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Abstract 

The problem of path generation for the autonomous vehicle in environments with infinite 
number obstacles is considered. Generally, the problem is known in the literature as the 
path planning. This chapter treated that problem using the algorithm, named MKBC, which 
is based on the behavioral cloning and  Kohonen rule. In the behavioral cloning, the system 
learns from control traces of a human operator. Kohonen rule connected with  the weighting 
coefficients,  while the MKBC  algorithm does  not use the weighting values as values from 
the previous time, but permanentlly uses the training values as weighting values. That is 
something which   enables an intelligent system to learn from the examples (operator’s 
demonstrations) to control a vehicle in the process of the obstacles  avoiding, like the human 
operator does. Like that, the very important MKBC characteristic is the  symplicity. The 
MKBC simplicity is something which is so  obviously,  specialy according to the RBF neural 
network and the  machine learnig algorithm which is used the previously. Following the 
MKBC  given  context the problem narrow passage avoiding and the goal position reaching  
fundamentally  is observed. Namely,  defining if – then rule, according to  the named cases  
is treated  as  destroying of the consistency of the  methodology. In that sense, using  MKBC 
neural  network  the solution was  found. A the end,  the autonomous vehicle mathematical 
model which is given by nonlinear equations describing a 12 state dynamical system is used 
and in that case the  MKBC algorithm is applied successfully.  Eventually, as it has been 
illustrated  the previously, the advantage of the entire methodology  lies  in the fact that a 
complete path of the vehicle can be defined off-line, without using sophisticated symbolical 
models of  obstacles. These are  facts that MKBC algorithm and  the given methodology 
substantially differ  from the others. In the next phase it is expected to confirm results in on 
– line simulation process. 
Key words: vehicle path  planning, behavioral cloning, cloning success, obstacle avoiding, 
machine learning, Kohonen rule,  neural network, Shark dynamical model. 

1. Introduction 

In the last years en increasing interest in mobile robots has appeared, notably in aeronautical 
space exploration, automatized  agriculture, collective mobile robot games, and so on (P. 
Vadakkepat, X. Peng et al., 2007). These application require the mobile robot to move in 
partially known environments with the high amount of uncertainty.  Moving – obstacle 
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avoidance with unknown obstacle trajectory remains remarkable challenge and has opened 
a research area in the control of the mobile robots, but  it is treated in our research  using the 
methodology which is connected with unmoving obstacles. Many approaches are available 
to study this research area.  In its simplest form, the  motion planning problem can be 
defined as follows (C. Latombe, 1991; J. Schwartz, M. Sharir, J. Hopcroft, 1987).  Let B be the 
autonomous vehicle  consisting of  collection of rigid subparts having a total k degrees of 
freedom, and let B be free to move in two - or three - dimensional space V, avoiding 
obstacles whose geometry is known.  For a given initial position  S and a desired target 
position G of B, the task is to determine whether there exist a continuous obstacle - avoiding 
motion of B from S to G, and if so, to find such a motion.  The simplest collision avoidance 
algorithm fall into the generate and test paradigms. A simple path from S to G, usually a 
straight  line, is hypothesized and then it is tested for potential collisions between B and 
obstacles. If collision is detected, a new path is proposed using information about detected 
collision. This process repeats until no collision is detected. But in spite of its simplicity these 
methods have not found significant application. They have several fundamental drawbacks. 
One of these is inability to propose a radically different and better path from local 
information about potential collision.  Another is that collection methods are based on a 
configuration space approach(J. Reif, 1987; C. Latombe, 1991; J. Schwartz, M. Sharir, J. 
Hopcroft, 1987). The configuration of rigid body is set of independent parameters that 
characterize the position of every point of it.  For the vehicle B some regions represent illegal 
configuration space because there are obstacles. So the find path (the vehicle motion 
planning) approach means that the vehicle have to be shrank to dimension of a reference 
point and to grow obstacles, i.e. to compute forbidden regions for the reference point. 
Finding the path of the vehicle is in this way transformed in finding the path of the reference 
point, moving in configuration space and avoiding obstacles.  For the vehicle B moving from 
position S to position G the desired path is the shortest path which takes into account all 
constraints of the position of the reference point of B. It is possible to obtain this path by 
generating an appropriate graph (visibility graph, connectivity graph,…) and finding a path 
from graph node S to graph node G. Fundamental problem arising during the 
implementation of these methods is concerned with the obstacle growing and graph 
searching.  For both cases the problem complexity is very large. For example, while in the 
planar case the shortest path can be found in time that is in the worst case the quadratic in 
the number of obstacle vertices and edges, finding the shortest path between two points in 
three dimensions, which avoids a collections of polyhedral obstacles is NP - hard (J. 
Schwartz, M. Sharir, and J. Hopcroft,1987; J. Reif,1987). This is a specially very large problem 
if the world model changes. Other classes of approaches are developed as alternative to the 
traditional ones. A typical such approach (O. Khatib, 1986)  regards the obstacles as the 
sources of repelling potential field, while the  goal position G of the vehicle is considered as 
a strong attractor. The vehicle B follows potential gradient vector field. These approaches  
try to find the local minimum only.  As the next, we can consider the direction which 
assumes problem solution capability of the vehicle motion planning based on the transfer of 
skill into controllers of the vehicle (D. Michie, R. Camacho, 1994; C. Sammut, S.Hurst, D. 
Kedzier, D. Michie, 1992).  
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2. Motion planning based on the behavioral cloning  

Skill is often defined as an ability to perform a high quality  sensory-motor coordination and 
control in real time. Humans exhibits such a skill as a result of training over a period of time. 
It would be especially useful if we can also provide systems with the capability of acquiring 
such a skill. In this sense two approaches have been known. The former treats the skill as 
something that could be acquired in a dialogue with an operator. In that process it is 
expected from the operator to describe skills he has been governed over the control of the 
vehicle. Here arises some difficulties because the skill is human subconscious action and so 
cannot be completely consciously and reliably described. An alternative approach is to start 
from the assumption that the skill can be reconstructed, using learning algorithms, from the 
manifestation trace of it  (D. Michie, R. Camacho, 1994; C. Sammut, S.Hurst, D. Kedzier, D. 
Michie, 1992).  Sammut, Hurst,  Kedzier and  Michie   give a description of the solution  
belonging to the flight control area. Our idea (R. Kulic, Z. Vukic,  2006)  is to enable an 
intelligent system to learn from the examples (operator’s demonstrations) to control a 
vehicle avoiding obstacles, like the human operator does.  
In section III the intelligent controller concept is given. In section IV  the results in controller 
development are presented. In section V the conclusion is given and possibilities of further 
development are discussed. 

3. Elements of concept controller development 

3.1 Learning problem 

Suppose that is given a data set giving living area and price of m houses in some place. How 
can is possible learn to predict the prices of other houses in that place, as function of living 
areas? To denote the input variables or input features  (living areas in this case)  x1i is used. 
And yi is used to denote the output or target variable which is need training  to predict. The 
dataset {(xi,yi), i=1,..,m} that will be used to learn is called a training set. If X denote the 
space input values and Y denote the space output values the goal is for given a training set 
to learn a function h: X→Y. The function h(X)  is  called a hypothesis and it have to be a 
good predictor for the corresponding values of Y. When the target variable is continuous, 
the learning problem is called a regression problem. When the target variable take on only 
small number of discrete values, the learning problem is called a classification problem. Lets 
consider a slightly richer dataset with a number of bedrooms in each house. The X is two – 
dimensional vector, with  x1i, x2i  features. In general, when designing learning problem, it is 
up to us to decide what features to choose. To perform learning it is have to decide how we 
are going to represent hypothesis h.  A choice can be to approximate it as a linear function of 
x ={ x1i, x2i … xni}: 

h(x) = θ0 + θ1 x1i + θ2 x 2i+..+ θn x ni 

The θi  ‘s are the parameters (or weights) parameterizing  the space of linear functions 
mapping from X to Y. To simplify  notation it is introduced xi0=1. So that 
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where n is the number of input variables , without x0. For given training set, how it is 
possible learn the parameters θj? One reason is to make h(X) close to Y, at  least for the 
training example. To formalize this, it can be defined a function that measures for each value 
of the θj how close h(xi) to the corresponding yi. So, the least –squares cost function is 
defined: 
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That function is  a special case of a much broader family of algorithms. Now, it is needed to 
choose vector θ to minimize J(θ). To do so, lets us a search algorithm that starts with some 
initial guess for θ and repeatedly changes θ to make J(θ) smaller, until it is reached the value 
of  θ that minimize J(θ).  Lets consider the gradient descent algorithm, which starts with 
some initial θ, and repeatedly perform the update: 
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This update is simultaneously performed for all values of j=0,…,n. The learning rate α 
repeatedly changes in the direction of steepest decrease of J(θ). For one training example we 
have: 
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For single training example that gives the rule: 

.))(( jjj xxhy −+= αθθ  

This is called LMS (least mean squares ) update rule or Widrow – Hoff learning rule. For 
instance the magnitude of the update is proportional to the error (yi – h(x i )). For m training 
example the corresponding update rule 

Repeat until convergence exist { 
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The optimization problem have been given  here for linear regression has only one global 
optima. Assuming the learning rate not too large this batch gradient descent method always 
converges to the global minimum.  
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3.2. Bihevioral cloning process 

The idea of controller development by cloning the human operator (D. Michie, R. 
Camacho,1994) is illustrated in Figure 1.  

Log

file

Operator
Robot

Machine 

learning 

programm

Environment 

simulator

 
Figure 1. Behavioral cloning process. The autonomous underwater vehicle is named as the 
robot 

In the obstacles avoiding problem, this idea could be interpreted in the following way. 
During one of the simulation phases, called the training phase, operator guides the vehicle 
avoiding unmoving obstacles located in its working space.  During this phase variables that 
are evaluated as relevant are written into LOG FILE. In the second simulation phase, called 
the learning phase,  the machine learning program, takes  data from the LOG FILE, 
generates differential equations, that define the operator’s trajectory. In the third phase, 
called the verifying phase, operator is excluded from the vehicle control process and the 
vehicle is controlled solely by a clone induced in the learning phase. This  development of 
process phases are needed for the repeated changing of both problem domain 
representation and/or learning system regarding cloning success criterion. Using “several” 
vehicle models (problem domain representations) and “several” machine learning systems, 
we attempt to find an appropriate domain model and an appropriate machine learning 
system that will enable the vehicle to avoid obstacles according to cloning success criterion. 

3.3 The vehicle kinematical   model 

The following kinematical model of the vehicle is  used: 

ψ (n)=ψ(n-1) + Δ t r(n), 

x(n) = x(n-1) + Δt v cos (ψ(n)), 

y(n) = y(n-1) + Δt v sin (ψ(n)), 

where: ψ is the heading angle of the vehicle (ψ=0 if the vehicle is oriented parallel   to x-axis 
); r and v are control variables i.e. desired rotation speed and  translation speed respectively; 
x, y are position coordinates, Δt  is the sampling time and n is the time index. The vehicle  is 
represented as a geometrical figure. Its dimensions are not neglected and we should point 
out that this is a very important fact.  The selection of the vehicle model is inspired by 
conventional methodology that is used in control systems for a given path (R. Stojic, R. 
Kulic, M. Zivanovic, 1990). 
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3.4 Environment models 

Environment model amounts to the distances of the vehicle gravity center from  the goal 
position (dxG and dyG ) and  from the obstacles (di). dxG and dyG  are calculated as:  

dxG= x – xG,   

dyG= y – yG ,  

where xG, yG are the goal position coordinates. Obstacles are represented by  its 
characteristic values, as illustrated  in Figure 2. Obstacle area is divided into sub-areas .  
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Figure 2. Triangular obstacle as the environment 

A procedure, for the simulation purpose, calculating  the vehicle  distance di from i-th 
obstacle   is explained for a triangle obstacle as:  
SubArea-4: 
if((x>=x1)and(y>=yB))         then   di= ((x-x1)2 + (y-y1)2)1/2, SubArea5: 
if((x>=x1)and(y<yB)and((y>=yC) then  

di = |[y+[(y1-y2) ⁄ (x2-x1)]x +[(y2-y1) ⁄ (x2-x1)]x1-y1] ⁄ [[(y1-y2) ⁄ (x2-x1)]2+1]1⁄2 |,  
yB and yC are  lines that are normal onto the line BC at points B and C. 

3.5 Cloning success criterion  

Performance error is very important for the evaluation of the quality of clone that was 
constructed. Regarding the ideal case the goal concept and the approximation concept of the 
vehicle trajectory  are identical and the performance error is equal to zero. Ideal trajectory in 
x-y plane without obstacles is, for example, a straight line between the start S and the goal G 
positions of the vehicle. Operator, in a training phase, mostly does not manage to realize this 
trajectory. Position error Exy is based upon a distances dop(i) and dcl(i) of operator and clone 
trajectories, respectively, from the named straight  line.  Our problem is to avoid obstacle 
and so we can consider only Eperf  as:  
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For avoiding n obstacles we have to find (d)m= min{ di ,i=1,..n} in order to define: 
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Eventually, we can say that between two clones  more successful is the one which produces 
lower performance error regarding equations (1) and (2). 

3.6 The vehicle goal position as the obstacle 

The vehicle goal position can be treated as the obstacle, but it has not been applid earlier in 
[12], [13].  In that sense the distance from the vehicle goal position and the vehicle gravity 
centre was taked into account, as  dgoal. Now the attribute number is extended and  
¨minimum distance¨  is determined by relation: dmin  =  min { dgoal, d1, d2  , .....,dk  }, where d1, 
d2  , ....,dk    are the mimial distance for avoiding K obstacles. Eventually, when we consider 
the vehicle goal position as the obstacle, we enable  the vehicle path generation to become  
simple, but not to become optimal. 

3.7 Learning systems  

3.7.1 Radial basis function (RBF) of neural network 

The model is commonly referred to as the radial basis function (RBF) network. The most 
important attribute that  distinguishes the RBF network from earlier radial based models is 
its adaptive nature. It generally allows to utilize  a relative small number of locally tuned 
units. RBF network were independently proposed by several authors (D. S. Broomhead, D. 
Lowe ,1988; S. Lee, R. Kill, 1988;  M. Niranjan , F. Fallside,1988).The following is a 
description of the basic  RBF architecture Figure 3. The RBF network has a feedforward 
structure consisting of a single hidden layer of  Q locally tuned units, which are 
interconnected to an output layer of L linear units.  All hidden units simultaneously receive 
R dimensional  real –valued  input vector p. Notice the absence of hidden layer weights. 
Each hidden unit output aj  is obtained by calculating the closeness of the input p to n 
dimensional parameter  vector µj (IW in Figure 2). This parameter is associated with jth 
hidden units. The response characteristics of the jth hidden units are given by  
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where K is a strictly positive radially symmetric function (kernel) with a unique maximum 
at its center µj and which drops off rapidly to zero away from the center. The parameter σj is 
the width of the receptive field of the input space for unit j. This means that aj has an 
appreciable value only when distance || p- µj|| is smaller than the width σj. A specially but 
commonly used RBF network assumes  a Gaussian basis function for the hidden units, i.e.: 
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where σj and µj, are the standard deviation and mean of the jth unit. The norm is the 
Euclidian norm. The output of the RBF network is the L dimensional vector a2, which is 
given by: 
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Figure 3. A radial basis function neural network consisting of a single hidden  layer of 
locally tuned units that is fully interconnected to an output layer of linear units 

RBF networks are best suited for approximating continuous real valued mappings f : 
Rn→RL, where n is sufficiently small. According to the previously named equations the RBF 
network may be as approximating a desired unction f(p).The degree of accuracy can be 
controlled by three parameters the number of basis functions to be used, their location and 
their width. The RBF networks are considered as universal approximators (T. Poggio, F. 
Girosi, 1990).  The training of RBF network is addressed. .Consider training set of m labeled 
pairs {xj, yj) which are represent samples of a continuous multivariate  function. The 
criterion function is an error function E to be minimized over the given training set. It is 
desired to develop a training method that minimizes E by updating the free parameters of 
the RBF.  These parameters are  σj, µj and wij. One of the first training methods that comes to 
mind is a fully supervised gradient descent methods over E, as it is given in section 3.1. 

3.7.2 RBF neural network algorithm and behavioral cloning 

The algorithm RBF neural network algorithm is given below for kinematical model which is 
given in 3.3. 
for m:=1 to N  do                                           % N is number of training examples  
   begin 
      dist[m,1] := (0.8326 / spread)2 * (IW[m,1] – d_min )2;      % d_min = dmin ; 
       a[m,1] := e-dist[m,1];                      % IW[m,1] is the training examples set of the distance dmin 
   end; 
for j :=1 to N  do  
   begin 
      a2  := a2+ LW[1,j] * a[j,1]; 
      am :=  am + a[j,1];     

   end;                                                    %  LW[m,1] is the training examples set of the angle ψ 
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if ((am > 0) or (am <0)) then a2 := a2/am; 
psides := a2; 

r := (psides –psi) / dt;                                         %   t
r des

Δ

−
=

ψψ
   ,     dt= Δt=0.05 s 

 

Control strategy was r = (ψdes - ψ ) / Δt, v=0.1, where ψdes is the desired value of angle ψ. 

3.7.3 Modification Kohonen rule and behavioral cloning - MKBC algorithm 

Thus, as  it is given in Figure 3, the neuron whose weight vector was closest to the input 
vector is updated to become even more closer. Suppose that the ith neuron wins, then the 
elements of the ith  row of the input weighting matrix are adjusted as shown: 

iLW1,1(q)= iLW1,1 (q-1)+ α(p(q) – iLW1,1 (q-1)), 

where p(q) is input vector, q is the time index and  α must be specially tuned according to 
the domain. With regarding to the original  Kohonen rule connected with  the weighting 
coefficients, as the neural network,   this algorithm does  not use the weighting values as the 
values from the previous time, but permanentlly uses the training values as the weighting 
values. This  enables an intelligent system to learn from the examples (operator’s 
demonstrations) to control a vehicle in avoiding obstacles, like the human operator does. 
This seems, at least for this case,  to be better according  to the original idea of the Kohonen 
rule. The algorithm is given below.  
for i:=1 to M do 
begin  
AS(1,1) :=0; 
end; 
 alfa(i,n);                   % Must be specially  tuned    
                                  % according to the domain;        
                                  % n is  the time index;                 
for i:=1 to M do       % M is the number of inputs; 
begin                       
for j :=1 to N  do     % N is the number of the     
                                %training  examples;   
   begin 
 
       LW[i,j,n] :=  alfa[i,n] * ( p[i,n0]  -  p[i,n]);  %  p[i,n] is the  input   
                                                                              %  vector; 
                                                                              %  p(i,n0) are the training example set 
      AS(i,n) :=  AS(i,n) + ( LW[i,j,n0] – LW(i,j,n))2 ;  % LW[i,j,n0] is the training examples set 
 
   end; 
    a(i,n) := sqrt (AS(i,n));                                    %  a(i,n) is the  output  
                                                                             %  vector; 
end; 
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The algorithm means that by using N training examples the weight vector LW [i,j,n0 ], 
{i=1,M; j=1,N} can be formed1. Then LW[i,j,n0] need to be modified according to:  1) the 
actual values of the input vector2 p[i,n], {i=1,M}  and 2) the actual value of the tuned vector  
α[i,n],{i=1,M},  where n is the time index. The resulting weighting  vector is LW[i,j,n]  and it 
has deviation according to the input vector p[i,n].   The output vector is a[i,n] and it is 
connected with the weight vector as is illustrated by two last lines of the algorithm.   

3.8 The MKBC algorithm and the motion planning  

The MKBC algorithm is needed to be adapted in order to be used in the motion planning 
domain. The motion planning  with the weight vector uses  LW  (Table 1), the training 
values of the learned variable which is the heading  angle ψ  ( Section 3.3). Firstly, the 
algorithm requires  the modification  of the training vector LW. The modification executes, 
as is given below,  using: 1) N training examples in IW and LW, where IW are the training 
values of the  minimal distance  dmin (section 3.6), 2) the current input value dmin and 3) 
tuning factor α . Secondly, the algorithm finds  the desired output value  using, in some 
sense, least – square cost function of  the heading angle.  The algorithm  output value 
enables the obstacle avoidance and it is the desired value of the heading angle (ψdes ). The  
algorithm is given below. 
AS :=0; 
alfa = Kc – Kα * d_min;     % The values  Kc  and Kα  must be  tuned;   
      
for j :=1 to N  do               % N is the number   of the training examples;     
   begin 
 
      LW[2,j] :=  alfa * ( IW [1,j] – dmin); 
      AS :=  AS + ( LW[2,j] – LW[1,j])2 ; 
 
   end; 

     psides := sqrt (AS);              %  ASdes =ψ ; 

                                                  %     r := (psides –psi) / dt;   ,     dt= Δt=0.05 s; 
On the other hand, when the modified Kohonen rule with  the weighting parameters is 
used,  then the algorithm does  not use the weighting values  IW as the distance dmin from 
the previous time, but always uses IW as the training values of the distance dmin to 
determine the training values LW of the heading angle ψ . This  enables  an intelligent 
system to learn from the examples (operator’s demonstrations) to control a vehicle in 
avoiding obstacles, like the human operator does. The very important MKBC characteristics 
are the operator cloning and symplicity, the simplicity specialy according to the RBF neural 
network.  The coefficient   α  has values that are changed from time to time. Firstly, when it  
is tuned this factor enables the heading angle ψ  to increase when  the vehicle distance  from 
the obstacles edges is small (i.e. dmin ≈ 0.08). The performance error Exy has a minimum for 
that α value. While α factor increases, the total time T of the autonomous vehicle moving 
without touching the obstacle  also increases.  

                                                                 
1 n0 means the training example set.  
2 The training value of the input vector  is p[i,n0]. 
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4. Experiments and results 

In order to form training instances the task was  only  to avoid obstacles. The robot start position 
was its  goal position. The minimal number  of robot traveling  from the start to the goal was 
to be one. It is the framework for selecting appropriate training instances. The idea is to combine this 
control strategy with control strategy without obstacles in order to form a full controller.  
When an obstacle was included, the robot trajectory for training scene is illustrated in Figure 
4.  
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Figure 4. The robot trajectory used in order to gather training example 

Control strategy was r = (ψdesired - ψ ) / Δt, v=0.1. 

4.1 Experiments with  RBF neural network 

In the following is described application of RBF network in mobile robot motion planning.  
A relatively small  corresponding training set is given in Table 1. 

dex 
J 

Distance (IW[j,1]) 
or 
dmin 

Angle 
Ψ or LW[1,j] 

Angle modified 
Ψm    or  LW[1,j] 

Factor 
fm 

1 0.04 10.906 10.906 1 
2 0.0494 13.8025 13.8025 1 
3 0.0591 11.425 11.425 1 
4 0.08 0.0035 81.025 23151 
5 0.08 9.513 85.617 9 
6 0.081 12.070 12.070 1 
7 0.0894 12.692 12.692 1 
8 0.0923 12.556 12.556 1 
9 0.1006 7.6405 7.6405 1 
10 0.12 0.6895 3.4475 5 

Table 1. The original end the modified training examples according to the movement of the 
vehicle 
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The firstly by tuning spread  factor (section 3.7.1 and 3.7.2) is tuned σj. For step k=1 spread 
=1, and then spread decreased in 0.01. Process was stopped for  spread=0.002. The 
performance error Exy has minima for that spread value. While spread factor decreased, total 
time T of the mobile robot moving without touching of obstacles increased: (spread=0.005, 
T=534 s;   spread=0.003, T=600 s; spread=0.002, T=637 s). In order to decreased performance 
error for small the robot distance from obstacles edges (dmin ≈ 0.08), LW[1,j] is multiplied by 
fm [j] as  it is given in Table 1 and in Figure 5.  
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 Figure  5. Modifying   the LWij  parameters or Ψ training instances for  the RBF network in 
order to decrease performance error   Exy 

For fm [4]=23151, fm[5]=6 and another {fm [j]=1,j=1,2,3,6,7,8,9,10}, it was T=1248 s. But for fm 
[j]  which have values as it was given in Table 1 performance error was Exy = 0.00382 and 
robot moving was not time limited. Two  scenes  with five static obstacles is given in Figure 
6. In that case we have situation when the mobile robot moves away from P1 obstacle to be 
close, until some critical distance and without touching, to  obstacles P2,P3,P4 and P5. The 
robot safely avoids the obstacles touching. Changing fm[j] repeatedly takes a step in the 
direction of steepest decrease of Exy, like the cases described for function J in section 3.1. But 
some   changes  are inappropriate. Accordingly generally speaking we wished, but  we 
could not manage, to synthesize the controller to guide the mobile robot to “oscillate”  
between obstacle P1 and set of obstacles P2,P3,P4 and P5. Exists the tendency of the clone to 
guide the robot in such a fashion that its distance from obstacle edges enhance gradually. 
The problem is when the controller  solves turning to the left, i.e. it have  to conclude that 
the robot distance, for example,  from vertices of obstacle P4 is greater than from the robot 
distance from vertices  of obstacle P5 . Until that the robot avoids obstacle P4 attempting to 
turn, not to the left, but  to the right.  It is reason that the robot more and more is closed to 
obstacles P2, P3, P4 and P5.   For small distance of  the robot from obstacle  vertices we 
attempt to increase reaction time when turns around a square.  
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Figure 6. The mobile robot trajectory in xy plane for five static obstacles . The mobile robot is 
controlled by RBF neural  network controller 

4.2 MKBC algorithm as advance according to   RBF neural network algorithm  

The training instances Table 1 (selected 10 from 1801) the previously  were tuned using RBF 
neural network (Section 4.1), i.e. an appropriate fm factor was selected. In order to form 
training instances the task was to avoid rectangle obstacle and achieve the minimal number 
of one vehicle travels from the start to the goal position. On the other hand, the goal is the 
number of instances to be as small as possible. The MKBC algorithm (section 3.8) was tested 
as it is illustrated by Figure 7 for Kc =1000 and Kα =50 and  

 t
r des

Δ

−
=

ψψ *9.0*1623.3
  control strategy, for ∆t = 0.05. 
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The vehicle start position and obstacles are given by relations:  
Start S = (0.15, 0.15), 
Position 1 P1 = (0.3,0.3,0.7,0.7),  
Position 2 P2 = (0.0, 0.95,1.0,1.0),  
Position 3 P3 = (0.95,0.0,1.0,1.0),  
Position 4 P4 = (0.0,0.0,1.0,0.05),  
Position 5 P5 = (0.,0.0.05, 1.0), for  v =0.2 [m/s].  
For training instances given in Table 1 and for  fm [4] = 23151, fm[5] = 6 and another {fm [i] = 
1, j = 1,2,3,6,7,8,9,10}, as it  is given in Table 1 the simulation time T using the exposed 
algorithm was greater then  about 6000  [s]. LW[1,i] is multiplied by fm [i] as  is given in 
Table 1.  For fm [i]  with values given in Table 1 performance error was Exy = 0.00180 and the 
vehicle movement was  time unlimited. So we take that fm is exactly as it is given in Table 1.  
In this case we have situation when the autonomous vehicle moves away from P1 obstacle 
to be closed, until some critical distance and without touching obstacles P2,P3,P4 and P5. 
Here, the tendency of the clone exists to guide the vehicle in such a fashion that its distance 
from the obstacle edges enhance gradually. The problem appears when the controller  solves 
the turn to the left. Namely, it should conclude that the vehicle distance, for example,  from 
vertices of obstacle P4 is greater than from the vehicle distance from vertices  of obstacle P5. 
The vehicle avoids obstacle P4 attempting to turn, not to the left, but  instead to the right.  
This is the main reason why  the vehicle is closer and closer to obstacles P2, P3, P4 and P5.   
Changing fm[j] repeatedly takes a step in the direction of steepest decrease of Exy, like in the 
cases described early. Like that, if we make  the possibility that the  coefficint  α  changes  
according to the dmin  changing, we will going to  induce  a stroughly encahement with 
regard to the simulation time which is  the  touch free.  
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Figure 7. XY trajectory of the vehicle controlled  by clone based on modified  Kohonen rule 

For Kc =1000 and Kα =50 and for the named control strategy we have practically infinite the 
time which is touch of free. The simplicity and that is reason to accept the MKBC algorithm 
as an advancement according to the RBF neural network. At the end, Simulink 
implementation MKBC for the vehicle kinematical model is very simple and it is illustrated 
in Figure 8, but according to Matlab integration method constants Kcte,Kα and Kpsidesired  must 
be corrected as Kcte=500,Kα=100 , Kpsidesired=0.7. 
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b) 2D trajectory  for three obstacles when  Kcte=500,Kα=100 
Figure 8. Simulink model for MKBC algorithm and an appropriate result 

4.3 The narrow passage avoiding by MKBC algorithm 

In literature (R. Kulić, 2004) is treated  the narrow passage avoiding. In order to avoid the 
robot traveling through narrow passages between obstacles is needed  to define a rule 
regarding dimension of the autonomous vehicle. In this section MKBC algorithm, as an 
advancement according to the RBF, is used. That algorithm is applied in order to solve the 
situation which is given in Figure 9b) -9h). In different situations which are  illustrated by 
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Figure 9b) – 9h) the vehicle moves from different start positions to different  goal positions   
avoiding obstacles and narrow passages also. All experiments are quite successful. The 
narrow passages are avoided using the reason which is  described the previously. In Figure 
9b), for example, the autonomous vehicle moves away from P6 obstacle to be close P7, until 
some critical distance, and so on, to be close until some critical distance from obstacles P4, 
P3, P2, P1, …,  and always changes Ψ rapidly in order to be  safely avoided the obstacle 
touch for long time. Changes Ψ rapidly is connected with the changing fm[j] also rapidly as it 
illustrated in Figure 5.  It is the manner repeatedly takes a step in the direction of steepest 
decrease of Exy. According to the different situations  the vehicle  managed  to avoid 
obstacles   again and again, and never did  not have the chance to stop, i.e.  that process is 
has not time limiting and  we observed  that all  experiments  are quite successful.  It was 
found  that the obstacle avoiding and also the narrow passage avoiding is enabled by the 
same MKBC  algorithm  or by the methodology  which is the previously described and it 
means that the solution consistency is saved.  
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