to determine the invariant(s) is

e 6 points yield 6x3-15+0=3 independent invariant

e 4 points and a line yield (4x3+4)-15+0=1 independent invariant

e 2 points and 3 lines yield (2x3+3x4)-15+0=3 independent invariants
e 3 points and 2 lines yield (3x3+2x4)-15+0=2 independent invariants

e 4linesyield 4x4-15+1=2 independent invariants

The basic element of the projective invariants is the cross ratio and its generalizations for
higher dimensions, see (A12), (A14) and (A15). In the following, using the different geometric
configurations to calculate invariants, it is supposed that the elements are in general positions.
Apart from the trivial degenerate cases, the nontrivial configurations will be determined.

An invariant could be undetermined, if one or more determinants are zero. This means
coincident point(s) and/or lines. All of these cases are eliminated from further investigation.
Invariants of 6 points

As shown in (2) and also e.g. in (Quan, 1995), the number of independent solutions is 3.
Using the ratio of product of determinants, a possible combination of independent
invariants are:

_1Q1Q7Q3Q51-1Q1Q,Q4Q¢ | _191Q2Q5Q5-1Q1Q3Q4Q5 |
1Q1Q,Q3Q4 |- |Q1Q2Q4Q5| 10Q10,Q5Q4 |-1Q10Q30,Q5 |

1~

_19Q1Q,Q3Q5[-1Q,Q5Q4Q¢ |
1Q1Q,Q3Q6 |-1Q2Q3Q4Q5 |
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There are many ways to create a geometric configuration to represent the situation from
which it is possible to calculate the cross ratio. Taking two points Q; and Q, as the axis,
and using the remaining points Q;,1=23,4,5,6, four planes (pencil of planes) can be formed.
The cross ratio of these planes can be determined as the cross ratio of points created as the
intersection of these planes with an arbitrary line not intersecting the axis.

Invariant of 4 points and a line

Let Q; ;,1=1,2 denote two arbitrary distinct points on the line. In this case the invariant in

the determinant form is:

I 1Q11Q1,,Q1Q31Q1,1Q1,2Q:Q4 |
1Q11Q1,,Q1Q41:1Q1,1Q1 2Q2Q3 |

The geometrical situation is similar to the 6 point case, but the axis of the pencil of planes is
the line.

Invariants of 3 points and 2 lines

Let the two lines be denoted by L and K, and Q; ;,Qg ;,i=1,2 are two points on these

lines, respectively. As shown above, there must be two independent invariants for this
configuration.

I :|QL,1QL,2Q1Q2|'|QK,1QK,2Q1Q3| [ :|QL,1QL,2Q1Q2|'|QK,1QK,2Q2Q3|
1 1Q11Q0,Q1Q5 111Qk 1Qk2Q1Q2 1 7 1Q11Q12Q2Q5 [-1Qk 1Qk 2Q1Q; |

A possible geometric configuration to determine the cross ratio is the three planes formed
by L and points Q;,i=1,2,3, and the plane generated by the three points. Using the line

K to cut through these planes, the intersection of the line and the planes gives four points.
The other invariant can be determined by interchanging the role of the lines.

Invariants of 2 points and 3 lines

Let L;,i=12,3 and Q jr j=1,2, be the three lines and two points, respectively.
Geometrically, four planes could be defined from a pair of a point and a line. For example,
let the four planes: (Lq,Q1), (L1,Q»), (L,,Qq) and (L,,Q,). The remaining line Lj

intersects these planes and the four intersection points on the line determine the cross ratio.
The other two invariants could be calculated using lines 1,3 and 2,3 in plane definition.
Invariants of 4 lines

Let L;,i=1,2,3,4 be the four lines. This configuration has 4x4-15+1=2 projective

invariants, because there is an isotropy subgroup of any collineation of 3D projective space
that leaves the four lines in place (Hartley, 1992). Algebraically the invariants can be written as:

I = 1Q1,1Q1,,Q2,1Q2,211Q3,1Q3,2Q4,1Q4 | 1= 1Q1,1Q1,Q2,1Q2,211Q3,1Q3,2Q41Q4, |
1Q11Q12Q31Q3,11Q2,1Q22Q41Q4 | [Q1,1Q1,2Q31Q3,1Q2,1Q2,2Q41Q4 |

where Q; ; denotes the j'th point on the line L;.

3.2 Projective and permutation Invariants
It is shown in (A13), that there are six possible values for the cross ratio for four collinear
points. Using higher dimensional configurations, the situation is worse, 6 points has 6!=720
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possible labeling. Therefore in order to use the invariants for indexing in the object database,
the complexity of the query must be reduced. This means that the effect of labeling
(permutations of the geometric entities) must be eliminated.

As it was shown previously, the invariants of different geometric configurations of points
and lines can be written as the ratio of product of determinants. According to the simplest
generalization of the form, at least N +3 points required in an N -dimensional space, thus

_191QyONOQN:2 |[Q1Q7 - Qn+1Qnus |
1Q1Q;--QNQN+3[1Q1Q2 QN 1+1QN 42 |

It can be seen, that in this case the changing of the labeling of the first N -1 points leaves
the value of the invariant intact (the sign changes of the four determinants cancel each
other), the permutation of the last four points yields the six different values. Therefore the
permutations inside the invariant can be separated as

1(Q1,Q2,--,.QNn,Qn+1.Qn+2,QN4+3)

I(7(Q1,---, QN /QN+1,QnN+2,QN+3)) = 1(71(Q1, -, Qn-1)72(QN Q41 QN2 Qn+3))

where 7 denotes the permutations of the elements. Interchanging the elements between

and i, yields other invariants. Putting together, the projective and permutation invariants

must fulfill two requirements:

e Problem 1: Eliminate the effect of the six possible values of the cross ratio. This can be
accomplished using algebraic or stereographic permutation invariants.

e Problem 2: Eliminate the effect of interchanging the elements between 7| and 7, .

Permutation invariants for cross ratio

In the solutions proposed by (Meer et al, 1998), (Csurka & Faugeras, 1999), the elimination of
the effect of the different labeling inside the cross ratio is achieved in an algebraic way using
higher order symmetric polynomials. The developed method follows a different method,
applies a stereographic projection and a periodic function to give a solution for Problem 1.
Stereographic permutation invariants for cross ratio

As it can be seen in Fig. 1 (left), the plot of the six possible permutations of the cross ratio is
symmetrical to the value 0.5 and (projectively) . By pairs equating the three basic
functions (occurs in cross-ratio) {x,1/x,1—-x} yields x=1/x »>x=%1 andx=1-x—>x=0.5,
the mapping of these values could be calculated. (Note that the third possible combination
1/x=1-x does not give real solution.)

02 0.4 oE 2] 1

Fig. 1. Effect of permutations inside cross ratio (left), stereographic projection (right)
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Considering Table 1 (note, that in projective manner the values « and - represents the
same) it can be concluded, that the key values of the six mappings are (-1,0,0.5,1,2,),
because they form a closed set respecting to these mappings. In order to generate
permutation invariants, application of such periodic function(s) is required that gives same
value to the six possible combinations of the basic functions. This could be achieved in a two
step process.

X | 1] 0 |05 1 2 | w
/x| 1 | « | 2 05 | 0
1x | 2 1 | 05| 0 | 1

Table 1. Key values mappings inside cross ratio

_

Stereographic projection

In order to define a periodic function, the mapping of the infinite line (possible values of

cross ratios) onto a circle is required. This could be achieved with the stereographic

projection (used in the developed system, Fig. 1, right) or gnomonic projection. The

parameters of the circle can be determined from the following constraints

e  The values in the same pair must be mapped on the opposite side of the circle

e  The infinity on the line must be mapped into the “north pole”. Therefore the value 0.5

must be on the “south pole” (at point P).

e  The arrangement of the (six) key values must be symmetrical.

¢  The mapping is continuous.

This yields, that the values (0.5,1,2,0,—-1,0) are mapped onto the angles

<(POB)=(0,7 /3,27 /3,7,4n /3,57 / 3) , respectively. Note, that the 2x <(PNB)=<(POB),

because <(POB) is the central angle and <(PNB) is the respecting inscribed angle. The

A-P A-P

—_— =
2r 2tan(< (PNA))

Substituting the values (A=1,P=05, < (PNB)=x/6,tan(<(PNB))= 1/«/§) gives

r=+3/4. The PDF (probability density function) of the stereographic permutation
invariants is shown in Fig. 2.

radius of the circle can be determined as tan(<(PNA))=

cross ratio w' stereographic |-functon (N=100000)

-2 -15 -1 05 o 0s 1 1.5 2

Fig. 2. Probability density function of stereographic permutation invariants
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Fig. 3. The effect of nonlinear periodic functions (upper line) to the approximations of
uniformly distributed PDF (lower line)

Application of a periodic function

Using the output of the stereographic mapping, the aim is to define a periodic function that
fulfills the J,(I)=],(I+(kx /6)), k=0,...,5 requirement. From the practical point of view,

the outputs of the tested functions are mapped into [0,1] interval. In order to apply a simple
(Euclidean) distance function during the indexing, a nonlinear transformation must be
defined such a way, that the output density must be close to the uniform one. Amongst the
several possibilities, the following functions (whose period is /6, against arcsin(sin(x))=x
whose period is 27) are tested (see Fig. 3 and note, the first row shows only one period of
functions):

o ]y =sin’(@3I)
*  Jy2=(2/x)|arcsin(sin(3I))|

. ]p3 = (2/7r)arcsin(x/(2/7r) | arcsin(sin(31))])
o ]p4 = 0.57(]pb ) 76]pb (I-(x/6)))+0.86 , where

Jpb = (1/7z)arcsin(\/(1/7r) | arcsin(sin(31)) |)
Examining the PDF of the invariants applying the different functions, it can be seen that the
Jpa gives the PDF closest (most similar) to the uniform distribution.
The output of the periodic function gives the solution to the Problem 1.
Elimination of the effect of element interchanges
The next step is to eliminate the effect of interchanging the elements between two
permutation groups (giving solution to the Problem 2). The number of possible combinations

is (N I 3) . Therefore the permutation invariant is not a single value but a vector J . In order
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to remove the effect of the initial labeling of N +3 points, the vector must be sorted. The
applicability of the following configurations is checked: 6 points, 1 line + 4 points, 2 lines + 3
points, 3 lines + 2 points, 4 lines, 5 lines.

Configuration: 6 points

In case of six points, interchanging the elements between the permutation groups yields the
invariant vector

j = S{](h)Jﬂz)J[%}JG; j}][ Eg; j;J,J(Is),J(%}JG; j}][ Egi j;]

][1_2}](12 —1}][13(12 —1)}]( L-L }][12(13 —11)}][ (I -1)(I5 —11)]}
L)\ 1-1)\Lz-1) ) \Iz-1, ) {Li(Iz3-1) ) (11 -3 -1,)

wherel;, I, and I3 are the invariants belonging to the permutation group

®)

71(1,2)5(3,4,5,6) of points, S(-) denotes the sorting operator. The number of points in the
configuration is six but the vector J has 15 elements. Therefore no one-to-one mapping
exists between the points and the elements of the vector. Instead, the mapping exists
between pairs of points and the respecting vector element. The first five elements in (3)
depend on (Q1Q;),i=2,...,6, the next four depend on (Q,Q;),i=3,...,6, and so on.
Finally the last element depends on(Q5Q¢). This means, that building a 6x6 table,
according to the indexing with J, the ordering of the points between two sets of respecting
six point configurations can be determined in the following way.

We describe our concept for the 6-point case. Similar technique can be used for other feature
combinations. The object database contains objects and the objects contain also points, from
which different subsets containing 6 points can be built. The database contains Euclidean
information belonging to the subset of points. From this information using the the
homogeneous coordinates of the points the invariants can be computed. By using the
nonlinear function J,4 the 15 (normalized) components of the vector J can be computed and
sorted and the permutation p after sorting can be determined. This pair of J and p are
precomputed and stored in the database before application. In the scene we can choose 6
point features and from their 3D projective coordinates we can determine another pair of J
and p in a similar way during application. The basis for finding corresponding sets of points
are the J's both in object database and scene. The J’s are compared using Euclidean distance
and a tolerance. Corresponding sets of points are marked and the collineation mapping
points from scene into points from database is determined. This collineation makes it
possible to map further points from the scene into database and check for correspondence.
Thus the set of corresponding points belonging to the same object can be enlarged. In the
success indices a and b identify the sets in database and scene, respectively. The main
problem is that the order of the points in database and scene may be different. The details
are as follows.

After sorting of the vectors J, and J,, let p, and p;, contain the permutation indices of

the elements, therefore if J,(i)=J,(i),i=1,...,15, then element indexed by p,(i)
corresponds to p,(i) . Defining the vector V according to Table 2 yields that the pair
V(p,(i)) corresponds to V(p,(i)), eg V(p,(1))=V(6)={2,3] corresponds to
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V(pp(1))=V(13)={4,5} . Let A be a 6x6 (symmetric) table, where A(V(p,(i)))=V(p,(i)).
The i"th point in the set 'a' corresponds to j'th point in the set 'b', iff every element in the 7'th
row of A contains the index j.

For example a query from the scene into the database contains the sorted vector and
permutation:

]a:(0.0075 0.0247 0.0322 0.0344 0.0420 0.0667 0.3196 0.3269
04270 0.4341 0.7054 0.7185 0.7257 0.9517 0.9739)

pa=(6 12 10 7 9 14 1 8 11 2 5 4 15 3 13)

The resulted entry from the database gives:

]b=(0.0103 0.0338 0.0441 0.0468 0.0572 0.0909 0.3209 0.3309
0.4270 0.4367 0.7037 0.7219 0.7315 0.9513 0.9816)

p,b=(13 3 14 15 4 5 11 8 7 10 2 6 1 12 9)

The vector V is given in detailed form in Table 2.

Il 1 2 3 4 5 6 7 8 9 |10 |11 |12 | 13 | 14 | 15
Vi12]113|14|15|16|23]|24(25|26|34|35|36]|45|46]|5,6

Table 2. Possible pairings in the six points configuration

Using the permutation vectors p,(1)=6 corresponds to p,(1)=13, yields that pair 2,3

corresponds to pair 4,5. Write 2,3 into the position 4,5 (and 5,4) of the 6x6 table and
continuing the process gives the results in Table 3.

1 2 3 4 5 6

* 156116362646
56| * |15]35]25]45
16 15 * 131214
36135113 | * |23]|34
26 251223 | * |24
6 4645|1434 |24 | *

Table 3. Determine correspondences in six points configuration

Q| WIN| =

Searching for the common elements row-wise (e.g. 6 in the first row in Table 3) gives the

final pairings of the features: 1-6, 2-5, 3-1, 4-3, 5-2, 6-4.

A fault tolerant method is also developed. For example some numerically close elements in

the corresponding vectors are swapped by sorting process, hence the table does not yield a

valid solution, see the cells underlined in Table 4.

The solution to the problem is the following. Fill another 6x6 table from the original one

such that the element in (i,j) contains the number of occurrences of j'th value in i'th row of

the original table. Then repeat the following process:

1. Search for a maximum value in this new table. The row-column index gives the pairing.

2. Fill the row and the column with zeros of the pair already found. If the current
maximum value is less than the desired parameter (tipically 4, tolerating only one mis-
match), the pairing is not possible.
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2 3 4 5 6 1 2 3 4 5 6
1 * |56 15(35[45]|25 1 1 1 1 5 1
2 |56 * |16]36]|46]|26 1 1 1 1 1 5
3 15|16 * |23|14|12 4 2 1 1 1 1
4 13513623 | * |34|13 1 1 5 1 1 1
5 14514614134 | * |24 1 1 1 5 1 1
6 2526|1213 [|24]| * 2 4 1 1 1 1

Table 4. Determine correspondences in six points configuration (fault tolerant version)

Configuration: 1 line, 4 points

The calculation of the permutation invariant from the projective one is very simple,
applying the function J(-) to the only one projective invariant. But no method is currently
known to determine pairings from permutation and projective invariants, therefore this type
of configuration is not used during indexing.

Configuration: 2 lines, 3 points

As mentioned earlier, the geometric configuration for this case could be traced back to the
five coplanar points case. Therefore the results of (Meer et al, 1998) could be used, namely
interchanging the elements between the permutation groups yields the vector

I ;-1 I,(I;-1)
=S| JU) Ja) )| - L = I 2 4
Jap []( 1), J( 2)](12]1(12_1] ][11(12_1) )
The elements of the vector can be determined by exchanging the first element with the
elements at2,...,5, respectively.

But this is unnecessary, because the lines and points can be clearly distinguished, therefore
the first element should only be exchanged with the second and the third one. Interchanging
the two lines means applying I —1/I mapping of the invariant (see the algebraic form).

This means, that the permutation invariant vector should contain only

= 5[1(11 )10 )I[%]J .

If the pairing of the points and lines between two sets is required, the simplest solution is to
calculate the vector defined in (4), because there is a one-to-one mapping between the five
points and the five elements of J,p . A possible additional check is to pair points generated

by line intersection with a similar one.

Configuration: 3 lines, 2 points

This configuration yields six planes, because a plane can be formed from a line and a point,
where the point and the line are not coincident. In the projective 3D space the points and
planes are dual to each other (principle of duality), therefore the results of the six points case
can be used.

Configuration: 4 lines

The calculation of the permutation invariant from the projective one is simple, applying the
appropriate function to the projective invariants. But no method is currently known to
determine pairings from permutation and projective invariants, therefore this type of
configuration is not used during indexing.
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Configuration: 5 lines

In order to be able to use line only configuration, from which the pairing can be determined,
compound configuration must be used. The simplest one is 5 lines in general position. From
5 lines five different 4-lines configuration can be extracted. A 4-lines configuration gives two
independent invariants. Applying a function f(J;1,/;2) = J;,i=1,...,5 yields five different
invariants. From these invariants the pairing could be determined.

Let the i'th configuration be the one from which the i"th line is excluded (1st configuration is
built from lines 2,3,4,5, etc.). Let the unsorted 5-vectors be J, and J; . Let the permutation

vectors containing the output of the sorting be p,,p;,, respectively. This means that the
J.(p,(})) invariant equals to J,(p(i)), therefore the (eliminated) lines p,(i), py(i)
correspond to each other.

3.3 Object database
The aim of the application of the object database is to recognize known, predefined
(previously stored) object(s) in the scene. The stored information in the database is the
invariant vectors computed from the 3D Euclidean description of the objects represented by
homogeneous coordinates as described in the previous section. During the query the input
is computed from the output of the projective reconstruction of the scene. The two sets of
invariants must be paired (matched) in order to determine the corresponding feature
configurations. Some additional attributes also stored that is required during verification.
The developed system uses different tables for each of the possible configurations (six
points, etc.). The attributes are the name of the candidate object, type and id of the stored
features and the permutation of the features. These values will be used in a later processing
step (verification).
Metric definition and feature transformation
The usage of the database algorithms (indexing) requires the definition of a metric that
describes the similarity of the feature combinations. A definition of a metric uses a distance
function d(-) that describes the (dis)similarity of the elements between two sets, where
d=0 denotes identical configurations and the dissimilarity is larger as d increasing.
Therefore d forms a metric, because i) d is a non-negative (real) number, ii) the relation is
symmetrical, iii) fulfills the triangle inequality. In order to be able to compare the two
feature sets, application of a feature transformation is required. This feature transformation
maps the configuration properties into a D-dimensional vector space, where the distance
between the vectors is defined. The distance between feature vectors must somehow
correspond to the original (theoretical) distance between the features from them it was
derived (eliminating false positives). Usually this means, that the distance between vectors
is the lower bound of the original distance (this means that the small vector distance may
yield dissimilar feature distance, but similar feature combinations always yield small vector
distance). The properties used in the feature transformation are task dependent, in this case
the feature configuration is described by an invariant vector defined in previous section.
Therefore the feature transformation maps from features (described by its coordinates) into
(vector)space of invariants. Many distance function can be created that fulfill the
requirement of the definition. The most widely used functions can be described as

D

1/p
L() :[Z(ai _bi)pj .

i=1
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Using the different values of p yields the Manhattan metric (p = 1) , Euclidean metric (p =2)
and maximum metric (p =) . In the developed system the Euclidean metric is used.

Query into the database

The query process extracts those elements from the database that are closest to the querying
element (exact matching is not probable due to noise during feature detection). This is the
well-known nearest neighbors (kNN) problem. In our case the invariants are higher
dimensional vector valued entities. The standard R-tree algorithm is very inefficient for
higher dimensions (Moenne-Loccoz, 2005), due to the curse of dimensionality. The developed
method uses X-tree (Berchtold et al., 1996). The query into the database extracts the closest
candidates to the query vector (typically 2-5 are used). A tolerance is applied to eliminate the
truly false matches. The remaining candidates are further processed in the verification step.

3.4 Verification

Because of the feature transformation the query eliminates only the false positives (those
configurations, that are surely do not yield a valid answer to the query), the remaining
candidates must be post-processed with a verification process. (Note: the query process
should yield sufficiently small number of candidates in order to prevent the post-processing
of the whole database.)

Collineation between 3D feature sets

Denote H the 4x4 matrix of the invertible linear transformation (collineation), X;,Y; the
4-length coordinate vector of corresponding 3D homogeneous points. Let the corresponding
line pair be L; and K;, described by 4x4L; K; skew-symmetric Pliicker matrices, see

(A5). Let Xy, , be points on the line L; and Yy, s be points on the line K;, respectively.
Let Qg , be planes that contains K;. If the X; andY;, L; and K; represent the same

entities in different coordinate frames (related by H), then the relation between them can be

written into the form Y; ~HX; and K; ~HL,-HT, or using the entity-dependent scaling

factors with equality ;Y; =HX;, v;K; = HL.H' . The aim is to determine H from a given
set of point and line pairs in a noisy environment (LS solution is preferable), in a closed
form. The solution must handle any number of combinations of points and lines. The
unknowns are the 16 elements of the H matrix (and optionally the x; (i=1,...,np) scaling
factors for points and the v; (i=1,...,n;) scaling factors for lines).

Geometric solution

Using point and line pairs together, the equations contain the unknowns in quadratic or
mixed form. Therefore the direct applications of these functions are not advisable. Instead
geometric constraints are introduced in order to calculate the desired collineation. Let H be
assumed in vector form

\[
higa = (HL1) - HA4) - HEA =k wI nl bl

Point-point relations
For points, the constraint equation is the scaling factor free algebraic distances

Y;(a)X;h) —Y;(b)X;hy =0
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where the pairs {a,b} ={4,1},{4,2},{4,3}.{2,3},{3,1},{L 2} .

The part of the coefficient matrix belonging to this point pair is

-Y;(4)X; 04 04

YZ
04 =Y (4)X; 04 Y;(2)X;
04 04 -Y;(49)X; Y;(3)X; )
04 Y;(2)X; -Y;(3)X; 04
=Y (1)X; 04 Yi(3)X; 04
;(DX; =Y (2)X; 04 04

Line-line relations

In order to eliminate the higher order members of the cost function, the line-type entities
should be eliminated, points and planes relations must be used. The points on the line and
planes, whose intersection is the given line can be extracted from the Pliicker matrix of the
line using SVD, see (A5) and (A25). Any linear combination of two points and two lines can
be used as pairs instead of the original ones (resulted from SVD).

The two possible constraint types are:

*  The transformed points Xy, , should lie on the plane Qg ;. Algebraically this means

(HXL,-,r)TQK,-,s =0 where r,s=1,2. The part of the coefficient matrix belongs to this

configuration is

Qi s (WX, Qi s@XLr L, s(Xe,r L s (DX (6)
A plane can be constructed from a transformed point Xy, , and the line Qy ;. If the point
lies on the line, the plane equation must be invalid, Q =0. Using the representation in (A5),
let K/ = Kg,i Kai), where Kp; and Kg; are 3-vectors. The plane can be generated
[KD,iL Ko,
-Kp; 0

equation becomes Qg . =Ag;, (HXLZ,,,) where r=1,2. The part of the coefficient matrix

using the matrix A, =[ j Applying to the transformed point, the plane

belongs to this configuration is
AKI' (1/1)XL1 ST AKI' (1/2)XL1',V AK,‘ (1/3)XLI T AK,‘ (1’4)XL1 ST (7)

Estimation of H

The equations (4), (5) and (6) yield linear constraints for the elements of the collineation H.
Collecting these coefficients into a matrix A, the equations can be written into the form
Ah=0. Applying an additional constraint [h|=1 in order to avoid the trivial
solutionh =0, the problem can be solved in a closed form, using SVD, as the vector
corresponding to the smallest singular value.
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