
C4B — Mobile Robotics

Paul Michael Newman

October 2003, Version 1.00

Contents

1 Introduction and Motivation 6

2 Introduction to Path Planning and Obstacle Avoidance 8

2.1 Holonomicity . 9

2.2 Configuration Space . 11

2.3 The Minkowski-Sum . 13

2.4 Voronoi Methods . 14

2.5 Bug Methods . 15

2.6 Potential Methods . 15

3 Estimation - A Quick Revision 19

3.1 Introduction . 19

3.2 What is Estimation? . 19

3.2.1 Defining the problem . 20

3.3 Maximum Likelihood Estimation . 21

3.4 Maximum A-Posteriori - Estimation . 22

2

3

3.5 Minimum Mean Squared Error Estimation 24

3.6 Recursive Bayesian Estimation . 25

4 Least Squares Estimation 28

4.1 Motivation . 28

4.1.1 A Geometric Solution . 29

4.1.2 LSQ Via Minimisation . 29

4.2 Weighted Least Squares . 30

4.2.1 Non-linear Least Squares . 30

4.2.2 Long Baseline Navigation - an Example 31

5 Kalman Filtering -Theory, Motivation and Application 35

5.1 The Linear Kalman Filter . 35

5.1.1 Incorporating Plant Models - Prediction 39

5.1.2 Joining Prediction to Updates . 42

5.1.3 Discussion . 43

5.2 Using Estimation Theory in Mobile Robotics 46

5.2.1 A Linear Navigation Problem - “Mars Lander” 46

5.2.2 Simulation Model . 48

5.3 Incorporating Non-Linear Models - The Extended Kalman Filter 52

5.3.1 Non-linear Prediction . 52

5.3.2 Non-linear Observation Model . 54

3

4

5.3.3 The Extended Kalman Filter Equations 56

6 Vehicle Models and Odometry 59

6.1 Velocity Steer Model . 59

6.2 Evolution of Uncertainty . 61

6.3 Using Dead-Reckoned Odometry Measurements 63

6.3.1 Composition of Transformations . 65

7 Feature Based Mapping and Localisation 69

7.1 Introduction . 69

7.2 Features and Maps . 70

7.3 Observations . 70

7.4 A Probabilistic Framework . 71

7.4.1 Probabilistic Localisation . 71

7.4.2 Probabilistic Mapping . 72

7.5 Feature Based Estimation for Mapping and Localising 73

7.5.1 Feature Based Localisation . 73

7.5.2 Feature Based Mapping . 74

7.6 Simultaneous Localisation and Mapping - SLAM 78

7.6.1 The role of Correlations . 81

8 Multi-modal and other Methods 83

8.1 Montecarlo Methods - Particle Filters . 83

4

5

8.2 Grid Based Mapping . 85

9 In Conclusion 89

10 Miscellaneous Matters 90

10.1 Drawing Covariance Ellipses . 90

10.2 Drawing High Dimensional Gaussians . 93

11 Example Code 94

11.1 Matlab Code For Mars Lander Example . 94

11.2 Matlab Code For Ackerman Model Example 98

11.3 Matlab Code For EKF Localisation Example 100

11.4 Matlab Code For EKF Mapping Example 103

11.5 Matlab Code For EKF SLAM Example . 107

11.6 Matlab Code For Particle Filter Example . 111

5

Topic 1

Introduction and Motivation

This set of lectures is about navigating mobile platforms or robots. This is a huge topic and
in eight lectures we can only hope to undertake a brief survey. The course is an extension
of the B4 estimation course covering topics such as linear and non-linear Kalman Filtering.
The estimation part of the lectures is applicable to many areas of engineering not just mobile
robotics. However I hope that couching the material in a robotics scenario will make the
material compelling and interesting to you.

Lets begin by dispelling some myths. For the most parts when we talk about “mobile
robots” we are not talking about gold coloured human-shaped walking machines 1. Instead
we are considering some-kind of platform or vehicle that moves through its environment
carrying some kind of payload. Almost without exception it is the payload that is of interest
- not the platform. However the vast majority of payloads require the host vehicle to navigate
—to be able to parameterize its position and surroundings and plan and execute trajectories
through it. Consider some typical autonomous vehicle and payloads:

• Humans in a airplane on autopilot (or car in the near-ish future. CMU NavLab project)

• Scientific equipment on a Mars lander

• Mine detectors on an autonomous underwater vehicle

• Cargo containers in a port transport vehicle

• Pathology media in a hospital deliver system

1although the Honda P5 humanoid is a good approximation

6

7

• Verbal descriptions in a museum tour guide

• A semi-submersible drill ship (oil recovery)

• Cameras on an aerial survey drone

• Obvious military uses (tend to be single mission only....)

All of the above require navigation. This course will hopefully give you some insight into
how this can be achieved.

It is worth enumerating in general terms what makes autonomous navigation so hard. The
primary reason is that the majority of mobile robots are required to work in un-engineered
environments. Compare the work-spaces of a welding robot in automotive plant to one that
delivers blood samples between labs in a hospital. The former operates in a highly controlled,
known, time invariant (apart from the thing being built) scene. If computer vision is used
as a sensor then the workspace can be lit arbitrarily well to mitigate against shadows and
color ambiguity. Many industrial robots work in such well known engineered environments
that very little external sensing is needed — they can do their job simply by controlling
their own internal joint angles. Hospitals are a different ball-park altogether. The corridors
are dynamic — filling and emptying (eventually) with people on stretchers. Even if the
robot is endowed with a map of the hospital and fitted with an upward looking camera to
navigate off markers on the ceiling it still has to avoid fast moving obstacles (humans) while
moving purposely towards it’s goal destination. The more generic case involves coping with
substantial scene changes (accidental or malicious) — for example doors closing in corridors
or furniture being moved. The thing then, that makes mobile robotics so challenging is
uncertainty. Uncertainty is pervasive in this area and we must embrace it to make progress....

7

Topic 2

Introduction to Path Planning and

Obstacle Avoidance

A basic requirement of a mobile autonomous vehicle is path planning. With the vehicle in an
arbitrary initial position A we wish to issue a desired goal position B (including orientation)
and have the vehicle execute a trajectory to reach B . This sounds pretty simple and we can
think of several ways in which we could combine simple control laws that will get us from A

to B 1 Unfortunately the waters quickly become muddied when we start talking about our
other concerns:

• while executing its trajectory the vehicle must not smash into objects in the environ-
ment (especially true regarding squishy humans).

• we cannot guarantee that the vehicle in question can turn-on-the-spot and would like
to be able to operate a vehicle of arbitrary shape. These are called “kinematic” con-
straints.

• we expect only uncertain estimates of the location of the robot and objects in the
environment.

The combination of path-planning, obstacle avoidance, kinematic constraints and uncer-
tainty makes for a very hard problem indeed — one which is still an active area of research.
However we can do some interesting things if we decouple some of the issues and make some

1for example drive in a straight line from A to B until B (x,y) is reached then rotate to align with B
(theta).

8

Holonomicity 9

Figure 2.1: Two holonomic vehicles. The underwater vehicle (ODIN, University of Hawaii)
can move in any direction irrespective of pose and the complex wheel robot PPRK (CMU)
driven by a “Palm Pilot” uses wheels that allow slip parallel to their axis of rotation. A sum
of translation and slip combine to achieve any motion irrespective of pose.

simplifying assumptions. We shall begin by discussing vehicle properties and categorizing
them into two classes — holonomic and non-holonomic.

2.1 Holonomicity

Holonomicity is the term used to describe the locomotive properties of a vehicle with respect
to its workspace. We will introduce a mathematical definition of the term shortly but we
will begin by stating, in words, a definition:

A vehicle is holonomic if the number of local degrees of freedom of
movement equals the number of global degrees of freedom.

We can make this a little more clear with a few examples:

• a car is non-holonomic : the global degrees of freedom are motion in x,y and heading
however locally, a car can only move forward or turn. It cannot slide sideways.(Even
the turning is coupled to motion).

9

Holonomicity 10

Figure 2.2: A commercial non-holonomic robot vehicle (Roombavac from iRobot coorpora-
tion. This vehicle can be purchased for about 100 USD - but is it’s utility great enough to
warrant the prices? Discuss....

• The “spherical” underwater robot (Odin) and the rolling wheel vehicle in Figure 2.1
are holonomic they can turn on the spot and translate instantaneously in any direction
without having to rotate first.

• A train is holonomic: it can move forwards or backwards along the track which is
parameterised by a single global degree of freedom — the distance along the track.

• The robot “Roombavac” (iRobot corporation) vacuum cleaner in Figure 2.1 is also
non-holonomic. It can rotate in place but cannot slide in any direction — it needs to
use a turn-translate-turn or turn-while-drive (like a car) paradigm to move.

It should be obvious to you that motion control for a holonomic vehicle is much easier
than for a non-holonomic vehicle. If this isn’t obvious consider the relative complexity of
parking a car in a tight space compared to driving a vehicle that can simply slide into the
space sideways (a hovercraft).

Unfortunately for us automation engineers, the vast majority of vehicles in use today
(i.e. used by humans) are non-holonomic. In fact intrinsically holonomic vehicles are so rare
and complex (or so simple 2) that we shall not discuss them further.

We can now place some formalism on our notion of holonomicity. We say a vehicle whose
state is parameterised by a vector x is non-holonomic if there exists a constraint Q such that

Q(x, ẋ, ẍ, · · ·) = 0 (2.1)

where the state derivatives cannot be integrated out. To illustrate such a constraint we will
take the case of a front wheel steered vehicle as shown in figure 2.1

2path planning for a train is quite uninteresting

10

Configuration Space 11

x
 =[x,y,
 θ]
 T

θ

x
'

Figure 2.3: A steered non-holonomic vehicle

Immediately we can write a constraint expressing that the vehicle cannot slip sideways
that is a function of x and its first derivative:





ẋ
ẏ

θ̇



 .





− sin θ
cos θ
0



 = 0 (2.2)

Q(x, ẋ) = 0 (2.3)

The state and its derivatives are inseparable and by our definition the vehicle is non-
holonomic.

2.2 Configuration Space

We are describing the robot by its state x = [x1, x2, · · · xn]T (for a 2D plane vehicle commonly
x1 = x x2 = y x3 = θ)which is a n-state parameterisation. We call the space within which
x resides the configuration space C − space of the vehicle:

C =
⋃

∀x1,x2···xn

x (2.4)

The configuration space (or C − space) is the set of all allowable configurations of the robot.
For a simple vehicle moving on a plane the configuration space has the same dimension as
the work space but for more complicated robots the dimension of the configuration space is
much higher. Consider the case of the bomb disposal vehicle in figure 2.2. The configuration
space for such a vehicle would be 11 — 3 for the base and another 8 for the pose of the arm
and gripper. We can view obstacles as defining regions of C − space that are forbidden. We

11

Configuration Space 12

Figure 2.4: A vehicle with a high dimensional configuration space - a commercial bomb-
disposal platform (picture courtesy of Roboprobe Ltd. The configuration space for a human
is immensely high dimensional —around 230.

can label this space as C⊗ and the remaining accessible/permissable space as C¯ such that
C = C⊗ ∪ C¯. It is often possible to define and describe the boundaries of C⊗(and hence the
boundaries of C¯in which the vehicle must move) as a constraint equation. For example if
the workspace of a point robot in 2D x = [xy]T is bounded by a wall ax+ by + c = 0 then

C¯ =
⋃

{x | ax+ by + c > 0}
︸ ︷︷ ︸

union of all x for which ax+by+c > 0

(2.5)

If each of the constraints imposed on C − spaceby each obstacle k is represented by an
equation of the form Ck(x) = 0 then the open free space C¯admitted by n obstacles can be
written as the following intersection:

C¯ =
k=n⋂

k=1

(⋃

{x | Ck(x) = 0}
)

(2.6)

Equation 2.6 simple states what configurations are open to the vehicle —nothing more. Any
path planning algorithm must guide the vehicle along a trajectory within this space while
satisfying any non-holonomic vehicle constraints and finally deliver the vehicle to the goal
pose. This clearly is a hard problem. Two poses that may be adjacent to each other in state
space may require an arbitrarily long path to be executed to transition between them. Take,
for example, the seemingly simple task of turning a vehicle through 180o when it is near
a wall. One solution trajectory to the problem is shown in figure 2.2. The non-holonomic
vehicle constraints conspire with the holonomic constraint imposed by the wall to require a
complicated solution trajectory.

12

The Minkowski-Sum 13

3

2

3
 4
1

Figure 2.5: A simple task - turning through 180o quickly becomes complicated by
C − spaceconstraints.

2.3 The Minkowski-Sum

Real robots have arbitrary shapes and these shapes make for complicated interactions with
obstacles which we would like to simplify. One way to do this is to transform the problem
to one in which the robot can be considered as a point-object and a technique called the
“Minkowski-Sum” does just this. The basic idea is to artificially inflate the extent of obstacles
to accommodate the worst-case pose of the robot in close proximity. This is easiest to
understand with a diagram shown in Figure 2.3. The idea is to replace each object with a
virtual object that is the union of all poses of the vehicle that touch the obstacle. Figure 2.3
has taken a conservative approach and “replaced” a triangular vehicle with a surrounding
circle. The minimal Minkowski-Sum would be the union of the obstacle and all vehicle poses
with the vehicle nose just touching it boundary. With the obstacles suitably inflated the
vehicle can be thought of a point-object and we have a guarantee that as long as it keeps to
the new, shrunken, free space it cannot hit an object 3. Note it is usual to fit a polygonal
hull around the results of the Minkowski-Sum calculation to make ensuing path planning
calculations easier.

So now we have a method by which we can calculate C¯. The next big question is how
exactly do we plan a path through it? How do we get from an initial pose to a goal pose?
We will consider three methods : Voronoi, “Bug” and Potential methods.

3This doesn’t mean that awkward things won’t happen — the situation shown in figure 2.2 is still
possible. However progress can be made by planning motion such that at object boundaries the vehicle is
always capable of moving tangentially to the boundaries

13

Voronoi Methods 14

Figure 2.6: The Minkowski-Sum transforms a arbitrarily shaped vehicle to a point while
inflating the obstacle. The result is guaranteed free space outside the inflated object bound-
ary.

2.4 Voronoi Methods

−20 0 20 40 60 80 100 120 140 160
−20

0

20

40

60

80

100

120

Figure 2.7: A Voronoi diagram for obstacle avoidance in the presence of point objects.

Voronoi diagrams are elegant geometric constructions 4 that find applications throughout
computer science — one is shown in figure 2.4. Points on a 2D-Voronoi diagram are equi-
distant from the nearest two objects in the real world. So the Voronoi diagram of two points
a, b is the line bisecting them — all points on that line are equidistant from a, b. The efficient
computation of Voronoi diagrams can be quite a complex matter but what is important
here is that algorithms exist that when given a set of polygonal objects can generate the
appropriate equi-distant loci. So how does this help us with path planning? Well, if we follow
the paths defined by a Voronoi diagram we are guaranteed to stay maximally far away from

4http://www.voronoi.com/

14

Bug Methods 15

nearby objects. We can search the set of points on the diagram to find points that are closest
to and visible from the start and goal positions. We initially drive to the “highway entry”
point, follow the “Voronoi - highways” until we reach the “exit point” where we leave the
highway and drive directly towards the goal point.

2.5 Bug Methods

The generation of a global Voronoi diagram requires upfront knowledge of the environment.
In many cases this is unrealistic. Also Voronoi planners by definition keep the vehicle as far
away from objects as possible - this can have two side effects. Firstly the robot may be using
the objects to localise and moving away from them makes them harder to sense. Secondly
the paths generated from a Voronoi planner can be extremely long and far from the shortest
path (try playing with the Matlab Voronoi function). An alternative family of approaches
go under the name of “ bug algorithms”. The basic algorithm is simple:

1. starting from A and given the coordinates of a goal pose B draw a line AB (it may
pass through obstacles that are known or as yet unknown)

2. move along this line until either the goal is reached or an obstacle is hit.

3. on hitting an obstacle circumnavigate its perimeter until AB is met

4. goto 2

In contrast to the Voronoi approach this method keeps the vehicle as close to the obstacles
as possible (but we won’t hit them as the obstacles have been modified by the Minkowski
sum!). However the path length could be stupidly long. A smarter modification would be
to replace step 3 in the original algorithm with “on hitting and obstacle circumnavigate it’s
perimeter until AB is met or the line AB becomes visible in which case head for a point on
AB closer to B ” Figure 2.5 shows the kind of trajectory this modified “VisBug” algorithm
would execute. Clearly the hugging the object boundary is not always a good plan but
interestingly it is guaranteed to get the robot to the goal location if it is indeed reachable.

2.6 Potential Methods

A third very popular method of path planning is a so called “Potential Method”. Once again
the idea is very simple. We view the goal pose as a point of low potential energy and the

15

Potential Methods 16

start

goal

Figure 2.8: The visbug algorithm executing a goal-seek trajectory around Southern Italy.

obstacles as areas of high potential energy. If we think of the vehicle as a ball-bearing free
to roll around on a “potential terrain“ then it will naturally roll around obstacles and down
towards the goal point. The local curvature and magnitude of the potential field can be used
to deduce a locally preferred motion. We now firm up this intuitive description with some
mathematics.

At any point x we can write the total potential UΣ as a sum of the potential induced Uo

by k obstacles and the potential induced by the goal Ug:

UΣ(x) =
∑

i=1:k

Uo,i(x) +Ug(x) (2.7)

Now we know that the force F(x) exerted on a particle in a potential field UΣ(x) can be
written as :

F(x) = −∇UΣ(x) (2.8)

= −
∑

i=1:k

∇Uo,i(x)−∇Ug(x) (2.9)

where ∇is the grad operator ∇V = i ∂V
∂x

+j∂V
∂y

+k∂V
∂x

5 This is a powerful tool - we can simply
move the vehicle in the manner in which a particle would move in a location-dependent force-
field. Equation 2.8 tells us the direction and magnitude of the force for any vehicle position
x .

5don’t get confused here with the ∇ notation used for jacobians in the material covering non-linear
estimation in coming pages!

16

Potential Methods 17

The next question is what exactly do the potential functions look like. Well, there is
no single answer to that — you can “roll your own”. A good choice would be to make the
potential of an obstacle be an inverse square function of the distance between vehicle and
obstacle. We may also choose an everywhere-convex potential for the goal so that where ever
we start, in the absence of obstacles, we will “fall” towards the goal point. Figure 2.6 shows
two useful potential candidates (forgive the pun). Defining ρ(x) as the shortest distance

point obstacle potential

goal potential

Figure 2.9: Two typical potential functions - inverse quadratic for obstacle and quadratic
for the goal.

between the obstacle and the vehicle (at x) and xg as the goal point, the algebraic functions
for these potentials are:

Uo,i(x) = η







1
2

(
1

ρ(x)
− 1

ρ0

)2

∀ ρ(x) ≤ ρ0

0 otherwise
(2.10)

Ug(x) =
1

2
(x− xg)

2 (2.11)

The term ρ0 places a limit on the region of space affected by the potential field — the virtual
vehicle is only affected when it comes with ρ0 of an obstacle. η is just a scale factor. Simple
differentiation allows us to write the force vector exerted on a virtual point vehicle as:

Fo,i =

{

η
(

1
ρ(x)

− 1
ρ0

)
1

ρ(x)2
∂ρ(x)
∂x

∀ρ(x) ≤ ρ0

0 otherwise
(2.12)

where ∂ρ(x)
∂x

is the vector of derivatives of the distance function ρ(x) with respect to x, y, z.
We proceed similarly for the goal potential. So to figure out the force acting on a virtual
vehicle and hence the direction the real vehicle should move in, we take the sum of all obstacle

17

Thank You for previewing this eBook
You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can
access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

