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1. Introduction 

More and more applications (path planning of a robot, collision avoidance methods) require 
3D description of the surround world. This chapter describes a 3D projective reconstruction 
method and its application in an object recognition algorithm. 
The described system uses 2D (color or grayscale) images about the scene taken by 
uncalibrated cameras, tries to localize known object(s) and determine the (relative) position 
and orientation between them. The scene reconstruction algorithm uses simple 2D 
geometric entities (points, lines) produced by a low-level feature detector as the images of 
the 3D vertices and edges of the objects. The features are matched across views (Tél & Tóth, 
2000). During the projective reconstruction the 3D description is recovered. The developed 
system uses uncalibrated cameras, therefore only projective 3D structure can be detected 
defined up to a collineation. Using the Euclidean information about a known set of 
predefined objects stored in database and the results of the recognition algorithm, the 
description could be updated to a metric one.  
Projective reconstruction methods 
There are many known solutions to the projective reconstruction problem. Most of the 
developed methods use point features (e.g. vertices), but there are extensions to use higher 
order features, such as lines and curves (Kaminski & Shashua, 2004). The existing methods 
can be separated into three main groups. The view tensors describe the algebraic 
relationships amongst coordinates of features in multiple images that must be satisfied in 
order to represent the same spatial feature in 3D scene (Faugeras & Mourrain, 1995). These 
methods estimate fundamental matrix from two views (Armangué et al., 2001) or trifocal 
tensor from three views (Torr & Zisserman, 1997). The factorization based methods use the fact 
that collecting the weighted homogeneous (point) projection vectors into a large matrix 
(measurement matrix), the rank must be four, because it is a product of two rank four 
matrices. An iterative solution to solve this problem can be found in (Han & Kanade 2000). 
In bundle adjustment methods the reprojection errors between original image feature locations 
and an estimated projection of spatial feature locations are minimized. The solution for the 
problem can be found applying e.g. nonlinear least squares algorithm (Levenberg-
Marquardt). 
Object recognition methods 
The aim of object recognition methods is to recognize objects in the scene from a known set 
of objects, hence some a-priori information is required about the objects. These types of O
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methods are called model based object recognition methods, where predefined object 
databases are used to store the required information about the objects. There are many 
classification types of the applied (and stored) object models, such as object-centered or 
viewer-centered models, physical or geometrical models, rigid or deformable models, etc. 
The dimensionality of the used information is also changed in different recognition systems, 
there are 2D only, mixed and 3D only systems. The developed algorithms are usually 
evaluated against set of different criteria, such as search complexity, discriminative power 
and robustness. The appearance based methods use 2D images as object representations. Using 
multiple views, the stored information can be reduced to a minimal set. Here the intensity 
distribution of the images is used as the basis of the comparison of the similarity of the 
projected intensity image among views. The two different strategies are global ones, e.g. 
eigenface (Belhumeur et al., 1997) or local approach, where local properties of the images 
(neighborhood of edges or corner points) are used to improve the discriminative power, e.g. 
GLOH (Mikolajczyk & Schmid, 2005)). 
The aspect graph methods use the changes in the projected geometry of the objects and group 
views bounded by transitions of the geometry (Schiffenbauer, 2001). The information 
reduction is based on the determination of general views, which are equivalent with each 
other.  
The indexing based methods use those properties of the data that are invariant against a 
selected group of transformations. In this case the transformation describes the relationship 
between the object data as stored in the database and scene information, therefore the 
transformations could be rigid (translation and rotation), similarity (rigid and scaling), etc., 
up to the most general projective one (collineation). The most widely used methods are 
based on the geometric hashing (Wolfson & Rigoutsos, 1997). In this case subsets of features 
(points) are selected that can be used to form a basis and define local coordinate system with 
that basis. Calculating the coordinates of all of the remaining features in this coordinate 
system and quantizing the calculated coordinates a hash table is constructed. During the 
query a similar method is applied and vote is generated into the respecting entry of the hash 
table.  
Euclidean update methods 
The last step of the reconstruction is (if the robot control application requires) the update of 

the reconstructed data from projective to a metric one. There are several algorithms that 

address this issue. One group of applications uses known a-priori information to recover 

metric information. In (Boufama et al., 1993) e.g. the coordinates of known points, points 

laying on the plane of the given (reference) frame, known alignment of points on vertical or 

horizontal line and known distance between points are used to involve metrical information 

into the reconstruction. In (Faugeras, 1995) an update sequence is described, that converts 

the reconstruction from projective to affine, then from affine to Euclidean. The proposed a-

priori information is either the known motion of the camera, parallelity of lines (for affine) 

or angle between lines (for Euclidean) reconstruction. 

The other type of methods uses the hypothesis of fixed (but unknown) intrinsic camera 

parameters. These algorithms are known camera self-calibration methods. This yields the 

intrinsic parameters of the cameras using only imaging information. (Hartley, 1993) 

supposes that the cameras have common calibration matrices and uses nonlinear 

minimizations to calculate camera matrices. A huge nonlinear minimization is achieved to 

get the final description. 
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The chapter is divided in sections as follows. Section 2 gives an overview of the most 
important methods of projective reconstruction. The main part of the chapter is section 3 
dealing with object recognition based on a new indexing method. Section 4 presents a 
method of Euclidean reconstruction assuming uncalibrated cameras for robot applications if 
the goal is to find the relative position and orientation between the gripper and the 
recognized object. Section 6 contains the conclusions and some directions of future 
developments. Section 7 is the Appendix summarizing the basic results of projective 
geometry and notations used in the chapter.  

2. Projective reconstruction 

The developed system uses two types of reconstruction algorithms, the first uses point 
features only and the other uses point and line features together.  

2.1 Cost function for points 
Using the pinhole camera model the projection equation for points can be written into linear 

form jiijij QPq =ρ . In this case the scale factor ijρ  denotes the projective depth of the given 

point. If there are m  cameras and Pn  points in the scene, then the number of projected 

image points (and scale factors) are Pnm× . But only Pnm+  are independent amongst 

them, therefore the projective depths should be decomposed into camera dependent and 
feature dependent parts. The decomposition equation can be written as a product of two 

other quantities: jiij γπρ = . Using this decomposition, the projection of a point is described 

by jiijji QPq =γπ . This decomposition has some advantages: i) the system is described with 

the minimum number of parameters, therefore the parameterization is consistent. ii) the 

number of unknowns is greatly reduced. E.g. 120)(43),(40,3 =<<≤→== ijjiP NNnm ργπ . 

If the ijρ  projection depths were known, the joint projection matrices iP  and the projective 

shape jQ  could be determined by using a rank 4 decomposition method, this is the base of 

the factorization methods.  
In order to minimize a physically meaningful quantity, the weighted reprojection error used 
in the cost function has the form 

 ∑ ∑= =
−=⋅ m

i

n

j
jiijjiijP

P
E

1 1

22)( QPqγπω  (1) 

where the unknowns are jiji QP ,,,γπ .  

2.2 Cost function for points and lines 
At first sight it seems a natural choice to extend the decomposition algorithm to lines simply 
writing the line projection equations into similar form as in the points-only case using the 

line projection matrix iG , see (A7) in Appendix: 
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But unfortunately i) the projective depth could not directly be interpreted for lines, ii) the 
mapping between elements of the point and the line projection matrices is a non-linear 
function, iii) there exists no distance metric that can easily (linearly) be expressed with the 
terms of 2D line. 
Therefore the original error function (1) was modified. The calculation of projective depths 
was eliminated using a cross product instead of difference, namely ( ) 0~ =×→ jiijjiij QPqQPq . This error is an algebraic distance, it describes the incidence 

relation between the true (2D feature point) and the projected point. For lines, similar error 
metric (geometric configurations) was defined: 

• The incidence relation of 2D line feature and a projected 3D point is 0),( =tkiik ΛQPl , 

where ),( tk ΛQ  is the t’th point on the Λ  3D line in Plücker representation (A3). The 

points can be extracted from Plücker matrix using SVD, see (A5) and (A25). This form 

can be used during the calculation of P matrices (resection phase). 

• The identity relation of the 2D line feature and a projected 3D line is 0)( =× kiik ΛGl . 

This form can be used during the calculation of Λ  vectors (intersection phase). 

• The containment relation of 3D line and a plane. The plane can be determined as a 

backprojected 2D line: ik
T
iik lPS = . The line kΛ  lies on the plane if 0)( =kik ΛSU , where 

)( ikSU  is defined by (A10) in Appendix. This form can be used during the calculation 

of Λ  vectors (intersection phase). 

2.3 Minimization of the cost functions 

It can be seen, that the cost functions )(⋅PE  and )(⋅LE  are nonlinear in the unknowns and 

their minimization is similar. A possible solution could be the use of the Levenberg-
Marquardt method and general initial values to directly minimize this cost function. But 
fortunately the parameters to be estimated can be separated into different groups, because 
they are "independent" from each other (e.g. 3D features are independent from each other, 
because they depend only on the objects in the scene and they are not influenced by the 
projections). This is the well-known resection-intersection method that holds every group of 
parameters fixed, except those, that are currently minimized. Therefore the minimization of 

)(⋅PE  can be achieved in repeated steps. After every iteration the revaluation of the ωij 

weighting factors are achieved and the actual value of the cost function is calculated. If the 
cost is less than a desired threshold (or maximum allowed number of iterations is reached), 
the algorithm terminates. The estimation of the given entity can be calculated by making the 

derivative of )(⋅PE  by the respecting entity to zero and the solution can be found in closed 

form for each of the features, see (Tél  & Lantos, 2007) for details. 
For the more general mixed case the detailed calculations are as follows. The error function 
for the intersection phase is  

 ∑ ∑∑ ∑ = == =
+×=⋅ m

i

n

k
ikiik
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22
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22
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where )(),( kiikikif ΛGllP ×=  or kikikif ΛSUlP )(),( = . 

During this phase, the Pi (therefore the Gi) projection matrices are held fixed. After some 
manipulation the )(⋅IE  can be written into the following form: 
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where iijijI PqA ×= ][,  and iikikI GlB ×= ][,  or )(, ikikI SUB = . The estimation for the j’th 

feature can be calculated by making the derivative of )(⋅IE  by jQ  and kΛ  to zero, 

respectively. After the differentiation the solution for each iQ  and kΛ  can be found in 

closed form. During the calculation of jQ  an additional constraint must be introduced, in 

order to eliminate trivial all zero case. The solution of the problem for jQ  is the normalized 

eigenvector corresponding to the smallest eigenvalue of the matrix ∑== m

i
ijI

T
ijIijQijR

1
,,

2
,, AAC ω  

During the calculation of kΛ  lines, two additional constraints must be fulfilled. The first 

one is the elimination of the trivial (all zero) case, the second one is the Plücker constraint 
for vector kΛ , see (A3). The measurement error part is similar to the point-case but here the 

matrix is ∑== m

i
ikI

T
ikIikikI

1
,,

2
,, BBD Λω . The error function with the constraint can be written into 

the matrix equation 0)( , =+ kikI
T
k ΛΔDΛ α . Taking the derivative by kΛ  and rearranging 

the terms yields ):( αα −=  kkikI ΔΛΛD α=, . The matrix Δ  in (A4) is invertible and 

ΔΔ =−1 , therefore the (approximate) solution of the problem for kΛ  is the vector 

corresponding to the smallest singular value of the matrix ikI ,ΔDD =Δ . 

The error function for the resection phase is  
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During this phase the jQ  and jΛ  entries are held fixed. Again the cameras are independent 

from each other. After some manipulation )(⋅RE  can be rewritten into the form 
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The estimation for the i’th camera can be calculated by making the derivative of )(⋅RE  by iP  

to zero. Note, that in this case the error function contains only the “point-form” P  of the 
projection matrices. An additional constraint must be introduced, in order to eliminate 
trivial 0p =  case. The solution of the problem is the normalized eigenvector corresponding 

to the smallest eigenvalue of the matrix  
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2.4 Initialization of the entities 
The parameters of the cost function are estimated using an iterative method, therefore an 
initial estimation for its values is required. The developed initialization algorithm: 
1. Choosing a subset (pair) of views and subset of points that can be seen on all of the 

selected images (note: the developed algorithm chooses the views that have the largest 
number of point correspondences). Using these points a rank 4 factorization method is 
achieved. This gives initial estimation for the given projection matrices and for selected 
points. 

2. Calculate the projection matrix of a new (not yet processed) view using the points 
detected on that view and have the spatial coordinates already determined. This can be 
achieved in closed form using SVD. 

3. Calculate the spatial coordinates of the not-yet initialized points, that have projection on 
the images with determined projection matrix, by using triangulation-like method  
(Hartley & Sturm, 1997). This means the determination of a point which has minimal 
distance from the rays connecting the image points and the camera focal points in least 
squares sense. The solution can be found using SVD. 

4. In order to initialize the line features, the algorithm uses the fact that ij
T
iij lPM =  yields 

a plane that goes through the optical center of the camera and the projected image of 
the line. Theoretically these planes intersect in the spatial line. Taking more than two 

views, the solution can be found using SVD. The matrix ( )Tmjij MMA A=  is a rank 

2 matrix, therefore the two left null vectors yield two points whose join yields the 
desired line equation. 

The algorithm repeats steps 2 and 3 until all of the projection matrices are calculated. 

2.5 Minimization remarks 
The two developed algorithms have some common properties.  

• Handling of missing data (features having no projection on the given view) during the 
minimization is simple, the algorithms skip those entries in the error function that do 
not have valid qij, lik respectively. 

•  In order to eliminate the effect of the outliers (caused by badly matched feature 
projections), the camera matrices are estimated only from some subsets of the features 
in each iteration cycle. These features are selected in a random way and the projection 
matrix yielding the smallest reprojection error is used in the further steps. The ωij 
weights can be used to make the algorithm more robust, e.g. decrease the influence of 
features with larger error. 

3. Object recognition 

The developed object recognition method uses permutation and projective invariant based 
indexing to recognize known object(s) in the scene. A verification step is achieved to finalize 
the results. 

3.1 Invariants 
During the recognition process two sets of entities are used. The first one is the feature sets 
of the object as stored in the object database. The second one is the features of the recovered 

www.intechopen.com



Projective Reconstruction and Its Application in Object Recognition for Robot Vision System 

 

447 

scene. Some elements (a subset) represent the same entity in different context (e.g. two 
representations of the geometric primitives in different coordinate systems). In order to 
determine the pairing of the two representations of the same entities the process requires the 
usage of those properties which are not changing (invariant) between representations. 

Formally this can be written into the following form. Let T∈T denote the (linear) 

transformation between representations and G  denote the geometric structure that 

describes the configuration. The number of functionally independent invariants can be 
calculated as  

 )dim()dim()dim( GI TTGN +−= , (2) 

where GT  denotes the isotropy subgroup (if exists), that leaves G  unaffected using T  and 

)dim(⋅  denotes the dimension of the given entity. 

In case of projective invariants the relation between the two representations (Euclidean 
object database vs. output of the projective reconstruction) can be described with a 3D 
projective transformation (collineation). The number of parameters which describe the used 
entities are as follows. 

• 3D point can be described with a 4-vector determined up to a scale. The degree of 
freedom is 3. 

• 3D line can be described with a 6-vector determined up to a scale and a constraint 
(Plücker). The degree of freedom is 4. 

• 3D projective transformation can be described with a 4x4 matrix determined up to a 
scale. The degree of freedom is 15. 

Using these values the minimum number of entities to determine the invariant(s) is: 

• 6 points yield 301536 =+−×  independent invariant 

• 4 points and a line yield 1015)434( =+−+×  independent invariant 

• 2 points and 3 lines yield 3015)4332( =+−×+×  independent invariants 

• 3 points and 2 lines yield 2015)4233( =+−×+×  independent invariants 

• 4 lines yield 211544 =+−×  independent invariants 

The basic element of the projective invariants is the cross ratio and its generalizations for 
higher dimensions, see (A12), (A14) and (A15). In the following, using the different geometric 
configurations to calculate invariants, it is supposed that the elements are in general positions. 
Apart from the trivial degenerate cases, the nontrivial configurations will be determined. 
An invariant could be undetermined, if one or more determinants are zero. This means 
coincident point(s) and/or lines. All of these cases are eliminated from further investigation.  
Invariants of 6 points 
As shown in (2) and also e.g. in (Quan, 1995), the number of independent solutions is 3. 
Using the ratio of product of determinants, a possible combination of independent 
invariants are: 
 

||||

||||
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There are many ways to create a geometric configuration to represent the situation from 

which it is possible to calculate the cross ratio. Taking two points 1Q  and 2Q  as the axis, 

and using the remaining points 6,5,4,3, =iiQ , four planes (pencil of planes) can be formed. 

The cross ratio of these planes can be determined as the cross ratio of points created as the 
intersection of these planes with an arbitrary line not intersecting the axis. 
Invariant of 4 points and a line 

Let 2,1,, =iiLQ  denote two arbitrary distinct points on the line. In this case the invariant in 

the determinant form is: 

||||

||||

322,1,412,1,

422,1,312,1,

QQQQQQQQ

QQQQQQQQ

LLLL

LLLLI ⋅
⋅=  

The geometrical situation is similar to the 6 point case, but the axis of the pencil of planes is 
the line.  
Invariants of 3 points and 2 lines 

Let the two lines be denoted by L  and K , and 2,1,, ,, =iiKiL QQ  are two points on these 

lines, respectively. As shown above, there must be two independent invariants for this 
configuration. 

||||

||||

212,1,312,1,

312,1,212,1,
1

QQQQQQQQ

QQQQQQQQ

KKLL

KKLLI ⋅
⋅= , 

||||

||||

212,1,322,1,

322,1,212,1,
2

QQQQQQQQ

QQQQQQQQ

KKLL

KKLLI ⋅
⋅=  

A possible geometric configuration to determine the cross ratio is the three planes formed 

by L  and points 3,2,1, =iiQ , and the plane generated by the three points. Using the line 

K  to cut through these planes, the intersection of the line and the planes gives four points. 
The other invariant  can be determined by interchanging the role of the lines. 
Invariants of 2 points and 3 lines 

Let 3,2,1, =iiL  and 2,1, =jjQ , be the three lines and two points, respectively. 

Geometrically, four planes could be defined from a pair of a point and a line. For example, 

let the four planes: ),( 11 QL , ),( 21 QL , ),( 12 QL  and ),( 22 QL . The remaining line 3L  

intersects these planes and the four intersection points on the line determine the cross ratio. 
The other two invariants could be calculated using lines 1,3 and 2,3 in plane definition. 
Invariants of 4 lines 

Let 4,3,2,1, =iiL  be the four lines. This configuration has 211544 =+−×  projective 

invariants, because there is an isotropy subgroup of any collineation of 3D projective space 
that leaves the four lines in place (Hartley, 1992). Algebraically the invariants can be written as: 

||||

||||

2,41,42,21,22,31,32,11,1

2,41,42,31,32,21,22,11,1
1

QQQQQQQQ

QQQQQQQQ

⋅
⋅=I

||||

||||
I

2,41,42,21,22,31,32,11,1

2,41,42,31,32,21,22,11,1
2

QQQQQQQQ

QQQQQQQQ

⋅
⋅=  

where ji ,Q  denotes the j’th point on the line iL . 

3.2 Projective and permutation Invariants 
It is shown in (A13), that there are six possible values for the cross ratio for four collinear 
points. Using higher dimensional configurations, the situation is worse, 6 points has 6!=720 
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possible labeling. Therefore in order to use the invariants for indexing in the object database, 
the complexity of the query must be reduced. This means that the effect of labeling 
(permutations of the geometric entities) must be eliminated.  
As it was shown previously, the invariants of different geometric configurations of points 
and lines can be written as the ratio of product of determinants. According to the simplest 

generalization of the form, at least 3+N  points required in an N -dimensional space, thus 

||||

||||
),,,,,,(

2121321

3121221
32121 +++

++++++ ⋅
⋅=

NNNN

NNNN
NNNNI

QQQQQQQQ

QQQQQQQQ
QQQQQQ

AA
AA… . 

It can be seen, that in this case the changing of the labeling of the first 1−N  points leaves 

the value of the invariant intact (the sign changes of the four determinants cancel each 
other), the permutation of the last four points yields the six different values. Therefore the 
permutations inside the invariant can be separated as  

)),,,(),,(()),,,,,(( 32121113211 +++−+++ = NNNNNNNNN II QQQQQQQQQQQ πππ ……  

where π  denotes the permutations of the elements. Interchanging the elements between  π1 

and π2 yields other invariants. Putting together, the projective and permutation invariants 
must fulfill two requirements: 

• Problem 1: Eliminate the effect of the six possible values of the cross ratio. This can be 
accomplished using algebraic or stereographic permutation invariants. 

• Problem 2: Eliminate the effect of interchanging the elements between 1π  and 2π . 

Permutation invariants for cross ratio 
In the solutions proposed by (Meer et al, 1998), (Csurka & Faugeras, 1999), the elimination of 
the effect of the different labeling inside the cross ratio is achieved in an algebraic way using 
higher order symmetric polynomials. The developed method follows a different method, 
applies a stereographic projection and a periodic function to give a solution for Problem 1. 
Stereographic permutation invariants for cross ratio 
As it can be seen in Fig. 1 (left), the plot of the six possible permutations of the cross ratio is 

symmetrical to the value 5.0  and (projectively) ∞ . By pairs equating the three basic 

functions (occurs in cross-ratio) }1,/1,{ xxx −  yields 1/1 ±=→= xxx  and 5.01 =→−= xxx , 

the mapping of these values could be calculated. (Note that the third possible combination 

xx −= 1/1  does not give real solution.) 

 
Fig. 1. Effect of permutations inside cross ratio (left), stereographic projection (right) 

www.intechopen.com



 Computer Vision 

 

450 

Considering Table 1 (note, that in projective manner the values ∞  and −∞  represents the 

same) it can be concluded, that the key values of the six mappings are ),2,1,5.0,0,1( ∞− , 

because they form a closed set respecting to these mappings. In order to generate 
permutation invariants, application of such periodic function(s) is required that gives same 
value to the six possible combinations of the basic functions. This could be achieved in a two 
step process. 
 

X -1 0 0.5 1 2 ∞  
1/x -1 ∞  2 1 0.5 0 

1-x 2 1 0.5 0 -1 ∞  

Table 1. Key values mappings inside cross ratio 

Stereographic projection 
In order to define a periodic function, the mapping of the infinite line (possible values of 
cross ratios) onto a circle is required. This could be achieved with the stereographic 
projection (used in the developed system, Fig. 1, right) or gnomonic projection. The 
parameters of the circle can be determined from the following constraints 

• The values in the same pair must be mapped on the opposite side of the circle 

• The infinity on the line must be mapped into the “north pole”. Therefore the value 0.5 
must be on the “south pole” (at point P). 

• The arrangement of the (six) key values must be symmetrical. 

• The mapping is continuous. 
This yields, that the values )0,1,,2,1,5.0( −∞  are mapped onto the angles 

)3/5,3/4,,3/2,3/,0()( πππππ=POB1 , respectively. Note, that the )()(2 POBPNB 11 =× , 

because )(POB1  is the central angle and )(PNB1  is the respecting inscribed angle. The 

radius of the circle can be determined as 
))(tan(22

))(tan(
PNA

PA
r

r

PA
PNA

1
1 −=→−= . 

Substituting the values ,5.0,1( == PA  )3/1))(tan(,6/)( == PNBPNB 11 π  gives 

4/3=r . The PDF (probability density function) of the stereographic permutation 

invariants is shown in Fig. 2. 

 

Fig. 2. Probability density function of stereographic permutation invariants 
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Fig. 3. The effect of nonlinear periodic functions (upper line) to the approximations of 
uniformly distributed PDF (lower line) 

Application of a periodic function 
Using the output of the stereographic mapping, the aim is to define a periodic function that 

fulfills the 5,,0)),6/(()( …=+= kkIJIJ pp π  requirement. From the practical point of view, 

the outputs of the tested functions are mapped into ]1,0[  interval. In order to apply a simple 

(Euclidean) distance function during the indexing, a nonlinear transformation must be 
defined such a way, that the output density must be close to the uniform one.  Amongst the 

several possibilities, the following functions (whose period is π/6, against xx =))(arcsin(sin  

whose period is 2π) are tested (see Fig. 3 and note, the first row shows only one period of 
functions): 

• )3(sin2
1 IJp =  

• |))3(arcsin(sin|)/2(2 IJp π=  

• )|))3(arcsin(sin|)/2(arcsin()/2(3 IJp ππ=  

• 86.0)))6/((6)((57.04 +−−= πIJIJJ pbpbp , where  

        )|))3(arcsin(sin|)/1(arcsin()/1( IJpb ππ=  

Examining the PDF of the invariants applying the different functions, it can be seen that the 
Jp4 gives the PDF closest (most similar) to the uniform distribution.  
The output of the periodic function gives the solution to the Problem 1.  
Elimination of the effect of element interchanges 
The next step is to eliminate the effect of interchanging the elements between two 
permutation groups (giving solution to the Problem 2). The number of possible combinations 

is ⎟⎠⎞⎜⎝⎛ +
4

3N . Therefore the permutation invariant is not a single value but a vector J . In order 
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to remove the effect of the initial labeling of 3+N  points, the vector must be sorted. The 
applicability of the following configurations is checked: 6 points, 1 line + 4 points, 2 lines + 3 
points, 3 lines + 2 points, 4 lines, 5 lines.  
Configuration: 6 points 
In case of six points, interchanging the elements between the permutation groups yields the 
invariant vector  
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⎟⎟⎠
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 (3) 

where 1I , 2I  and 3I  are the invariants belonging to the permutation group 

)6,5,4,3()2,1( 21 ππ  of points, )(⋅S  denotes the sorting operator. The number of points in the 

configuration is six but the vector J  has 15 elements. Therefore no one-to-one mapping 

exists between the points and the elements of the vector. Instead, the mapping exists 
between pairs of points and the respecting vector element. The first five elements in (3) 
depend on 6,,2),( 1 …=iiQQ , the next four depend on 6,,3),( 2 …=iiQQ , and so on. 

Finally the last element depends on )( 65QQ . This means, that building a 6x6 table, 

according to the indexing with J , the ordering of the points between two sets of respecting 

six point configurations can be determined in the following way. 
We describe our concept for the 6-point case. Similar technique can be used for other feature 

combinations. The object database contains objects and the objects contain also points, from 

which different subsets containing 6 points can be built. The database contains Euclidean 

information belonging to the subset of points. From this information using the the 

homogeneous coordinates of the points the invariants can be computed. By using the 

nonlinear function Jp4 the 15 (normalized) components of the vector J can be computed and 

sorted and the permutation p after sorting can be determined. This pair of J and p are 

precomputed and stored in the database before application. In the scene we can choose 6 

point features and from their 3D projective coordinates we can determine another pair of J 

and p in a similar way during application. The basis for finding corresponding sets of points 

are the J’s both in object database and scene. The J’s are compared using Euclidean distance 

and a tolerance. Corresponding sets of points are marked and the collineation mapping 

points from scene into points from database is determined. This collineation makes it 

possible to map further points from the scene into database and check for correspondence. 

Thus the set of corresponding points belonging to the same object can be enlarged. In the 

success indices a  and b  identify the sets in database and scene, respectively. The main 

problem is that the order of the points in database and scene may be different. The details 

are as follows. 

After sorting of the vectors aJ  and bJ , let ap  and bp  contain the permutation indices of 

the elements, therefore if 15,,1),()( …== iii ba JJ , then element indexed by )(iap  

corresponds to )(ibp . Defining the vector V  according to Table 2 yields that the pair ( ))( iapV  corresponds to ( ))( ibpV , e.g. }3,2{)6())1(( == VpV a  corresponds to 
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}5,4{)13())1(( == VpV b . Let A  be a 66×  (symmetric) table, where ( ) ( ))())(( ii ab pVpVA = . 

The i’th point in the set 'a' corresponds to j’th point in the set 'b', iff every element in the i’th 
row of A  contains the index j. 
For example a query from the scene into the database contains the sorted vector and 
permutation: 

( )9739.09517.07257.07185.07054.04341.04270.0

3269.03196.00667.00420.00344.00322.00247.00075.0Ja A=
 

( )133154521181149710126pa =  

The resulted entry from the database gives: 

( )9816.09513.07315.07219.07037.04367.04270.0

3309.03209.00909.00572.00468.00441.00338.00103.0Jb A=
 

( )912162107811541514313pb =  

The vector V is given in detailed form in Table 2. 
  

I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

V 1,2 1,3 1,4 1,5 1,6 2,3 2,4 2,5 2,6 3,4 3,5 3,6 4,5 4,6 5,6 

Table 2. Possible pairings in the six points configuration 

Using the permutation vectors 6)1( =ap  corresponds to 13)1( =bp , yields that pair 2,3 

corresponds to pair 4,5. Write 2,3 into the position 4,5 (and 5,4) of the 66×  table and 
continuing the process gives the results in Table 3. 
 

 1 2 3 4 5 6 

1 * 5,6 1,6 3,6 2,6 4,6

2 5,6 * 1,5 3,5 2,5 4,5

3 1,6 1,5 * 1,3 1,2 1,4

4 3,6 3,5 1,3 * 2,3 3,4

5 2,6 2,5 1,2 2,3 * 2,4

6 4,6 4,5 1,4 3,4 2,4 * 

Table 3. Determine correspondences in six points configuration 

Searching for the common elements row-wise (e.g. 6 in the first row in Table 3) gives the 
final pairings of the features: 1-6, 2-5, 3-1, 4-3, 5-2, 6-4. 
A fault tolerant method is also developed. For example some numerically close elements in 
the corresponding vectors are swapped by sorting process, hence the table does not yield a 
valid solution, see the cells underlined in Table 4. 
The solution to the problem is the following. Fill another 6x6 table from the original one 
such that the element in (i,j) contains the number of occurrences of j’th value in i’th row of 
the original table. Then repeat the following process:   
1. Search for a maximum value in this new table. The row-column index gives the pairing.  
2. Fill the row and the column with zeros of the pair already found. If the current 

maximum value is less than the desired parameter (tipically 4, tolerating only one mis-
match), the pairing is not possible. 

www.intechopen.com



 Computer Vision 

 

454 

 1 2 3 4 5 6 1 2 3 4 5 6 

1 * 5,6 1,5 3,5 4,5 2,5 1 1 1 1 5 1 

2 5,6 * 1,6 3,6 4,6 2,6 1 1 1 1 1 5 

3 1,5 1,6 * 2,3 1,4 1,2 4 2 1 1 1 1 

4 3,5 3,6 2,3 * 3,4 1,3 1 1 5 1 1 1 

5 4,5 4,6 1,4 3,4 * 2,4 1 1 1 5 1 1 

6 2,5 2,6 1,2 1,3 2,4 * 

 

2 4 1 1 1 1 

Table 4. Determine correspondences in six points configuration (fault tolerant version) 

Configuration: 1 line, 4 points 
The calculation of the permutation invariant from the projective one is very simple, 

applying the function ( )⋅J  to the only one projective invariant. But no method is currently 

known to determine pairings from permutation and projective invariants, therefore this type 
of configuration is not used during indexing. 
Configuration: 2 lines, 3 points 
As mentioned earlier, the geometric configuration for this case could be traced back to the 
five coplanar points case. Therefore the results of (Meer et al, 1998) could be used, namely 
interchanging the elements between the permutation groups yields the vector 

 ⎟⎟⎠
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II

II
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I
J

I

I
JIJIJSDJ  (4)  

The elements of the vector can be determined by exchanging the first element with the 

elements at 5,,2 … , respectively. 

But this is unnecessary, because the lines and points can be clearly distinguished, therefore 
the first element should only be exchanged with the second and the third one. Interchanging 

the two lines means applying II /1→  mapping of the invariant (see the algebraic form). 

This means, that the permutation invariant vector should contain only 

⎟⎟⎠
⎞

⎜⎜⎝
⎛

⎟⎟⎠
⎞⎜⎜⎝

⎛=
2

1
21 ),(),(

I

I
JIJIJSJ .  

If the pairing of the points and lines between two sets is required, the simplest solution is to 
calculate the vector defined in (4), because there is a one-to-one mapping between the five 

points and the five elements of D2J . A possible additional check is to pair points generated 

by line intersection with a similar one. 
Configuration: 3 lines, 2 points 
This configuration yields six planes, because a plane can be formed from a line and a point, 
where the point and the line are not coincident. In the projective 3D space the points and 
planes are dual to each other (principle of duality), therefore the results of the six points case 
can be used. 
Configuration: 4 lines 
The calculation of the permutation invariant from the projective one is simple, applying the 
appropriate function to the projective invariants. But no method is currently known to 
determine pairings from permutation and projective invariants, therefore this type of 
configuration is not used during indexing. 
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Configuration: 5 lines 
In order to be able to use line only configuration, from which the pairing can be determined, 
compound configuration must be used. The simplest one is 5 lines in general position. From 
5 lines five different 4-lines configuration can be extracted. A 4-lines configuration gives two 
independent invariants. Applying a function 5,,1,),( 2,1, …=→ iJJJf iii  yields five different 

invariants. From these invariants the pairing could be determined. 
Let the i’th configuration be the one from which the i’th line is excluded (1st configuration is 
built from lines 2,3,4,5, etc.). Let the unsorted 5-vectors be aJ  and bJ . Let the permutation 

vectors containing the output of the sorting be ba pp , , respectively. This means that the 

))(( iaa pJ  invariant equals to ))(( ibb pJ , therefore the (eliminated) lines )(iap , )(ibp  

correspond to each other. 

3.3 Object database 
The aim of the application of the object database is to recognize known, predefined 
(previously stored) object(s) in the scene. The stored information in the database is the 
invariant vectors computed from the 3D Euclidean description of the objects represented by 
homogeneous coordinates as described in the previous section. During the query the input 
is computed from the output of the projective reconstruction of the scene. The two sets of 
invariants must be paired (matched) in order to determine the corresponding feature 
configurations. Some additional attributes also stored that is required during verification. 
The developed system uses different tables for each of the possible configurations (six 
points, etc.). The attributes are the name of the candidate object, type and id of the stored 
features and the permutation of the features. These values will be used in a later processing 
step (verification). 
Metric definition and feature transformation 
The usage of the database algorithms (indexing) requires the definition of a metric that 
describes the similarity of the feature combinations. A definition of a metric uses a distance 

function ( )⋅d  that describes the (dis)similarity of the elements between two sets, where 

0=d  denotes identical configurations and the dissimilarity is larger as d  increasing. 

Therefore d  forms a metric, because i) d  is a non-negative (real) number, ii) the relation is 

symmetrical, iii) fulfills the triangle inequality. In order to be able to compare the two 
feature sets, application of a feature transformation is required. This feature transformation 
maps the configuration properties into a D-dimensional vector space, where the distance 
between the vectors is defined. The distance between feature vectors must somehow 
correspond to the original (theoretical) distance between the features from them it was 
derived (eliminating false positives). Usually this means, that the distance between vectors 
is the lower bound of the original distance (this means that the small vector distance may 
yield dissimilar feature distance, but similar feature combinations always yield small vector 
distance). The properties used in the feature transformation are task dependent, in this case 
the feature configuration is described by an invariant vector defined in previous section. 
Therefore the feature transformation maps from features (described by its coordinates) into 
(vector)space of invariants. Many distance function can be created that fulfill the 
requirement of the definition. The most widely used functions can be described as 

p
D

i

p
ii baL

/1

1

)()( ⎟⎟⎠
⎞⎜⎜⎝

⎛ −=⋅ ∑= . 
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Using the different values of p yields the Manhattan metric )1( =p , Euclidean metric )2( =p  

and maximum metric )( ∞=p . In the developed system the Euclidean metric is used. 

Query into the database 
The query process extracts those elements from the database that are closest to the querying 
element (exact matching is not probable due to noise during feature detection). This is the 
well-known nearest neighbors (kNN) problem. In our case the invariants are higher 
dimensional vector valued entities. The standard R-tree algorithm is very inefficient for 
higher dimensions (Moenne-Loccoz, 2005), due to the curse of dimensionality. The developed 
method uses X-tree (Berchtold et al., 1996). The query into the database extracts the closest 
candidates to the query vector (typically 2-5 are used). A tolerance is applied to eliminate the 
truly false matches. The remaining candidates are further processed in the verification step. 

3.4 Verification 
Because of the feature transformation the query eliminates only the false positives (those 
configurations, that are surely do not yield a valid answer to the query), the remaining 
candidates must be post-processed with a verification process. (Note: the query process 
should yield sufficiently small number of candidates in order to prevent the post-processing 
of the whole database.) 
Collineation between 3D feature sets 
Denote H  the 44×  matrix of the invertible linear transformation (collineation), ii YX ,  the 

4-length coordinate vector of corresponding 3D homogeneous points. Let the corresponding 
line pair be iL  and iK , described by ii KL ,44×  skew-symmetric Plücker matrices, see 

(A5). Let ri ,LX  be points on the line iL  and si ,KY  be points on the line iK , respectively.  

Let pi ,KΩ  be planes that contains iK . If the iX  and iY , iL  and iK  represent the same 

entities in different coordinate frames (related by H ), then the relation between them can be 

written into the form ii HXY ~  and T
ii HHLK ~ , or using the entity-dependent scaling 

factors with equality iii HXY =μ , T
iii HHLK =ν . The aim is to determine H  from a given 

set of point and line pairs in a noisy environment (LS solution is preferable), in a closed 
form. The solution must handle any number of combinations of points and lines. The 
unknowns are the 16 elements of the H  matrix (and optionally the ),,1( Pi ni …=μ  scaling 

factors for points and the ),,1( Li ni …=ν  scaling factors for lines).  

Geometric solution 
Using point and line pairs together, the equations contain the unknowns in quadratic or 

mixed form. Therefore the direct applications of these functions are not advisable. Instead 

geometric constraints are introduced in order to calculate the desired collineation. Let  H  be 

assumed in vector form   

=×116h ( ) ( )TTTTTTHHH 4321)4,4()4,1()1,1( hhhh=AA  

Point-point relations 
For points, the constraint equation is the scaling factor free algebraic distances  

 0)()( =− T
aii

T
bii bYaY hXhX  
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where the pairs { , } {4,1},{4,2},{4,3},{2,3},{3,1},{1,2}a b = .  

The part of the coefficient matrix belonging to this point pair is 
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Line-line relations 
In order to eliminate the higher order members of the cost function, the line-type entities 
should be eliminated, points and planes relations must be used. The points on the line and 
planes, whose intersection is the given line can be extracted from the Plücker matrix of the 
line using SVD, see (A5) and (A25). Any linear combination of two points and two lines can 
be used as pairs instead of the original ones (resulted from SVD). 
The two possible constraint types are: 

• The transformed points ri ,LX  should lie on the plane si ,KΩ . Algebraically this means ( ) 0,, =s
T

r ii KL ΩHX  where 2,1, =sr . The part of the coefficient matrix belongs to this 

configuration is  

 ⎟⎟
⎟
⎠
⎞

⎜⎜
⎜
⎝
⎛

BBBB

BBBB
rsrsrsrs iiiiiiii ,,,,,,,, )4()3()2()1( LKLKLKLK XΩXΩXΩXΩ  (6) 

A plane can be constructed from a transformed point ri ,LX  and the line si ,KΩ . If the point 

lies on the line, the plane equation must be invalid, 0Ω = . Using the representation in (A5), 

let ( )T
iO

T
iD

T
i ,, KKK = , where iD,K  and iO,K  are 3-vectors. The plane can be generated 

using the matrix 
[ ] ⎟⎟⎠

⎞⎜⎜⎝
⎛ −= ×

0K

KK
ΛK

iO

iOiD
i

,

,,
. Applying to the transformed point, the plane 

equation becomes ( )rr iii ,, LKK HXΛΩ =  where 2,1=r . The part of the coefficient matrix 

belongs to this configuration is  

 ⎟⎟
⎟
⎠
⎞

⎜⎜
⎜
⎝
⎛

BBBB

BBBB
rrrr iiiiiiii ,,,, )4,1()3,1()2,1()1,1( LKLKLKLK XΛXΛXΛXΛ  (7) 

Estimation of H  
The equations (4), (5) and (6) yield linear constraints for the elements of the collineation H . 
Collecting these coefficients into a matrix A , the equations can be written into the form 

0Ah = . Applying an additional constraint 1=h  in order to avoid the trivial 

solution 0h = , the problem can be solved in a closed form, using SVD, as the vector 
corresponding to the smallest singular value. 
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