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Predictive Force Control of Robot Manipulators 
 in Nonrigid Environments 

L.F. Baptista, J.M.C. Sousa and J.M.G. Sa da Costa 

1. Introduction       

The application of robot manipulators in industry is in general related to tasks 
such as manipulation or painting that requires only position control of the 
arm. Nonetheless, there are other robotic tasks like pushing, polishing and 
grinding that require interaction between the manipulator and a contact sur-
face or environment. This fact leads to the desire of controlling the interaction 
between the robot and the environment. Although a lot of different control 
schemes has been proposed in the literature, as surveyed by (Zeng & Hemami, 
1997 ; De Schutter et al., 1997), the major force control approaches can be clas-
sified as hybrid control (Raibert & Craig, 1981) or impedance control (Hogan, 
1985). The hybrid control separates a robotic force task into two subspaces: a 
force controlled subspace and a position controlled subspace. Two independ-
ent controllers are then designed for each subspace. In contrast, impedance 
control does not attempt to control force explicitly but rather to control the re-
lationship between force and position of the end-effector in contact with the 
environment. Furthermore, when the environment is rigid with known charac-
teristics it is possible to plan a virtual trajectory, such that a desired force pro-
file is obtained (Singh & Popa, 1995). However, the same does not hold in the 
presence of nonrigid environments, which disables a reliable application of the 
classical impedance controller. This problem has motivated the development 
and design of more sophisticated force control methodologies which usually 
take into consideration the dynamics of the environment. In (Love & Book, 
1995) it is shown that the performance of an impedance controlled manipula-
tor increases when the desired impedance includes some modeling of the envi-
ronment. Another possible solution to tackle this problem is to use a model-
based control scheme like predictive control, which incorporates the manipula-
tor and environment models in a force optimization-based strategy (Wada et 
al., 1993). Recently, a force control strategy for robotic manipulators in the 
presence of nonrigid environments combining impedance control and a model 
predictive control (MPC) algorithm in a force control scheme has been pro-
posed (Baptista et al., 2000b). In this force control methodology, the predictive 
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controller generate the position and velocity references in the constrained di-
rection, to obtain a desired force profile acting on the environment. The main 
advantage of this control strategy is to provide an easy inclusion of the envi-
ronment model in the controller design and thus to improve the global per-
formance of the control system. 
Usually, impedance and environmental models are linear, mainly because the 
solution of an unconstrained optimization procedure can be analytically ob-
tained with moderate computational burden. However, a nonrigid environ-
ment has in general a nonlinear behavior, and a nonlinear model for the con-
tact surface must be considered. Therefore, in this paper the linear 
spring/damper parallel combination, often used as a model of the environ-
ment, is replaced by a nonlinear one, where the damping effect depends on the 
penetration depth (Marhefka & Orin, 1996). Unfortunately, when a nonlinear 
model of the environment is used, the resulting optimization problem to be 
solved in the MPC scheme is nonconvex. This problem can be solved using 
discrete search techniques, such as the branch-and-bound algorithm (Sousa et 
al., 1997). This discretization, however, introduces a tradeoff between the 
number of discrete actions and the performance. Moreover, the discrete ap-
proximation can introduce oscillations around non-varying references, usually 
know as the chattering effect, and slow step responses depending on the se-
lected set of discrete solutions. These effects are highly undesirable, especially 
in force control applications. A possible solution to this problem is a fuzzy 
scaling machine, which is proposed in this paper. Fuzzy logic has been used in 
several applications in robotics. In the specific field of robot force control, some 
relevant references, such as (Liu, 1995 ; Corbet et al., 1996 ; Lin & Huang, 1997), 
can be mentioned. However, these papers use fuzzy logic in the classic low 
level form, while in this paper fuzzy logic is applied in a higher level. Here, the 
fuzzy scaling machine alleviates the effects due to the discretization of the 
nonconvex optimization problem to be solved in the model predictive algo-
rithm, which derives the virtual reference for the impedance controller consid-
ering a nonlinear environment. The fuzzy scaling machine proposed in this 
paper uses an adaptive set of discrete alternatives, based on the fulfillment of 
fuzzy criteria applied to force control. This approach has been used in predic-
tive control (Sousa & Setnes, 1999), and is generalized here for model predic-
tive algorithms. The adaptation is performed by a scaling factor multiplied by 
a set of alternatives. By using this approach, the number of alternatives is kept 
low, while performance is increased. Hence, the problems introduced by the 
discretization of the control actions are highly diminished.
For the purpose of performance analysis, the proposed predictive force control 
strategy with fuzzy scaling is compared with the impedance controller with 
force tracking by simulation with a two-degree-of-freedom (2-DOF) manipula-
tor, considering a nonlinear model of the environment. The robustness of the 
predictive control scheme is tested considering unmodeled friction and Corio-
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lis effects, as well as geometric and stiffness uncertainties on the contact sur-
face.
The implementation and validation of advanced control algorithms, like the 
one presented above, require a flexible structure in terms of hardware and 
software. However, one of the major difficulties in testing advanced 
force/position control algorithms relies in the lack of available commercial 
open robot controllers. In fact, industrial robots are equipped with digital con-
trollers having fixed control laws, generally of PID type with no possibility of 
modifying the control algorithms to improve their performance. Generally, ro-
bot controllers are programmed with specific languages with fixed pro-
grammed commands having internally defined path planners, trajectory inter-
polators and filters, among other functions. Moreover, in general those 
controllers only deal with position and velocity control, which is insufficient 
when it is necessary to obtain an accurate force/position tracking performance 
(Baptista et al., 2001b). Considering these difficulties, in the last years several 
open control architectures for robotic applications have been proposed. Gener-
ally, these solutions rely on digital signal processor techniques (Mandal & 
Payandeh, 1995 ; Jaritz & Spong, 1996) or in expensive VME hardware running 
under the VxWorks operating system (Kieffer & Yu, 1999). This fact has moti-
vated the development of an open PC-based software kernel for management, 
supervision and control. The real-time software tool for the experimentation of 
the algorithms proposed in this paper was developed considering require-
ments such as low cost, high flexibility and possibility of incorporating new 
hardware devices and software tools (Baptista, 2000a). 
This article is organized as follows. Section 2 summarizes the manipulator and 
the environment dynamic models. The impedance controller with force track-
ing is presented in section 3. Section 4 presents the model predictive algorithm 
with fuzzy scaling applied to force control. The simulation results for a 2-DOF 
robot manipulator are discussed in section 5. The experimental setup and the 
force control algorithms implemented in real-time are presented in section 6. 
The experimental results with a 2-DOF planar robot manipulator are presented 
in section 7. Finally, some conclusions are drawn in section 8. 

2. Manipulator and environment modeling

Consider an n-link rigid-link manipulator constrained by contact with the en-
vironment, as shown in fig.1. The complete dynamic model is described by (Si-
ciliano & Villani, 2000) 

( ) ( , ) ( ) ( ) eM q q C q q q g q d q τ τ+ + + = −�� � � �  (1) 
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where 1, , ×∈� �� nq q q R correspond to the joint, position, velocity and acceleration 

vectors, respectively, ( ) ×∈ n nM q R is the symmetric positive definite inertia ma-

trix, ( , ) ×∈� n nC q q R  is the centripetal and Coriolis matrix, 1( ) ×∈ ng q R contains the 

gravitational terms and 1( ) ×∈� nd q q R  accounts for the frictional terms. The vec-

tor 1×∈ nRτ  is the joint input torque vector and  1×∈ n

e Rτ  denote the generalized 

vector of joint torques exerted by the environment on the end-effector. From 
(1) it is possible to derive the robot dynamic model in the Cartesian space: 

( ) ( , ) ( ) ( )x x x x eM x x C x x x g x d x f f+ + + = −�� � � �  (2) 

where x is the n-dimensional vector of the position and orientation of the ma-

nipulator's end-effector, 1( )− ×= ∈T nf J q Rτ is the robot’s driving force, 
1×∈ n

ef R is the contact force vector and J represents the Jacobian matrix.

The interaction force vector [ ]Te n tf f f= is composed by the normal contact 

force fn and the tangential contact forces ft caused by friction contact between 
the end-effector and the surface. An accurate modeling of the contact between 
the manipulator and the environment is usually difficult to obtain due to the 
complexity of the robot's end-effector interaction with the environment. In this 
paper, the normal contact force fn is modeled as a nonlinear spring-damper 
mechanical system according (Marhefka & Orin, 1996): 

( )n ef ke x x xδ ρ δ= + �  (3) 

where the terms ke and e are the environment stiffness and damping coeffi-

cients, respectively, ex x xδ = −  is the penetration depth, where xe stands for the 

distance between the surface and the base Cartesian frame. Notice that the 
damping effect depends non-linearly on the penetration depth x. The tangen-
tial contact force vector  ft  due to surface friction is assumed to be given as 
proposed by (Yao & Tomizuka, 1995):

sgn( )t n pf f xμ= �  (4) 

where px� is the unconstrained or sliding velocity and  is the dry friction coef-

ficient between the end-effector and the contact surface. 
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Figure 1. Robot manipulator applying a desired force on the environment. 
(Reprinted from Baptista, L.; Sousa, J. & Sá da Costa, J. (2001a) with kind permission of Springer Science and Business 
Media).

3. Impedance control 

The impedance controller proposed by (Hogan, 1985) aims at controlling the 
dynamic relation between the manipulator and the environment. The force ex-
erted by the manipulator on the environment depends on the end-effector po-
sition and the correspondent impedance. The impedance of the robot is di-
vided in the following terms: one that is physically intrinsic to the manipulator 
and the other that is given to the robot by the controller. The impedance con-
trol goal is to oblige the manipulator to follow the reference or target imped-
ance. As shown by (Volpe & Khosla, 1995) a good impedance relation is 
achieved with a linear model of second order. The complete form of a second 
order type impedance control model, which is valid for free or constrained 
motion, is given by: 

( ) ( )d d d d d eM x B x x K x x f− − − − = −�� � �  (5) 

where ,d dx x�  are the desired  velocity and position defined in the Cartesian 

space, respectively, and ,x x�  are the end-effector velocity and position in Car-

tesian space, respectively. The matrices , ,d d dM B K are the desired inertia, 

damping and stiffness for the manipulator. The reference or target end-effector 
acceleration u x≡ ��  is then given by: 

1( )d d d eu M B e K e f−= + −�  (6) 
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where ,d de x x e x x= − = −� � �  are the velocity and position errors, respectively. 

Thus, u can be used as the command signal to an inner position control loop in 
order to drive the robot accordingly to the desired trajectory.

3.1 Virtual trajectory for force tracking 

The major drawback of the impedance control scheme presented above is re-
lated to its poor force tracking capability, especially in the presence of nonrigid 
environments (Baptista et al., 2000b). However, from the conventional imped-
ance control scheme it is possible to obtain a force control scheme in a steady-
state contact condition with the surface. Considering the impedance control 
scheme (6) in the constrained direction, the following holds: 

1( ( ) ( ) )f d d v d v nu m b x x k x x f−= − + − −� �  (7) 

where ,   and v v fx x u� are the virtual position, velocity and target acceleration, re-

spectively, while , ,d d dm b k are appropriate elements of , ,d d dM B K matrices de-

fined in (5) in the constrained direction. The contact force fn during steady-
state contact with the surface is given by: 

( )n d vf k x x= −  (8) 

Considering for simplicity the environment modeled by a linear spring with 
stiffness ke the contact force is given by: 

n ef k xδ=  (9) 

This leads to the following steady-state position and contact force (Singh & 
Popa, 1995): 

d v e e
ss

d e

k x k x
x

k k

+
=

+
 (10) 

( )
ss

d e
n v e

d e

k k
f x x

k k
= −

+
 (11) 

It is possible to apply a desired force fd on the system while simultaneously 
achieving the desired impedance by estimating the desired virtual position xv

as:
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e d
v e d

e d

k k
x x f

k k

+
= +  (12) 

Moreover, when the environment stiffness is unknown, it is also possible to 
obtain the virtual position from fd, fn and x (Jung & Hsia, 1995). In this case, by 
substitution of ke  in (12) the following virtual position xv is obtained: 

if 0

if 0

d
e n

d

v

d n
e d n

d n

f
x f

k
x

k x f
x f f

k f

δ

+ =

=
+

+ ≠

 (13) 

which is valid for contact and non-contact condition. This approach enables 
the classical impedance controller, given by (6), with force tracking capability 

without explicit knowledge of the environment stiffness. Notice that vx�  is usu-

ally assumed to be zero due to the noise always present in the force sensor 
measurements.

3.2 Impedance control with force tracking 

The impedance control with force tracking (ICFT) block diagram is presented 
in fig.2.

ef

d dx ,x�

qq �,

vx

u
τ

xx �,

Inverse 

dynamics 

controller 

Impedance 

controller 

Force sensor/ 

environment  

Robot 

Reference 

trajectory 

algorithm

df Forward 

kinematics 

Figure 2. Impedance control with force tracking (ICFT) block diagram. 

In this scheme, the virtual position xv given by (13), is computed in the Refer-
ence trajectory algorithm block, while the target acceleration vector 
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T

f pu u u= with up is obtained from (6) and uf from (7), is computed in the 

Impedance controller block. Moreover, the unconstrained target acceleration vec-
tor up is further compensated by a proportional-derivative (PD) controller, 
which is given by: 

pc p P Du u K e K e= + + �  (14) 

where KP and KD are proportional and derivative gain matrices, respectively. 

The target acceleration vector 
T

c f pcu u u= is then used as the driving signal 

to the inverse dynamics controller, in order to track the desired force profile. 
Since robot controllers are usually implemented in the joint space, it is useful 
to obtain the correspondent target joint acceleration uq for the inverse dynam-
ics controller. 

Then, using the appropriate kinematics transformations, uq is given by: 

( )1 ( )q cu J u J q q−= − � �  (15) 

Then, applying an inverse dynamics controller in the inner control loop, the 
joint torques are given by: 

ˆ ˆ( ) ( ) ( )Tq eM q u g q J q fτ = + +  (16) 

where ˆ ˆ( ),  ( )M q g q are estimates of ( ),  ( )M q g q  in the robot dynamic model (1). 

Notice that Coroilis and friction effects are neglected. The impedance control-
ler with force tracking (ICFT) presented above is a good control approach for 
rigid environments since the end-effector velocity in the constrained direction 
is close to zero, which leads to a virtual position with an acceptable precision. 
However, for nonrigid environments the constrained velocity can hardly be 
zero, which limits the accuracy of the control system to track the desired force 
profile (Baptista et al, 2001a). To overcome the drawbacks of the scheme pre-
sented above, this paper proposes an alternative force control methodology 
based on a model predictive algorithm (MPA) which is presented in the next 
section.
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4. Model predictive algorithms applied to force control 

Predictive algorithms consist of a broad range of methods, which are used to 
predict a desired variable in an optimal way. The most common predictive al-
gorithms are model predictive controllers (Maciejowski, 2002), which have one 
common feature; the controller is based on the prediction of the future system 
behavior by using a process model. In a more general way, predictive algo-
rithms are based on the following basic concepts: 

1. Use of a (nonlinear) model to predict the process outputs at future time 
periods over a prediction horizon; 

2. Computation of a sequence of future inputs using the model of the sys-
tem by minimizing a certain objective function; 

3. Receding horizon principle; at each sampling period the optimization 
process is repeated with new measurements, and only the first input ob-
tained is applied to the system. 

In this paper, an MPA is used to predict the target position xv to the impedance 
control law in (7), such that a desired force profile is obtained. In general, a 
predictive algorithm minimizes a cost function over a specified prediction ho-
rizon Hp. In order to reduce model-plant mismatch and disturbances in an ef-
fective way, the predictive algorithm is combined with an internal model con-
trol (IMC) structure (Economou et al., 1986) which increases the force tracking 
performance. A filter is included in the feedback loop of the predictive struc-
ture to reduce the noise present in the force sensor data. This filter stabilizes 
the loop by decreasing the gain, increasing the robustness of the force control 

loop. The sequence of future target positions ( )..... ( 1)v v px k x k H+ −  over a speci-

fied prediction horizon, produced by the MPA, results in a new target accel-
eration by the impedance control law (6), which determines the force to apply 
on the surface. Predictive algorithms need a prediction model to compute the 
optimal input. In this paper, the model must predict the contact force fm based 
on the measured position x and velocity x� . This model must consider the dy-
namics of the environment given by (3). In order to minimize the number of 
calculations during the nonlinear optimization procedure, only the virtual tra-

jectory is computed in an optimal way, and thus vx�  is assumed to be zero. 

Therefore, the nonlinear prediction model in the constrained direction is given 
by:

( )d f d d v mm u b x k x x f+ − − = −�  (17) 

Note that a discrete version of this model is required, predicting the future val-
ues fm(k+i) based on the measured position x(k) and the measured velocity 
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( )x k�  at time instant k. The predictive scheme is combined with an internal 

model control scheme, and the model-plant mismatch is given by 

( ) ( ) ( )m n me k f k f k= −  (18) 

The desired force profile fd is compensated by the filtered modeling error emf,
as shown in fig.4, resulting in the modified force reference fdc defined as: 

( ) ( ) ( )dc d mff k f k e k= −  (19) 

The cost function considered for the force control scheme is then given by: 

( )
2

1

( ) ( ) ( )
pH

v dc m

i

J x f k i f k i
=

= + − +  (20) 

The process inputs and outputs, as well as state variables, can be subjected to 
constraints, which must be incorporated in the optimization problem. 

k

fd
Hc

Hp

fm

xv

fm

k-1 k+1 ... k+Hc
... k+Hp

^

Figure 3. Basic principle of MPA applied to robot force control. 

The performance of the MPA depends largely on the accuracy of the process 
model. The model must be able to accurately predict the future process out-
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puts, and at the same time be computationally attractive to meet real-time de-
mands. When both nonlinear models and constraints are present, the optimi-
zation problem is nonconvex. Efficient optimization methods for nonconvex 
optimization problems can be used when the solution space is discretized, and 
techniques such as Branch-and-Bound - B&B (Sousa et al., 1997) can be ap-
plied. The B&B method can be used in a recursive way, demanding less com-
putation effort than other methods, and is used in this paper to solve the non-
convex optimization problem. Figure 3 presents the basic principle of a 
predictive strategy applied to robot force control. 

4.1 Branch-and Bound Optimization 

Branch-and-Bound algorithms solve optimization problems by partitioning the 
solution space. In this paper, B&B is used for the optimization problem that 
must be solved at each time instant k in the model predictive algorithm. A B&B 
algorithm can be characterized by two rules: Branching rule - defines how to 
divide a problem into sub-problems; and Bounding rule - establishes lower and 
upper bounds in the optimal solution of a sub-problem, allowing for the elimi-
nation of sub-problems that do not contain an optimal solution. 
The model predicts the future outputs of the system, which are the forces 

( 1),...., ( )m m pf k f k H+ +  and can be given by (3) when the stiffness coefficient is 

considered to be constant. Let M be the possible discrete inputs of the system, 
which are denoted as w j. Thus, at each step the desired positions 

( 1)vx k i+ − ∈Ω , are given by { 1, 2,..., }j j MωΩ = = .

In the considered predictive scheme, the problem to be solved is represented 
by the objective function (20) minimizing the predicted force error. This opti-
mization problem is successively decomposed by the branching rule into 
smaller sub-problems. At time instant k+i the cumulative cost of a certain path 
followed so far, and leading to the output fm(k+i) is given by 

( )
2( )

1

( ) ( )
i

i

dc m

l

J f k l f k l
=

= + − +  (21) 

where i = 1,…,Hp, denotes the level corresponding to the time step k+i. A par-

ticular branch j at level i is created when the cumulative cost ( ) ( )iJ u  plus a 

lower bound on the cost from the level i to the terminal level Hp for the branch j,

denoted
jL

J , is lower than an upper bound of the total cost, denoted JU :

( )

j

i

L UJ J J+ <  (22) 
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Let the total number of branches verifying this rule at level i be given by N. In 
order to increase the efficiency of the B&B method, it is required that this num-
ber should be as low as possible, i.e. N M฀ .
The major advantages of the B&B algorithm applied to MPA over other non-
convex optimization methods are the following: the global discrete minimum 
containing the optimal solution is always found, guaranteeing good perform-
ance; and the B&B method implicitly deals with constraints. In fact, the pres-
ence of constraints improve the efficiency of bounding, restricting the search 
space by eliminating non-feasible sub-problems. 
The most serious drawbacks of B&B are the exponential increase of the compu-
tational time with the prediction horizon and the number of alternatives, and 
the discretization of the possible inputs, which are the position references xv in 
this paper. A solution to these problems is proposed in the next section. 

4.2 Fuzzy scaling machine 

Fuzzy predictive filters, as proposed in (Sousa & Setnes, 1999), select discrete 
control actions by using an adaptive set of control alternatives multiplied by a 
gain factor. This approach diminishes the problems introduced by the discreti-
zation of control actions in MPA. The predictive rules consider an error in or-
der to infer a scaling factor, or gain, ( ) [0,1]kγ ∈  for the discrete incremental in-

puts. For the robotic application considered in this paper this error is given by 
em, as defined in (18). The gain ( )kγ  goes to the zero value when the system 

tends to a steady-state situation, i.e., the force error and the change in this error 
are both small. On the other hand, the gain increases when the force error or 
the change in this error is high. When the gain ( )kγ is small, the possible inputs 

are made close to each other, diminishing to a great extent, or even nullifying, 
oscillations of the output. When the system needs to change rapidly the gain is 
increased and the interval of variation of the inputs is much larger, allowing 
for a fast response of the system. The fuzzy scaling machine reduces thus the 
main problem introduced by the discretization of the inputs, i.e. a possible 
limit cycle due to the discrete inputs, maintaining also the number of necessary 
input alternatives low, which increases significantly the speed of the optimiza-
tion algorithm. The design of the fuzzy scaling machine consists of three parts: 
the choice of the discrete inputs, the construction of the fuzzy rules for the gain 
filter, and the application of the B&B optimization. The first two parts are ex-
plained in the following. 

Let the virtual position ( 1)vx k X− ∈ , which was described in (17), represent 

the input reference at time instant 1k − , where [ , ]X X X− +=  is the domain of 

this reference position. Upper and lower bounds must be defined for the pos-

sible changes in this reference signal at time k, which are respectively kx
+  and 
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kx
− : ( 1)k vx X x k+ += − − , ( 1)k vx X x k− −= − − .

These values are then defined as the maximum changes allowed for the virtual 
reference when it is increased or decreased, respectively. The adaptive set of 
incremental input alternatives can now be defined as 

{ }* 0, , ^ 1, ,k l k l kx x l Nλ λ+ −Ω = = �  (23) 

The distribution lλ  must be chosen taking into account that 0 1lλ≤ ≤ . In this 

way, the choice of lλ  sets the maximum change allowed at each time instant by 

scaling the maximum variations  kx
+  and kx

− . The parameter l is important to 

define the number of possible inputs. From (23) it follows that the cardinality 

of kΩ , i.e., the number of discrete alternatives, is given by 2 1M l= + .

The fuzzy scaling machine applies a scaling factor, ( ) [0,1]kγ ∈  to the adaptive 

set of inputs *

kΩ  in order to obtain the scaled inputs kΩ  of the optimization 

routine, the B&B in this case: 

*( )k kkγΩ = ⋅Ω  (24) 

The scaling factor ( )kγ  must be chosen based on the predicted error between 

the reference and the system's output, which is defined as 

( ) ( ) ( ),p dc p n pe k H f k H f k H+ = + − +  (25) 

where ( )dc pf k H+  is the reference to be followed at time pH , as in (19). Added 

to the error, the change in the error gives usually important indications on the 
evolution of the system behavior. This information can also be considered in 
the derivation of ( )kγ . The change in error is given by 

( ) ( ) ( 1).e k e k e kΔ = − −  (26) 

The fuzzy rules to be constructed have as antecedents the predicted error and 
the change in the error, and as consequent a value for the scaling factor. Simple 
heuristic rules can be constructed noticing the following. The system is close to 
a steady-state situation when the error and the change in the error are both 
small. In this situation, the discrete virtual references must be scaled down, al-

lowing smaller changes in the reference vx , which yield smaller variations in 

the impedance controller, and ( )kγ  should tend to zero. On the other hand, 

when the predicted error or the change in error are high, larger discrete refer-
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ences must be considered, and ( )kγ  should tend to its maximum value, i.e. 1. 

The trapezoidal and triangular membership functions ( ( ))e pe k Hμ +  and 

( ( ))e e kμΔ Δ  define the two following fuzzy criteria: “small predicted error” and 

“small change in error”, respectively. The two criteria are aggregated using a 
fuzzy intersection; the minimum operator (Klir, 1995). In this way, the mem-
bership degree of these criteria using the min operator is given by: 

( ( ), ( )) min( , ),p e ee k H e kγμ μ μΔ+ Δ =  (27) 

The scaling factor ( )kγ  must be the fuzzy complement of a certain member-

ship degree γμ :

( ) 1 .k γ γγ μ μ= = −  (28) 

Summarizing, the set of inputs *

kΩ  at time instant k, which are virtual refer-

ences in this paper, is defined in (23). These inputs are within the available in-
put space at time k. Further, the inputs are scaled by the factor ( ) [0,1]kγ ∈  to 

create a set of adaptive alternatives kΩ , which are passed on to the optimiza-

tion routine. At a certain time k, the value of ( )kγ  is determined by simple 

fuzzy criteria, regarding the predicted error of the system. Note that the pro-

posed fuzzy scaling machine has only the following design parameters: lλ ,

and the membership functions eμ  and eμΔ . Moreover, the tuning of these pa-

rameters is not a hard task, allowing the use of some heuristics to derive them. 
Possible constraints on the input signal, which is the virtual trajectory in this 

paper, are implemented by selecting properly the parameters lλ .

Fuzzy
scaling

machine

fd xv

-

Filter

Model
fm

em

-

+

+ fd c

emf

Internal
controller
and robot

Internal
controller
and robot

Environment

fn

x, x
.

Figure 4. Block diagram of proposed predictive force control algorithm with fuzzy 
scaling machine. 
(Reprinted from Baptista, L.; Sousa, J. & Sá da Costa, J. (2001a) with kind permission of Springer Science and Business 
Media).
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Figure 4 depicts the proposed predictive force control algorithm with fuzzy 
scaling. The block Fuzzy scaling machine contains the model predictive algo-
rithm, the B&B optimization and the fuzzy scaling strategy. The block Internal
controller and robot implement the impedance and the inverse dynamics control 
algorithms. The robot dynamic model equations are also computed in this 
block. The block  Environment  contains the nonlinear model of the environ-
ment. In order to cope with disturbances and model-plant mismatches, an in-
ternal model controller is included in the control scheme. The block Filter be-
longs to the IMC structure (Baptista et al., 2001a). 

5. Simulation results 

The force control scheme introduced in this paper is applied to a robot through 
computer simulation for an end-effector force/position task in the presence of 
robot model uncertainties and inaccuracy in the environment location and the 
correspondent stiffness characteristics. The robot model represents the links 2 
and 3 of the PUMA 560 robot. In all the simulations, a constant time step of 1 
ms is used. The overall force control scheme including the dynamic model of 
the PUMA robot is simulated in the Matlab/Simulink environment. A nonri-
gid friction contact surface is placed in the vertical plane of the robot work-
space where it is assumed that the end-effector always maintain contact with 
the surface during the complete task execution. 
In order to analyze the force control scheme robustness to environment model-
ing uncertainties, a non rigid time-varying stiffness profile ke(t) is considered, 
given by: 

( 0.25( 2))

1000 sin( / 2) 0 2
( )

1000 2 3
e t

t t
k t

e t

π
− −

+ < <
=

≤ <
 (29) 

The damping coefficient and the coefficient of dry friction are settled to e=45
Ns/m2 and =0.2, respectively. Notice that the stiffness coefficient is consid-
ered to be constant (ke=1000 N/m) in the environment model used for predict 
the contact force fm. The matrices in the impedance model (6) are defined as Md

= diag[2.5  2.5] and Kd = diag[250 2500] to obtain an accurate force tracking in 
the x-axis direction and an accurate position tracking performance in the y-axis
direction.
The matrix Bd is computed to obtain a critically damped system behavior. The 
control scheme was tested considering a smooth step force profile of 10 N and 
a desired position trajectory from p1 = [0.5 -0.2] m to p2 = [0.5  0.6] m. 
Uncertainties in the location of the contact surface given by the final real posi-
tion of p2r=[0.512  0.6] m are considered in the simulations, as shown in fig.5. 
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Figure 5. 2-DOF planar robot in contact with the environment. 
(Reprinted from Baptista, L.; Sousa, J. & Sá da Costa, J. (2001a) with kind permission of Springer Science and Business 
Media).

The parameters of the predictive controller are Hp = Hc = 2 and the fuzzy scal-
ing machine is applied only during the constant path of the reference force tra-
jectory. This means that during the reference force transition periods, the fuzzy 

scaling inference is switched off. The discrete alternatives vxΔ for the fuzzy 

scaling machine are given by:

[ ]* 0.050 0 0.050kΩ = −  (30) 

In the inner loop controller (16), only the elements of the inertia matrix and the 
gravitational terms with parameters 20% smaller than their exact values are 
considered. The Coriolis and friction terms were neglected in the implementa-
tion of the algorithm but considered in the simulation of the robot dynamic 
model. The proportional and derivative gains in (14) are settled to KP =
diag[5000 5000] and KD = diag[500 500].
Simulations using the impedance controller with force tracking (ICFT) and the 
control algorithm proposed in this paper are compared. The conventional im-
pedance controller uses the reference trajectory algorithm presented in (13) 
considering the environment modeled as a linear spring with ke=1000 N/m. 
The simulation results obtained with the ICFT are presented in fig.6, which 
exhibit poor force tracking performance with relatively large force tracking er-
rors. However, the ICFT follows the desired position trajectory with high accu-
racy; in fact, it is not possible to distinguish the reference from the actual y-axis
position in fig.6. 
The force control scheme uses the model predictive algorithm to compute the 

virtual trajectory vx , the fuzzy scaling machine and the nonlinear environment 

model, which furnish the normal force described by (3). The force and position 
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results from the application of this controller are presented in fig.7. Comparing 
this figure with fig.6, it becomes clear that the proposed force controller pre-
sents a remarkable performance improvement in terms of force tracking capa-
bility. In fact, it is not possible to distinguish the reference force from the actual 
contact force.  In terms of position control, similar performance is achieved. 
The results for both controllers can be compared in Table 1, where the error 

norm .  for position and force errors, as well as the absolute maximum values 

for these errors are presented. The table shows that the force control perform-
ance is clearly superior for the MPA with fuzzy scaling machine.

Force control algorithms 
pe

[m]

Max(ep)

[mm]

fe

[N]

Max(ef)

[N]

Impedance control with force track-
ing

0.041 0.836 60.426 4.420 

MPA with fuzzy scaling machine 0.041 0.801 0.8021 0.064 

Table 1. Euclidian norm of position, force errors and absolute maximum errors. 
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Figure 6. Impedance control with force tracking: desired force (dashdot), normal force 
(solid) and friction force (dashed) – top view; desired y-axis trajectory (dashdot) and 
actual position trajectory (solid) – bottom view.  
 (Reprinted from Baptista, L.; Sousa, J. & Sá da Costa, J. (2001a) with kind permission of Springer Science and Business 
Media).
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