
14

Modification of Kohonen Rule
for Vehicle Path Planing by Behavioral Cloning

 Ranka Kulić

Faculty of Maritime of Studies
Montenegro

Abstract

The problem of path generation for the autonomous vehicle in environments with infinite
number obstacles is considered. Generally, the problem is known in the literature as the
path planning. This chapter treated that problem using the algorithm, named MKBC, which
is based on the behavioral cloning and Kohonen rule. In the behavioral cloning, the system
learns from control traces of a human operator. Kohonen rule connected with the weighting
coefficients, while the MKBC algorithm does not use the weighting values as values from
the previous time, but permanentlly uses the training values as weighting values. That is
something which enables an intelligent system to learn from the examples (operator’s
demonstrations) to control a vehicle in the process of the obstacles avoiding, like the human
operator does. Like that, the very important MKBC characteristic is the symplicity. The
MKBC simplicity is something which is so obviously, specialy according to the RBF neural
network and the machine learnig algorithm which is used the previously. Following the
MKBC given context the problem narrow passage avoiding and the goal position reaching
fundamentally is observed. Namely, defining if – then rule, according to the named cases
is treated as destroying of the consistency of the methodology. In that sense, using MKBC
neural network the solution was found. A the end, the autonomous vehicle mathematical
model which is given by nonlinear equations describing a 12 state dynamical system is used
and in that case the MKBC algorithm is applied successfully. Eventually, as it has been
illustrated the previously, the advantage of the entire methodology lies in the fact that a
complete path of the vehicle can be defined off-line, without using sophisticated symbolical
models of obstacles. These are facts that MKBC algorithm and the given methodology
substantially differ from the others. In the next phase it is expected to confirm results in on
– line simulation process.
Key words: vehicle path planning, behavioral cloning, cloning success, obstacle avoiding,
machine learning, Kohonen rule, neural network, Shark dynamical model.

1. Introduction

In the last years en increasing interest in mobile robots has appeared, notably in aeronautical
space exploration, automatized agriculture, collective mobile robot games, and so on (P.
Vadakkepat, X. Peng et al., 2007). These application require the mobile robot to move in
partially known environments with the high amount of uncertainty. Moving – obstacle

www.intechopen.com

Mobile Robots Motion Planning, New Challenges

262

avoidance with unknown obstacle trajectory remains remarkable challenge and has opened
a research area in the control of the mobile robots, but it is treated in our research using the
methodology which is connected with unmoving obstacles. Many approaches are available
to study this research area. In its simplest form, the motion planning problem can be
defined as follows (C. Latombe, 1991; J. Schwartz, M. Sharir, J. Hopcroft, 1987). Let B be the
autonomous vehicle consisting of collection of rigid subparts having a total k degrees of
freedom, and let B be free to move in two - or three - dimensional space V, avoiding
obstacles whose geometry is known. For a given initial position S and a desired target
position G of B, the task is to determine whether there exist a continuous obstacle - avoiding
motion of B from S to G, and if so, to find such a motion. The simplest collision avoidance
algorithm fall into the generate and test paradigms. A simple path from S to G, usually a
straight line, is hypothesized and then it is tested for potential collisions between B and
obstacles. If collision is detected, a new path is proposed using information about detected
collision. This process repeats until no collision is detected. But in spite of its simplicity these
methods have not found significant application. They have several fundamental drawbacks.
One of these is inability to propose a radically different and better path from local
information about potential collision. Another is that collection methods are based on a
configuration space approach(J. Reif, 1987; C. Latombe, 1991; J. Schwartz, M. Sharir, J.
Hopcroft, 1987). The configuration of rigid body is set of independent parameters that
characterize the position of every point of it. For the vehicle B some regions represent illegal
configuration space because there are obstacles. So the find path (the vehicle motion
planning) approach means that the vehicle have to be shrank to dimension of a reference
point and to grow obstacles, i.e. to compute forbidden regions for the reference point.
Finding the path of the vehicle is in this way transformed in finding the path of the reference
point, moving in configuration space and avoiding obstacles. For the vehicle B moving from
position S to position G the desired path is the shortest path which takes into account all
constraints of the position of the reference point of B. It is possible to obtain this path by
generating an appropriate graph (visibility graph, connectivity graph,…) and finding a path
from graph node S to graph node G. Fundamental problem arising during the
implementation of these methods is concerned with the obstacle growing and graph
searching. For both cases the problem complexity is very large. For example, while in the
planar case the shortest path can be found in time that is in the worst case the quadratic in
the number of obstacle vertices and edges, finding the shortest path between two points in
three dimensions, which avoids a collections of polyhedral obstacles is NP - hard (J.
Schwartz, M. Sharir, and J. Hopcroft,1987; J. Reif,1987). This is a specially very large problem
if the world model changes. Other classes of approaches are developed as alternative to the
traditional ones. A typical such approach (O. Khatib, 1986) regards the obstacles as the
sources of repelling potential field, while the goal position G of the vehicle is considered as
a strong attractor. The vehicle B follows potential gradient vector field. These approaches
try to find the local minimum only. As the next, we can consider the direction which
assumes problem solution capability of the vehicle motion planning based on the transfer of
skill into controllers of the vehicle (D. Michie, R. Camacho, 1994; C. Sammut, S.Hurst, D.
Kedzier, D. Michie, 1992).

www.intechopen.com

Modification of Kohonen Rule
for Vehicle Path Planing by Behavioral Cloning

263

2. Motion planning based on the behavioral cloning

Skill is often defined as an ability to perform a high quality sensory-motor coordination and
control in real time. Humans exhibits such a skill as a result of training over a period of time.
It would be especially useful if we can also provide systems with the capability of acquiring
such a skill. In this sense two approaches have been known. The former treats the skill as
something that could be acquired in a dialogue with an operator. In that process it is
expected from the operator to describe skills he has been governed over the control of the
vehicle. Here arises some difficulties because the skill is human subconscious action and so
cannot be completely consciously and reliably described. An alternative approach is to start
from the assumption that the skill can be reconstructed, using learning algorithms, from the
manifestation trace of it (D. Michie, R. Camacho, 1994; C. Sammut, S.Hurst, D. Kedzier, D.
Michie, 1992). Sammut, Hurst, Kedzier and Michie give a description of the solution
belonging to the flight control area. Our idea (R. Kulic, Z. Vukic, 2006) is to enable an
intelligent system to learn from the examples (operator’s demonstrations) to control a
vehicle avoiding obstacles, like the human operator does.
In section III the intelligent controller concept is given. In section IV the results in controller
development are presented. In section V the conclusion is given and possibilities of further
development are discussed.

3. Elements of concept controller development

3.1 Learning problem

Suppose that is given a data set giving living area and price of m houses in some place. How
can is possible learn to predict the prices of other houses in that place, as function of living
areas? To denote the input variables or input features (living areas in this case) x1i is used.
And yi is used to denote the output or target variable which is need training to predict. The
dataset {(xi,yi), i=1,..,m} that will be used to learn is called a training set. If X denote the
space input values and Y denote the space output values the goal is for given a training set
to learn a function h: X→Y. The function h(X) is called a hypothesis and it have to be a
good predictor for the corresponding values of Y. When the target variable is continuous,
the learning problem is called a regression problem. When the target variable take on only
small number of discrete values, the learning problem is called a classification problem. Lets
consider a slightly richer dataset with a number of bedrooms in each house. The X is two –
dimensional vector, with x1i, x2i features. In general, when designing learning problem, it is
up to us to decide what features to choose. To perform learning it is have to decide how we
are going to represent hypothesis h. A choice can be to approximate it as a linear function of
x ={ x1i, x2i … xni}:

h(x) = θ0 + θ1 x1i + θ2 x 2i+..+ θn x ni

The θi ‘s are the parameters (or weights) parameterizing the space of linear functions
mapping from X to Y. To simplify notation it is introduced xi0=1. So that

,)(
1

ji

n

j

j xxh ∑
=

= θ

www.intechopen.com

Mobile Robots Motion Planning, New Challenges

264

where n is the number of input variables , without x0. For given training set, how it is
possible learn the parameters θj? One reason is to make h(X) close to Y, at least for the
training example. To formalize this, it can be defined a function that measures for each value
of the θj how close h(xi) to the corresponding yi. So, the least –squares cost function is
defined:

2

1

))((
2

1
)(i

m

i

i yxhJ −= ∑
=

θ .

That function is a special case of a much broader family of algorithms. Now, it is needed to
choose vector θ to minimize J(θ). To do so, lets us a search algorithm that starts with some
initial guess for θ and repeatedly changes θ to make J(θ) smaller, until it is reached the value
of θ that minimize J(θ). Lets consider the gradient descent algorithm, which starts with
some initial θ, and repeatedly perform the update:

).(θ
θ

αθθ J
j

jj
∂

∂
−=

This update is simultaneously performed for all values of j=0,…,n. The learning rate α
repeatedly changes in the direction of steepest decrease of J(θ). For one training example we
have:

j

n

j

jij

j

j

n

jj

xyxhxyxh

yxhyxh
n

nyxh
n

J

))(())((

))(())((
1

))((
1

)(

0

−=⎟⎟⎠
⎞⎜⎜⎝

⎛
∂

∂
−

=−
∂

∂
−=−

∂

∂
=

∂

∂

∑
=

θ
θ

θθ
θ

θ

For single training example that gives the rule:

.))((jjj xxhy −+= αθθ

This is called LMS (least mean squares) update rule or Widrow – Hoff learning rule. For
instance the magnitude of the update is proportional to the error (yi – h(x i)). For m training
example the corresponding update rule

Repeat until convergence exist {

jij

m

i

jjj xxhy))((
1

−+= ∑
=

αθθ for every j

}.

The optimization problem have been given here for linear regression has only one global
optima. Assuming the learning rate not too large this batch gradient descent method always
converges to the global minimum.

www.intechopen.com

Modification of Kohonen Rule
for Vehicle Path Planing by Behavioral Cloning

265

3.2. Bihevioral cloning process

The idea of controller development by cloning the human operator (D. Michie, R.
Camacho,1994) is illustrated in Figure 1.

Log

file

Operator
Robot

Machine

learning

programm

Environment

simulator

Figure 1. Behavioral cloning process. The autonomous underwater vehicle is named as the
robot

In the obstacles avoiding problem, this idea could be interpreted in the following way.
During one of the simulation phases, called the training phase, operator guides the vehicle
avoiding unmoving obstacles located in its working space. During this phase variables that
are evaluated as relevant are written into LOG FILE. In the second simulation phase, called
the learning phase, the machine learning program, takes data from the LOG FILE,
generates differential equations, that define the operator’s trajectory. In the third phase,
called the verifying phase, operator is excluded from the vehicle control process and the
vehicle is controlled solely by a clone induced in the learning phase. This development of
process phases are needed for the repeated changing of both problem domain
representation and/or learning system regarding cloning success criterion. Using “several”
vehicle models (problem domain representations) and “several” machine learning systems,
we attempt to find an appropriate domain model and an appropriate machine learning
system that will enable the vehicle to avoid obstacles according to cloning success criterion.

3.3 The vehicle kinematical model

The following kinematical model of the vehicle is used:

ψ (n)=ψ(n-1) + Δ t r(n),

x(n) = x(n-1) + Δt v cos (ψ(n)),

y(n) = y(n-1) + Δt v sin (ψ(n)),

where: ψ is the heading angle of the vehicle (ψ=0 if the vehicle is oriented parallel to x-axis
); r and v are control variables i.e. desired rotation speed and translation speed respectively;
x, y are position coordinates, Δt is the sampling time and n is the time index. The vehicle is
represented as a geometrical figure. Its dimensions are not neglected and we should point
out that this is a very important fact. The selection of the vehicle model is inspired by
conventional methodology that is used in control systems for a given path (R. Stojic, R.
Kulic, M. Zivanovic, 1990).

www.intechopen.com

Mobile Robots Motion Planning, New Challenges

266

3.4 Environment models

Environment model amounts to the distances of the vehicle gravity center from the goal
position (dxG and dyG) and from the obstacles (di). dxG and dyG are calculated as:

dxG= x – xG,

dyG= y – yG ,

where xG, yG are the goal position coordinates. Obstacles are represented by its
characteristic values, as illustrated in Figure 2. Obstacle area is divided into sub-areas .

1

 2

 3 4

5

6

7
8

x 2x1

y2

y1

A

B

C

yB

yC

Figure 2. Triangular obstacle as the environment

A procedure, for the simulation purpose, calculating the vehicle distance di from i-th
obstacle is explained for a triangle obstacle as:
SubArea-4:
if((x>=x1)and(y>=yB)) then di= ((x-x1)2 + (y-y1)2)1/2, SubArea5:
if((x>=x1)and(y<yB)and((y>=yC) then

di = |[y+[(y1-y2) ⁄ (x2-x1)]x +[(y2-y1) ⁄ (x2-x1)]x1-y1] ⁄ [[(y1-y2) ⁄ (x2-x1)]2+1]1⁄2 |,
yB and yC are lines that are normal onto the line BC at points B and C.

3.5 Cloning success criterion

Performance error is very important for the evaluation of the quality of clone that was
constructed. Regarding the ideal case the goal concept and the approximation concept of the
vehicle trajectory are identical and the performance error is equal to zero. Ideal trajectory in
x-y plane without obstacles is, for example, a straight line between the start S and the goal G
positions of the vehicle. Operator, in a training phase, mostly does not manage to realize this
trajectory. Position error Exy is based upon a distances dop(i) and dcl(i) of operator and clone
trajectories, respectively, from the named straight line. Our problem is to avoid obstacle
and so we can consider only Eperf as:

N

N

j jcldjopd

jcldjopd

xyE

∑
= −

−

=
1))()(max(

)()(

 (1)

For avoiding n obstacles we have to find (d)m= min{ di ,i=1,..n} in order to define:

www.intechopen.com

Modification of Kohonen Rule
for Vehicle Path Planing by Behavioral Cloning

267

1

1))1(())(max(

))1(())((

−

∑
= −−

−−

=
N

N

j mjcldmjcld

mjcldmjcld

xyE (2).

Eventually, we can say that between two clones more successful is the one which produces
lower performance error regarding equations (1) and (2).

3.6 The vehicle goal position as the obstacle

The vehicle goal position can be treated as the obstacle, but it has not been applid earlier in
[12], [13]. In that sense the distance from the vehicle goal position and the vehicle gravity
centre was taked into account, as dgoal. Now the attribute number is extended and
¨minimum distance¨ is determined by relation: dmin = min { dgoal, d1, d2 ,,dk }, where d1,
d2 ,,dk are the mimial distance for avoiding K obstacles. Eventually, when we consider
the vehicle goal position as the obstacle, we enable the vehicle path generation to become
simple, but not to become optimal.

3.7 Learning systems

3.7.1 Radial basis function (RBF) of neural network

The model is commonly referred to as the radial basis function (RBF) network. The most
important attribute that distinguishes the RBF network from earlier radial based models is
its adaptive nature. It generally allows to utilize a relative small number of locally tuned
units. RBF network were independently proposed by several authors (D. S. Broomhead, D.
Lowe ,1988; S. Lee, R. Kill, 1988; M. Niranjan , F. Fallside,1988).The following is a
description of the basic RBF architecture Figure 3. The RBF network has a feedforward
structure consisting of a single hidden layer of Q locally tuned units, which are
interconnected to an output layer of L linear units. All hidden units simultaneously receive
R dimensional real –valued input vector p. Notice the absence of hidden layer weights.
Each hidden unit output aj is obtained by calculating the closeness of the input p to n
dimensional parameter vector µj (IW in Figure 2). This parameter is associated with jth
hidden units. The response characteristics of the jth hidden units are given by

)
2

||||
(][

2

j

j

j

p
Kpa

σ

µ−
−= ,

where K is a strictly positive radially symmetric function (kernel) with a unique maximum
at its center µj and which drops off rapidly to zero away from the center. The parameter σj is
the width of the receptive field of the input space for unit j. This means that aj has an
appreciable value only when distance || p- µj|| is smaller than the width σj. A specially but
commonly used RBF network assumes a Gaussian basis function for the hidden units, i.e.:

)
2

||||
exp(][

2

2

j

j

j

p
pa

σ

µ−
−= ,

www.intechopen.com

Mobile Robots Motion Planning, New Challenges

268

where σj and µj, are the standard deviation and mean of the jth unit. The norm is the
Euclidian norm. The output of the RBF network is the L dimensional vector a2, which is
given by:

∑
=

=
L

j

jij aLWa
1

2 .

R

||Dist||

IW

B1

X

LW

A

Qx1

P

QXR
1XQ

A2

/

A2

||nprod||

Qx1

Qx1

Input

Radial basis layer Special linear layer

Figure 3. A radial basis function neural network consisting of a single hidden layer of
locally tuned units that is fully interconnected to an output layer of linear units

RBF networks are best suited for approximating continuous real valued mappings f :
Rn→RL, where n is sufficiently small. According to the previously named equations the RBF
network may be as approximating a desired unction f(p).The degree of accuracy can be
controlled by three parameters the number of basis functions to be used, their location and
their width. The RBF networks are considered as universal approximators (T. Poggio, F.
Girosi, 1990). The training of RBF network is addressed. .Consider training set of m labeled
pairs {xj, yj) which are represent samples of a continuous multivariate function. The
criterion function is an error function E to be minimized over the given training set. It is
desired to develop a training method that minimizes E by updating the free parameters of
the RBF. These parameters are σj, µj and wij. One of the first training methods that comes to
mind is a fully supervised gradient descent methods over E, as it is given in section 3.1.

3.7.2 RBF neural network algorithm and behavioral cloning

The algorithm RBF neural network algorithm is given below for kinematical model which is
given in 3.3.
for m:=1 to N do % N is number of training examples
 begin
 dist[m,1] := (0.8326 / spread)2 * (IW[m,1] – d_min)2; % d_min = dmin ;
 a[m,1] := e-dist[m,1]; % IW[m,1] is the training examples set of the distance dmin
 end;
for j :=1 to N do
 begin
 a2 := a2+ LW[1,j] * a[j,1];
 am := am + a[j,1];

 end; % LW[m,1] is the training examples set of the angle ψ

www.intechopen.com

Modification of Kohonen Rule
for Vehicle Path Planing by Behavioral Cloning

269

if ((am > 0) or (am <0)) then a2 := a2/am;
psides := a2;

r := (psides –psi) / dt; % t
r des

Δ

−
=

ψψ
 , dt= Δt=0.05 s

Control strategy was r = (ψdes - ψ) / Δt, v=0.1, where ψdes is the desired value of angle ψ.

3.7.3 Modification Kohonen rule and behavioral cloning - MKBC algorithm

Thus, as it is given in Figure 3, the neuron whose weight vector was closest to the input
vector is updated to become even more closer. Suppose that the ith neuron wins, then the
elements of the ith row of the input weighting matrix are adjusted as shown:

iLW1,1(q)= iLW1,1 (q-1)+ α(p(q) – iLW1,1 (q-1)),

where p(q) is input vector, q is the time index and α must be specially tuned according to
the domain. With regarding to the original Kohonen rule connected with the weighting
coefficients, as the neural network, this algorithm does not use the weighting values as the
values from the previous time, but permanentlly uses the training values as the weighting
values. This enables an intelligent system to learn from the examples (operator’s
demonstrations) to control a vehicle in avoiding obstacles, like the human operator does.
This seems, at least for this case, to be better according to the original idea of the Kohonen
rule. The algorithm is given below.
for i:=1 to M do
begin
AS(1,1) :=0;
end;
 alfa(i,n); % Must be specially tuned
 % according to the domain;
 % n is the time index;
for i:=1 to M do % M is the number of inputs;
begin
for j :=1 to N do % N is the number of the
 %training examples;
 begin

 LW[i,j,n] := alfa[i,n] * (p[i,n0] - p[i,n]); % p[i,n] is the input
 % vector;
 % p(i,n0) are the training example set
 AS(i,n) := AS(i,n) + (LW[i,j,n0] – LW(i,j,n))2 ; % LW[i,j,n0] is the training examples set

 end;
 a(i,n) := sqrt (AS(i,n)); % a(i,n) is the output
 % vector;
end;

www.intechopen.com

Mobile Robots Motion Planning, New Challenges

270

The algorithm means that by using N training examples the weight vector LW [i,j,n0],
{i=1,M; j=1,N} can be formed1. Then LW[i,j,n0] need to be modified according to: 1) the
actual values of the input vector2 p[i,n], {i=1,M} and 2) the actual value of the tuned vector
α[i,n],{i=1,M}, where n is the time index. The resulting weighting vector is LW[i,j,n] and it
has deviation according to the input vector p[i,n]. The output vector is a[i,n] and it is
connected with the weight vector as is illustrated by two last lines of the algorithm.

3.8 The MKBC algorithm and the motion planning

The MKBC algorithm is needed to be adapted in order to be used in the motion planning
domain. The motion planning with the weight vector uses LW (Table 1), the training
values of the learned variable which is the heading angle ψ (Section 3.3). Firstly, the
algorithm requires the modification of the training vector LW. The modification executes,
as is given below, using: 1) N training examples in IW and LW, where IW are the training
values of the minimal distance dmin (section 3.6), 2) the current input value dmin and 3)
tuning factor α . Secondly, the algorithm finds the desired output value using, in some
sense, least – square cost function of the heading angle. The algorithm output value
enables the obstacle avoidance and it is the desired value of the heading angle (ψdes). The
algorithm is given below.
AS :=0;
alfa = Kc – Kα * d_min; % The values Kc and Kα must be tuned;

for j :=1 to N do % N is the number of the training examples;
 begin

 LW[2,j] := alfa * (IW [1,j] – dmin);
 AS := AS + (LW[2,j] – LW[1,j])2 ;

 end;

 psides := sqrt (AS); % ASdes =ψ ;

 % r := (psides –psi) / dt; , dt= Δt=0.05 s;
On the other hand, when the modified Kohonen rule with the weighting parameters is
used, then the algorithm does not use the weighting values IW as the distance dmin from
the previous time, but always uses IW as the training values of the distance dmin to
determine the training values LW of the heading angle ψ . This enables an intelligent
system to learn from the examples (operator’s demonstrations) to control a vehicle in
avoiding obstacles, like the human operator does. The very important MKBC characteristics
are the operator cloning and symplicity, the simplicity specialy according to the RBF neural
network. The coefficient α has values that are changed from time to time. Firstly, when it
is tuned this factor enables the heading angle ψ to increase when the vehicle distance from
the obstacles edges is small (i.e. dmin ≈ 0.08). The performance error Exy has a minimum for
that α value. While α factor increases, the total time T of the autonomous vehicle moving
without touching the obstacle also increases.

1 n0 means the training example set.
2 The training value of the input vector is p[i,n0].

www.intechopen.com

Modification of Kohonen Rule
for Vehicle Path Planing by Behavioral Cloning

271

4. Experiments and results

In order to form training instances the task was only to avoid obstacles. The robot start position
was its goal position. The minimal number of robot traveling from the start to the goal was
to be one. It is the framework for selecting appropriate training instances. The idea is to combine this
control strategy with control strategy without obstacles in order to form a full controller.
When an obstacle was included, the robot trajectory for training scene is illustrated in Figure
4.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

X

Y

S

Figure 4. The robot trajectory used in order to gather training example

Control strategy was r = (ψdesired - ψ) / Δt, v=0.1.

4.1 Experiments with RBF neural network

In the following is described application of RBF network in mobile robot motion planning.
A relatively small corresponding training set is given in Table 1.

dex
J

Distance (IW[j,1])
or
dmin

Angle
Ψ or LW[1,j]

Angle modified
Ψm or LW[1,j]

Factor
fm

1 0.04 10.906 10.906 1
2 0.0494 13.8025 13.8025 1
3 0.0591 11.425 11.425 1
4 0.08 0.0035 81.025 23151
5 0.08 9.513 85.617 9
6 0.081 12.070 12.070 1
7 0.0894 12.692 12.692 1
8 0.0923 12.556 12.556 1
9 0.1006 7.6405 7.6405 1
10 0.12 0.6895 3.4475 5

Table 1. The original end the modified training examples according to the movement of the
vehicle

www.intechopen.com

Mobile Robots Motion Planning, New Challenges

272

The firstly by tuning spread factor (section 3.7.1 and 3.7.2) is tuned σj. For step k=1 spread
=1, and then spread decreased in 0.01. Process was stopped for spread=0.002. The
performance error Exy has minima for that spread value. While spread factor decreased, total
time T of the mobile robot moving without touching of obstacles increased: (spread=0.005,
T=534 s; spread=0.003, T=600 s; spread=0.002, T=637 s). In order to decreased performance
error for small the robot distance from obstacles edges (dmin ≈ 0.08), LW[1,j] is multiplied by
fm [j] as it is given in Table 1 and in Figure 5.

0

10

20

30

40

50

60

70

80

90

0 0,05 0,1 0,15

Series1

Series2

d min

Ψ

red=new

blue=old

 Figure 5. Modifying the LWij parameters or Ψ training instances for the RBF network in
order to decrease performance error Exy

For fm [4]=23151, fm[5]=6 and another {fm [j]=1,j=1,2,3,6,7,8,9,10}, it was T=1248 s. But for fm
[j] which have values as it was given in Table 1 performance error was Exy = 0.00382 and
robot moving was not time limited. Two scenes with five static obstacles is given in Figure
6. In that case we have situation when the mobile robot moves away from P1 obstacle to be
close, until some critical distance and without touching, to obstacles P2,P3,P4 and P5. The
robot safely avoids the obstacles touching. Changing fm[j] repeatedly takes a step in the
direction of steepest decrease of Exy, like the cases described for function J in section 3.1. But
some changes are inappropriate. Accordingly generally speaking we wished, but we
could not manage, to synthesize the controller to guide the mobile robot to “oscillate”
between obstacle P1 and set of obstacles P2,P3,P4 and P5. Exists the tendency of the clone to
guide the robot in such a fashion that its distance from obstacle edges enhance gradually.
The problem is when the controller solves turning to the left, i.e. it have to conclude that
the robot distance, for example, from vertices of obstacle P4 is greater than from the robot
distance from vertices of obstacle P5 . Until that the robot avoids obstacle P4 attempting to
turn, not to the left, but to the right. It is reason that the robot more and more is closed to
obstacles P2, P3, P4 and P5. For small distance of the robot from obstacle vertices we
attempt to increase reaction time when turns around a square.

www.intechopen.com

Modification of Kohonen Rule
for Vehicle Path Planing by Behavioral Cloning

273

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

S

robot B

P1

P2

P3

robot trajectory

P4

P5

X

Y

a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

X

Y

S
P1

P2

P3

P4

P5
B

robot

X

robot trajectory

b)

Figure 6. The mobile robot trajectory in xy plane for five static obstacles . The mobile robot is
controlled by RBF neural network controller

4.2 MKBC algorithm as advance according to RBF neural network algorithm

The training instances Table 1 (selected 10 from 1801) the previously were tuned using RBF
neural network (Section 4.1), i.e. an appropriate fm factor was selected. In order to form
training instances the task was to avoid rectangle obstacle and achieve the minimal number
of one vehicle travels from the start to the goal position. On the other hand, the goal is the
number of instances to be as small as possible. The MKBC algorithm (section 3.8) was tested
as it is illustrated by Figure 7 for Kc =1000 and Kα =50 and

 t
r des

Δ

−
=

ψψ *9.0*1623.3
 control strategy, for ∆t = 0.05.

www.intechopen.com

Mobile Robots Motion Planning, New Challenges

274

The vehicle start position and obstacles are given by relations:
Start S = (0.15, 0.15),
Position 1 P1 = (0.3,0.3,0.7,0.7),
Position 2 P2 = (0.0, 0.95,1.0,1.0),
Position 3 P3 = (0.95,0.0,1.0,1.0),
Position 4 P4 = (0.0,0.0,1.0,0.05),
Position 5 P5 = (0.,0.0.05, 1.0), for v =0.2 [m/s].
For training instances given in Table 1 and for fm [4] = 23151, fm[5] = 6 and another {fm [i] =
1, j = 1,2,3,6,7,8,9,10}, as it is given in Table 1 the simulation time T using the exposed
algorithm was greater then about 6000 [s]. LW[1,i] is multiplied by fm [i] as is given in
Table 1. For fm [i] with values given in Table 1 performance error was Exy = 0.00180 and the
vehicle movement was time unlimited. So we take that fm is exactly as it is given in Table 1.
In this case we have situation when the autonomous vehicle moves away from P1 obstacle
to be closed, until some critical distance and without touching obstacles P2,P3,P4 and P5.
Here, the tendency of the clone exists to guide the vehicle in such a fashion that its distance
from the obstacle edges enhance gradually. The problem appears when the controller solves
the turn to the left. Namely, it should conclude that the vehicle distance, for example, from
vertices of obstacle P4 is greater than from the vehicle distance from vertices of obstacle P5.
The vehicle avoids obstacle P4 attempting to turn, not to the left, but instead to the right.
This is the main reason why the vehicle is closer and closer to obstacles P2, P3, P4 and P5.
Changing fm[j] repeatedly takes a step in the direction of steepest decrease of Exy, like in the
cases described early. Like that, if we make the possibility that the coefficint α changes
according to the dmin changing, we will going to induce a stroughly encahement with
regard to the simulation time which is the touch free.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

S

P1

P2

P3

P4

P5

The robot trajectory

for T= 2100s

X

Y

Figure 7. XY trajectory of the vehicle controlled by clone based on modified Kohonen rule

For Kc =1000 and Kα =50 and for the named control strategy we have practically infinite the
time which is touch of free. The simplicity and that is reason to accept the MKBC algorithm
as an advancement according to the RBF neural network. At the end, Simulink
implementation MKBC for the vehicle kinematical model is very simple and it is illustrated
in Figure 8, but according to Matlab integration method constants Kcte,Kα and Kpsidesired must
be corrected as Kcte=500,Kα=100 , Kpsidesired=0.7.

www.intechopen.com

Modification of Kohonen Rule
for Vehicle Path Planing by Behavioral Cloning

275

three circle

touch

STOP

 dm

.

x

1/ 0.05

AUTOPILOT

 r

Psi

PSIdes

y

 0.9

v=0.2

environment and

0.7

XY Graph

sin

Trigonometric

Function1

cos

Trigonometric

Function

Y

To Workspace1

X

To Workspace
Sum5

Sum2

Sum

In1

In2
Out1

Subsystem1

In1

In2

Subsystem

Step

Psi2

Psi

Product1

Product

In1Out1

Modification of

Kohonen

sqrt

Math

Function2

u
2

Math

Function1

u
2

Math

Function

1

s

Integrator6

1

s

Integrator2

1

s

Integrator1

1

s

Integrator

-K-

Gain3

-K-

Gain2

-K-

Gain1

a) Simulink model

-1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

2

X

Y

b) 2D trajectory for three obstacles when Kcte=500,Kα=100
Figure 8. Simulink model for MKBC algorithm and an appropriate result

4.3 The narrow passage avoiding by MKBC algorithm

In literature (R. Kulić, 2004) is treated the narrow passage avoiding. In order to avoid the
robot traveling through narrow passages between obstacles is needed to define a rule
regarding dimension of the autonomous vehicle. In this section MKBC algorithm, as an
advancement according to the RBF, is used. That algorithm is applied in order to solve the
situation which is given in Figure 9b) -9h). In different situations which are illustrated by

www.intechopen.com

Mobile Robots Motion Planning, New Challenges

276

Figure 9b) – 9h) the vehicle moves from different start positions to different goal positions
avoiding obstacles and narrow passages also. All experiments are quite successful. The
narrow passages are avoided using the reason which is described the previously. In Figure
9b), for example, the autonomous vehicle moves away from P6 obstacle to be close P7, until
some critical distance, and so on, to be close until some critical distance from obstacles P4,
P3, P2, P1, …, and always changes Ψ rapidly in order to be safely avoided the obstacle
touch for long time. Changes Ψ rapidly is connected with the changing fm[j] also rapidly as it
illustrated in Figure 5. It is the manner repeatedly takes a step in the direction of steepest
decrease of Exy. According to the different situations the vehicle managed to avoid
obstacles again and again, and never did not have the chance to stop, i.e. that process is
has not time limiting and we observed that all experiments are quite successful. It was
found that the obstacle avoiding and also the narrow passage avoiding is enabled by the
same MKBC algorithm or by the methodology which is the previously described and it
means that the solution consistency is saved.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

S

P1

P2

P3

P4

P5

The robot trajectory

for T= 2100s

X

Y

a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

narrow passage narrow passage

n

a

r

r

o

w

p

a

s

s

a

g

e

vehicle trajectory

X

Y

S

P1

P2

P3

P4

P5

P6

P7

Vehicle

b)

www.intechopen.com

Modification of Kohonen Rule
for Vehicle Path Planing by Behavioral Cloning

277

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

S

Y

X

P3

P4

P7

P6

P2
P1

P5

n

a

r

r

o

w

p

a

s

s

a

g

e

n

a

r

r

o

w

p

a

s

s

a

g

e

narrow passage

narrow passage

narrow passage

narrow passage

vehicle

vehicle trajectory

c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

vehicle

trajectory

vehicle

P6

P1

P2

P3

P4

P7

P5

S

Y

X

narrow passage

narrow passage

narrow passage

n

a

r

r

o

w

p

a

s

s

a

g

e

S

d)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

P7

P7

P7

P7

P7

P7

P7

X

S

Y

vehicle

vehicle

trajectory

narrow passage narrow passage

narrow passage

narrow passage

narrow passage

n

a

r

r

o

w

p

a

s

a

ge

e)

www.intechopen.com

Thank You for previewing this eBook
You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can
access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

