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1. Introduction 

The human face has attracted attention in a number of areas including psychology, 
computer vision, human-computer interaction (HCI) and computer graphics (Chandrasiri et 
al,  2004). As facial expressions are the direct means of communicating emotions, computer 
analysis of facial expressions is an indispensable part of HCI designs. It is crucial for 
computers to be able to interact with the users, in a way similar to human-to-human 
interaction. Human-machine interfaces will require an increasingly good understanding of a 
subject's behavior so that machines can react accordingly. Although humans detect and 
analyze faces and facial expressions in a scene with little or no effort, development of an 
automated system that accomplishes this task is rather diffcult. 
One challenge is to construct robust, real-time, fully automatic systems to track the facial 
features and expressions. Many computer vision researchers have been working on tracking 
and recognition of the whole face or parts of the face. Within the past two decades, much 
work has been done on automatic recognition of facial expression. The initial 2D methods 
had limited success mainly because their dependency on the camera viewing angle. One of 
the main motivations behind 3D methods for face or expression recognition is to enable a 
broader range of camera viewing angles (Blanz & Vetter, 2003; Gokturk et al.,  2002; Lu et 
al., 2006; Moreno et al.,  2002; Wang et al., 2004; Wen & Huang, 2003; Yilmaz et al., 2002). 
To classify expressions in static images many techniques have been proposed, such as those 
based on neural networks (Tian et al., 2001), Gabor wavelets (Bartlett et al., 2004), and 
Adaboost (Wang et al., 2004). Recently, more attention has been given to modeling facial 
deformation in dynamic scenarios, since it is argued that information based on dynamics is 
richer than that provided by static images. Static image classifiers use feature vectors related 
to a single frame to perform classification (Lyons et al., 1999). Temporal classifiers try to 
capture the temporal pattern in the sequence of feature vectors related to each frame. These 
include the Hidden Markov Model (HMM) based methods (Cohen et al., 2003) and Dynamic 
Bayesian Networks (DBNs) (Zhang & Ji, 2005). In (Cohen et al., 2003), the authors introduce 
a facial expression recognition from live video input using temporal cues. They propose a 
new HMM architecture for automatically segmenting and recognizing human facial 
expression from video sequences. The architecture performs both segmentation and 
recognition of the facial expressions automatically using a multi-level architecture 
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composed of an HMM layer and a Markov model layer. In (Zhang & Ji, 2005), the authors 
present a new approach to spontaneous facial expression understanding in image 
sequences. The facial feature detection and tracking is based on active Infra Red 
illumination. Modeling dynamic behavior of facial expression in image sequences falls 
within the framework of information fusion with DBNs. In (Xiang et al., 2008), the authors 
propose a temporal classifier based on the use of fuzzy C means where the features are 
given by Fourrier transform. 
Surveys of facial expression recognition methods can be found in (Fasel & Luettin, 2003; 
Pantic & Rothkrantz, 2000). A number of earlier systems were based on facial motion 
encoded as a dense flow between successive image frames. However, flow estimates are 
easily disturbed by illumination changes and non-rigid motion. In (Yacoob & Davis, 1996), 
the authors compute optical flow of regions on the face, then they use a rule-based classifier 
to recognize the six basic facial expressions. Extracting and tracking facial actions in a video 
can be done in several ways. In (Bascle & Black, 1998), the authors use active contours for 
tracking the performer's facial deformations. In (Ahlberg, 2002), the author retrieves facial 
actions using a variant of Active Appearance Models. In (Liao & Cohen, 2005), the authors 
used a graphical model for modeling the interdependencies of defined facial regions for 
characterizing facial gestures under varying pose. The dominant paradigm involves 
computing a time-varying description of facial actions/features from which the expression 
can be recognized; that is to say, the tracking process is performed prior to the recognition 
process (Dornaika & Davoine, 2005; Zhang & Ji, 2005). 
However, the results of both processes affect each other in various ways. Since these two 
problems are interdependent, solving them simultaneously increases reliability and 
robustness of the results. Such robustness is required when perturbing factors such as 
partial occlusions, ultra-rapid movements and video streaming discontinuity may affect the 
input data. Although the idea of merging tracking and recognition is not new, our work 
addresses two complicated tasks, namely tracking the facial actions and recognizing 
expression over time in a monocular video sequence. 
In the literature, simultaneous tracking and recognition has been used in simple cases. For 
example, (North et al., 2000) employs a particle-filter-based algorithm for tracking and 
recognizing the motion class of a juggled ball in 2D. Another example is given in (Zhou et 
al., 2003); this work proposes a framework allowing the simultaneous tracking and 
recognizing of human faces using a particle filtering method. The recognition consists in 
determining a person's identity, which is fixed for the whole probe video. The authors use a 
mixed state vector formed by the 2D global face motion (affine transform) and an identity 
variable. However, this work does not address either facial deformation or facial expression 
recognition. 
In this chapter, we describe two frameworks for facial expression recognition given natural 
head motion. Both frameworks are texture- and view-independent. The first framework 
exploits the temporal representation of tracked facial action in order to infer the current 
facial expression in a deterministic way. The second framework proposes a novel paradigm 
in which facial action tracking and expression recognition are simultaneously performed. 
The second framework consists of two stages. First, the 3D head pose is estimated using a 
deterministic approach based on the principles of Online Appearance Models (OAMs). 
Second, the facial actions and expression are simultaneously estimated using a stochastic 
approach based on a particle filter adopting mixed states (Isard & Blake, 1998). This 
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proposed framework is simple, efficient and robust with respect to head motion given that 
(1) the dynamic models directly relate the facial actions to the universal expressions, (2) the 
learning stage does not deal with facial images but only concerns the estimation of auto-
regressive models from sequences of facial actions, which is carried out using closed- from 
solutions, and (3) facial actions are related to a deformable 3D model and not to entities 
measured in the image plane. 

1.1 Outline of the chapter 

This chapter provides a set of recent deterministic and stochastic (robust) techniques that 
perform efficient facial expression recognition from video sequences. The chapter 
organization is as follows. The first part of the chapter (Section 2) briefly describes a real 
time face tracker adopting a deformable 3D mesh and using the principles of Online 
Appearance Models. This tracker can provide the 3D head pose parameters and some facial 
actions. The second part of the chapter (Section 3) focuses on the analysis and recognition of 
facial expressions in continuous videos using the tracked facial actions. We propose two 
pose- and texture-independent approaches that exploit the tracked facial action parameters. 
The first approach adopts a Dynamic Time Warping technique for recognizing expressions 
where the training data are a set of trajectory examples associated with universal facial 
expressions. The second approach models trajectories associated with facial actions using 
Linear Discriminant Analysis. The third part of the chapter (Section 4) addresses the 
simultaneous tracking and recognition of facial expressions. In contrast to the mainstream 
approach "tracking then recognition", this framework simultaneously retrieves the facial 
actions and expression using a particle filter adopting multi-class dynamics that are 
conditioned on the expression. 

2. Face and facial action tracking 

2.1 A deformable 3D model 

In our study, we use the Candide 3D face model (Ahlberg, 2002). This 3D deformable 
wireframe model was first developed for the purposes of model-based image coding and 
computer animation. The 3D shape of this wireframe model (triangular mesh) is directly 
recorded in coordinate form. It is given by the coordinates of the 3D vertices Pi, i = 1,…, n 
where n is the number of vertices. Thus, the shape up to a global scale can be fully described 
by the 3n vector g; the concatenation of the 3D coordinates of all vertices Pi. The vector g is 
written as:  

 (1) 

where g  is the standard shape of the model, τ s and τ a are shape and animation control 

vectors, respectively, and the columns of S and A are the Shape and Animation Units. A 
Shape Unit provides a means of deforming the 3D wireframe so as to be able to adapt eye 
width, head width, eye separation distance, etc. Thus, the term S τ s accounts for shape 
variability (inter-person variability) while the term A τ a accounts for the facial animation 
(intra-person variability). The shape and animation variabilities can be approximated well 
enough for practical purposes by this linear relation. Also, we assume that the two kinds of 
variability are independent. With this model, the ideal neutral face configuration is 
represented by τ a = 0. The shape modes were created manually to accommodate the 
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subjectively most important changes in facial shape (face height/width ratio, horizontal and 
vertical positions of facial features, eye separation distance). Even though a PCA was 
initially performed on manually adapted models in order to compute the shape modes, we 
preferred to consider the Candide model with manually created shape modes with semantic 
signification that are easy to use by human operators who need to adapt the 3D mesh to 
facial images. The animation modes were measured from pictorial examples in the Facial 
Action Coding System (FACS) (Ekman & Friesen, 1977). 
In this study, we use twelve modes for the facial Shape Units matrix S and six modes for the 
facial Animation Units (AUs) matrix A. Without loss of generality, we have chosen the six 
following AUs: lower lip depressor, lip stretcher, lip corner depressor, upper lip raiser, 
eyebrow lowerer and outer eyebrow raiser. These AUs are enough to cover most common 
facial animations (mouth and eyebrow movements). Moreover, they are essential for 
conveying emotions. The effects of the Shape Units and the six Animation Units on the 3D 
wireframe model are illustrated in Figure 1. 
 

 

Figure 1: First row: Facial Shape units (neutral shape, mouth width, eyes width, eyes vertical 
position, eye separation distance, head height). Second and third rows: Positive and 
negative perturbations of Facial Action Units (Brow lowerer, Outer brow raiser, Jaw drop, 
Upper lip raiser, Lip corner depressor, Lip stretcher). 

In equation (1), the 3D shape is expressed in a local coordinate system. However, one should 
relate the 3D coordinates to the image coordinate system. To this end, we adopt the weak 
perspective projection model. We neglect the perspective effects since the depth variation of 
the face can be considered as small compared to its absolute depth. Therefore, the mapping 
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between the 3D face model and the image is given by a 2×4 matrix, M, encapsulating both 
the 3D head pose and the camera parameters. 

Thus, a 3D vertex Pi = (Xi, Yi, Zi)T ⊂ g will be projected onto the image point pi = (ui, vi)T 

given by: 

 (2) 

For a given subject, τs is constant. Estimating τs can be carried out using either feature-based 
(Lu et al., 2001) or featureless approaches (Ahlberg, 2002). In our work, we assume that the 
control vector τs is already known for every subject, and it is set manually using for instance 
the face in the first frame of the video sequence (the Candide model and target face shapes 
are aligned manually). Therefore, Equation (1) becomes: 

 (3) 

where gs represents the static shape of the face-the neutral face configuration. Thus, the state 
of the 3D wireframe model is given by the 3D head pose parameters (three rotations and 
three translations) and the animation control vector τa. This is given by the 12-dimensional 
vector b: 

 (4) 

 (5) 

where the vector h represents the six degrees of freedom associated with the 3D head pose. 
 

 
                                                                 (a)              (b) 

Figure 2: (a) an input image with correct adaptation of the 3D model. (b) the corresponding 
shape-free facial image. 

2.2 Shape-free facial patches 
A facial patch is represented as a shape-free image (geometrically normalized rawbrightness 
image). The geometry of this image is obtained by projecting the standard shape g with a 

centered frontal 3D pose onto an image with a given resolution. The geometrically 
normalized image is obtained by texture mapping from the triangular 2D mesh in the input 
image (see Figure 2) using a piece-wise affine transform, W. The warping process applied to 
an input image y is denoted by: 

 (6) 
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where x denotes the shape-free patch and b denotes the geometrical parameters. Several 
resolution levels can be chosen for the shape-free patches. The reported results are obtained 
with a shape-free patch of 5392 pixels. Regarding photometric transformations, a zero-mean 
unit-variance normalization is used to partially compensate for contrast variations. The 
complete image transformation is implemented as follows: (i) transfer the rawbrightness 
facial patch y using the piece-wise affine transform associated with the vector b, and (ii) 
perform the gray-level normalization of the obtained patch. 

2.3 Adaptive facial texture model 
In this work, the facial texture model (appearance model) is built online using the tracked 
shape-free patches. We use the HAT symbol for the tracked parameters and patches. For a 

given frame t, b̂ t represents the computed geometric parameters and x̂ t the corresponding 
shape-free patch, that is, 

 (7) 

The estimation of b̂ t from the sequence of images will be presented in Section 2.4. b̂ 0 is set 
manually, according to the face in the first video frame. The facial texture model 
(appearance model) associated with the shape-free facial patch at time t is time-varying in 
that it models the appearances present in all observations x̂  up to time t - 1. This may be 
required as a result, for instance, of illumination changes or out-of-plane rotated faces. 
By assuming that the pixels within the shape-free patch are independent, we can model the 
appearance using a multivariate Gaussian with a diagonal covariance matrix Σ. In other 
words, this multivariate Gaussian is the distribution of the facial patches x̂ t. Let μ be the 

Gaussian center and σ the vector containing the square root of the diagonal elements of the 
covariance matrix Σ. μ and σ are d-vectors (d is the size of x). 
In summary, the observation likelihood is written as: 

 

(8) 

where N(xi, μi, σi) is the normal density: 

 

(9) 

We assume that the appearance model summarizes the past observations under an 

exponential envelope with a forgetting factor log 2
1 exp

hn
α ⎛ ⎞= − −⎜ ⎟⎝ ⎠ , where nh represents the 

half-life of the envelope in frames (Jepson et al., 2003). 
When the patch x̂ t is available at time t, the appearance is updated and used to track in the 

next frame. It can be shown that the appearance model parameters, i.e., the μi's and σi's can 
be updated from time t to time (t + 1) using the following equations (see (Jepson et al., 2003) 
for more details on OAMs): 

   (10) 
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(11) 

This technique is simple, time-efficient and therefore suitable for real-time applications. The 
appearance parameters reflect the most recent observations within a roughly L = 1 / α 
window with exponential decay. 
Note that μ is initialized with the first patch x̂ 0. However, equation (11) is not used with α 
being a constant until the number of frames reaches a given value (e.g., the first 40 frames). 
For these frames, the classical variance is used, that is, equation (11) is used with α being set 
to 1/ t . 
Here we used a single Gaussian to model the appearance of each pixel in the shape-free 
template. However, modeling the appearance with Gaussian mixtures can also be used at 
the expense of an additional computational load (e.g., see (Lee, 2005; Zhou et al., 2004)). 

2.4 Face and facial action tracking 

Given a video sequence depicting a moving head/face, we would like to recover, for each 
frame, the 3D head pose and the facial actions encoded by the state vector bt (equation 5). 
The purpose of the tracking is to estimate the state vector bt by using the current appearance 
model encoded by μ t and σ t. To this end, the current input image yt is registered with the 
current appearance model. The state vector bt is estimated by minimizing the Mahalanobis 
distance between the warped image patch and the current appearance mean - the current 
Gaussian center 

 

(12) 

The above criterion can be minimized using an iterative gradient descent method where the 

starting solution is set to the previous solution b̂ t-1. Handling outlier pixels (caused for 
instance by occlusions) is performed by replacing the quadratic function by the Huber's cost 
function (Huber, 1981). The gradient matrix is computed for each input frame. It is 
approximated by numerical differences. More details about this tracking method can be 
found in (Dornaika & Davoine, 2006). 

3. Tracking then recognition 

In this section, we show how the time series representation of the estimated facial actions, τa, 
can be utilized for inferring the facial expression in continuous videos. We propose two 
different approaches. The first one is a non-parametric approach and relies on Dynamic 
Time Warping. The second one is a parametric approach and is based on Linear 
Discriminant Analysis. 
In order to learn the spatio-temporal structure of the facial actions associated with the 
universal expressions, we have used the following. Video sequences have been picked up 
from the CMU database (Kanade et al., 2000). These sequences depict five frontal view 
universal expressions (surprise, sadness, joy, disgust and anger). Each expression is 
performed by 7 different subjects, starting from the neutral one. Altogether we select 35 
video sequences composed of around 15 to 20 frames each, that is, the average duration of 
each sequence is about half a second. The learning phase consists in estimating the facial 
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action parameters τ a (a 6-vector) associated with each training sequence, that is, the 
temporal trajectories of the action parameters. 
Figure 3 shows six videos belonging to the CMU database. The first five images depict the 
estimated deformable model associated with the high magnitude of the five basic 
expressions. Figure 4 shows the computed facial action parameters associated with three 
training sequences: surprise, joy and anger. The training video sequences have an 
interesting property: all performed expressions go from the neutral expression to a high 
magnitude expression by going through a moderate magnitude around the middle of the 
sequence. 

  
Surprise Sadness 

  
Joy Disgust 

  
Anger Neutral 

Figure 3: Six video examples associated with the CMU database. The first five images depict 
the high magnitude of the five basic expressions. 
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(a) 

 
(b) 

 
(c) 

Figure 4: Three examples (sequences) of learned facial action parameters as a function of 
time. (a) Surprise expression. (b) Joy expression. (c) Anger expression. 
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3.1 Dynamic time warping 
In the recognition phase, the head and facial actions are recovered from the video sequence 
using our developed appearance-based tracker (Dornaika & Davoine, 2006). The current 
facial expression is then recognized by computing a similarity measure between the tracked 
facial actions τ a(t) associated with the test sequence and those associated with each universal 
expression. This recognition scheme can be carried out either online or off-line. One can 
notice that a direct comparison between the tracked trajectories and the stored ones is not 
feasible since there is no frame-to-frame correspondence between the tracked facial actions 
and the stored ones. To overcome this problem, we use dynamic programming which 
allows temporal deformation of time series as they are matched against each other. 
We infer the facial expression associated with the current frame t by considering the 
estimated trajectory, i.e. the sequence of vectors τ a(t), within a temporal window of size T 
centered at the current frame t. In our tests, T is set to 9 frames. This trajectory is matched 
against the 35 training trajectories using the Dynamic Time Warping (DTW) technique 
(Rabiner & Juang, 1993; Berndt & Clifford, 1994). For each training trajectory, the DTW 
technique returns a dissimilarity measure between the tested trajectory and the training 
trajectory (known universal expression). The classification rule stipulates that the smallest 
average dissimilarity decides the expression classifcation where the dissimilarity measures 
associated with a given universal expression are averaged over the 7 subjects. 
The proposed scheme accounts for the variability in duration since the DTW technique 
allows non-linear time scaling. The segmentation of the video is obtained by repeating the 
whole recognition scheme for every frame in the test video. 
In order to evaluate the performance, we have created test videos featuring the universal 
facial expressions. To this end, we have asked a volunteer student to perform each universal 
expression several times in a relatively long sequence. The subject was instructed to display 
the expression in a natural way, i.e. the displayed expressions were independent of any 
database. Each video sequence contains several cycles depicting a particular universal facial 
expression. 
The performance of the developed recognition scheme is evaluated by utilizing five test 
videos. Table 1 shows the confusion matrix for the dynamical facial expression classifier 
using the DTW technique. We point out that the learned trajectories were inferred from the 
CMU database while the used test videos were created at our laboratory. The recognition 
rate of dynamical expressions was 100% for all universal expressions except for the disgust 
expression for which the recognition rate was 44%. The reason is that the disgust expression 
performed by our subject was very different from that performed by most of the CMU 
database subjects. Therefore, for the above experiment, the overall recognition rate is 90.4%. 
 

 

Table 1: Confusion matrix for the dynamical facial expression classifier using the DTW 
technique (the smallest average similarity). The learned trajectories were inferred from the 
CMU database while the used test videos were created at our laboratory. The recognition 
rate of dynamical expressions was 100% for all basic expressions except for the disgust 
expression for which the recognition rate was 44%. 
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3.2 Linear discriminant analysis 

As can be seen from the previous section, the CPU time of the recognition scheme based on 
the DTW technique is proportional to the number of the subjects present in the database. 
Whenever this number is very large, the recognition scheme becomes computationally 
expensive. In this section, we propose a parametric recognition scheme by which the 
training trajectories can be represented in a more compact form. The computational cost of 
the recognition scheme does not depend on the number of examples. 
 

 

Figure 5: The parameterized modeling of facial expressions using Eigenspace and 
Fisherspace. 

Learning. The learning phase is depicted in Figure 5. Again, we use the training videos 
associated with the CMU database. In order to obtain trajectories with the same number of 
frames (duration) the trajectories belonging to the same expression class are aligned using 
the DTW technique. Recall that this technique allows a frame-to-frame correspondence 
between two time series. 

Let j

ie be the aligned trajectory i belonging to the expression class j. The example j

ie is 

represented by a column vector of dimension 1×6T and is obtained by concatenating the 

facial action 6-vectors τ a(t): 
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Note that T represents the duration of the aligned trajectories which will be fixed for all 

examples. For example, a nominal duration of 18 frames for the aligned trajectories makes 

the dimension of all examples j

ie  (all i and j) equal to 108. 

Applying a Principal Component Analysis on the set of all training trajectories yields the 

mean trajectory e as well as the principal modes of variation. Any training trajectory e can 

be approximated by the principal modes using the q largest eigenvalues: 

 

In our work, the number of principal modes is chosen such that the variability of the 

retained modes corresponds to 99% of the total variability. The vector c can be seen as a 

parametrization of any input trajectory, ê , in the space spanned by the q basis vectors Ul. 

The vector c is given by: 

 
(13) 

Thus, all training trajectories j

ie can now be represented by the vectors j

ic  (using (13)) on 

which a Linear Discriminant Analysis can be applied. This gives a new space (the 

Fisherspace) in which each training video sequence is represented by a vector of dimension  

l -1 where l is the number of expression classes. Figure 6 illustrates the learning results 

associated with the CMU data. In this space, each trajectory example is represented by a 5-

vector. Here, we use six facial expression classes: Surprise, Sadness, Joy, Disgust, Anger, and 

Neutral. (a) displays the second component versus the first one, and (b) displays the fourth 

component versus the third one. In this space, the neutral trajectory (a sequence of zero 

vectors) is represented by a star. 

Recognition. The recognition scheme follows the main steps of the learning stage. We infer 

the facial expression by considering the estimated facial actions provided by our face tracker 

(Dornaika & Davoine, 2006). We consider the one-dimensional vector e’ (the concatenation 

of the facial actions τa(t)) within a temporal window of size T centered at the current frame t. 

Note that the value of T should be the same as in the learning stage. This vector is projected 

onto the PCA space, then the obtained vector is projected onto Fisherspace in which the 

classification occurs. The expression class whose mean is the closest to the current trajectory 

is then assigned to this trajectory (current frame). 

Preformance evaluation. Table 2 shows the confusion matrix for the dynamical facial 

expression classifier using Eigenspace and Fisherspace. The learned trajectories were 

inferred from the CMU database while the used test videos were created at our laboratory. 

The recognition rate of dynamical expressions was 100% for all basic expressions except for 

the disgust expression for which the recognition rate was 55%. Therefore, for the above 

experiment, the overall recognition rate is 92.3%. One can notice the slight improvement in 

the recognition rate over the classical recognition scheme based on the DTW. 
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Table 2: Confusion matrix for the dynamical facial expression classifier using Eigenspace 
and Fisherspace. The learned trajectories were inferred from the CMU database while the 
used test videos were created at our laboratory. The recognition rate of dynamical 
expressions was 100% for all basic expressions except for the disgust expression for which 
the recognition rate was 55%. 

 
(a) 

 
(b) 

Figure 6: The 35 trajectory examples associated with five universal facial expressions 

depicted in Fisherspace. In this space, each trajectory example is represented by a 5-vector. 

Here, we use six facial expression classes: Surprise, Sadness, Joy, Disgust, Anger, and 

Neutral. (a) displays the second component versus the first one, and (b) displays the fourth 

component versus the third one. In this space, the neutral trajectory (a sequence of zero 

vectors) is represented by a star. 
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4. Tracking and recognition 

In Section 3, the facial expression was inferred from the time series representation of the 
tracked facial actions. In this section, we propose to simultaneously estimate the facial 
actions and the expression from the video sequence. 
Since the facial expression can be considered as a random discrete variable, we need to 

append to the continuous state vector bt a discrete state component γ t in order to create a 
mixed state: 

 
(14) 

where γ t ∈ ε = { 1, 2,…,Nγ} is the discrete component of the state, drawn from a finite set of 
integer labels. Each integer label represents one of the six universal expressions: surprise, 
disgust, fear, joy, sadness and anger. In our study, we adopt these facial expressions 

together with the neutral expression, that is, Nγ is set to 7. There is another useful 
representation of the mixed state which is given by: 

 
(15) 

where ht denotes the 3D head pose parameters, and at the facial actions appended with the 

expression label γ t, i.e. at = [
( )

T

a tτ , γ t]T . 

This separation is consistent with the fact that the facial expression is highly correlated with 

the facial actions, while the 3D head pose is independent of the facial actions and 

expressions. The remainder of this section is organized as follows. Section 4.1 provides some 

backgrounds. Section 4.2 describes the proposed approach for the simultaneous tracking 

and recognition. Section 4.3 describes experiments and provides evaluations of performance 

to show the feasibility and robustness of the proposed approach. 

4.1 Backgrounds 
4.1.1 Facial action dynamic models 

Corresponding to each basic expression class, γ, there is a stochastic dynamic model 

describing the temporal evolution of the facial actions τ a(t), given the expression. It is 

assumed to be a Markov model of order K. For each basic expression γ, we associate a 
Gaussian Auto-Regressive Process defined by: 

 

(16) 

in which wt is a vector of 6 independent random N(0, 1) variables. The parameters of the 

dynamic model are: (i) deterministic parameters 1A
γ , 2A

γ  ,…, KA
γ

 and d γ, and stochastic 

parameters Bγ
 which are multipliers for the stochastic process wt. It is worth noting that the 

above model can be used in predicting the process from the previous K values. The 
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predicted value at time t obeys a multivariate Gaussian centered at the deterministic value 

of (16), with BγBγT being its covariance matrix. In our study, we are interested in second-
order models, i.e. K = 2. The reason is twofold. First, these models are easy to estimate. 
Second, they are able to model complex dynamics. For example, these models have been 
used in (Blake & Isard, 2000) for learning the 2D motion of talking lips (profile contours), 
beating heart, and writing fingers. 

4.1.2 Learning the second-order auto-regressive models 

Given a training sequence τ a(1),…, τ a(T), with T > 2, belonging to the same expression class, it 
is well known that a Maximum Likelihood Estimator provides a closed-form solution for the 
model parameters (Blake & Isard, 2000). For a second-order model, these parameters reduce 

to two 6×6 matrices 1A
γ , 2A

γ , a 6-vector dγ, and a 6 × 6 covariance matrix Cγ
  = Bγ

 B
γ
 T . 

Therefore, Eq. (16) reduces to: 

 (17) 

The parameters of each auto-regressive model can be computed from temporal facial action 
sequences. Ideally, the temporal sequence should contain several instances of the 
corresponding expression. 
More details about auto-regressive models and their computation can be found in (Blake & 
Isard, 2000; Ljung, 1987; North et al., 2000). Each universal expression has its own second-
order auto-regressive model given by Eq.(17). However, the dynamics of facial actions 
associated with the neutral expression can be simpler and are given by: 

τ a(t) = τ a(t-1)+Dwt 

where D is a diagonal matrix whose elements represent the variances around the ideal 

neutral configuration τa = 0. The right-hand side of the above equation is constrained to 
belong to a predefined interval, since a neutral configuration and expression is characterized 
by both the lack of motion and the closeness to the ideal static configuration. In our study, 
the auto-regressive models are learned using a supervised learning scheme. First, we asked 
volunteer students to perform each basic expression several times in approximately 30-
second sequences. Each video sequence contains several cycles depicting a particular facial 
expression: Surprise, Sadness, Joy, Disgust, Anger, and Fear. Second, for each training 

video, the 3D head pose and the facial actions τa(t) are tracked using our deterministic 
appearance-based tracker (Dornaika & Davoine, 2006) (outlined in Section 2). Third, the 
parameters of each auto-regressive model are estimated using the Maximum Likelihood 
Estimator. 

Figure 7 illustrates the value of the facial actions, τ a(t), associated with six training video 
sequences. For clarity purposes, only two components are shown for a given plot. For a 
given training video, the neutral frames are skipped from the original training sequence 
used in the computation of the auto- regressive models. 

4.1.3 The transition matrix 

In our study, the facial actions as well as the expression are simultaneously retrieved using a 
stochastic framework, namely the particle filtering method. This framework requires a 
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transition matrix T whose entries T ',γ γ describe the probability of transition between two 

expression labels γ’ and γ. The transition probabilities need to be learned from training video 
sequences. In the literature, the transition probabilities associated with states (not 
necessarily facial expressions) are inferred using supervised and unsupervised learning 
techniques. However, since we are dealing with high level states (the universal facial 

expressions), we have found that a realistic a priori setting works very well. We adopt a 7 ×7 

symmetric matrix whose diagonal elements are close to one (e.g. Tγ,γ = 0.8, that is, 80% of the 
transitions occur within the same expression class). The rest of the percentage is distributed 
equally among the expressions. In this model, transitions from one expression to another 
expression without going through the neutral one are allowed. Furthermore, this model 
adopts the most general case where all universal expressions have the same probability. 
However, according to the context of the application, one can adopt other transition 
matrices in which some expressions are more likely to happen than others. 

4.2 Approach 

Since at any given time, the 3D head pose parameters can be considered as independent of 
the facial actions and expression, our basic idea is to split the estimation of the unknown 
parameters into two main stages. For each input video frame yt, these two stages are 

invoked in sequence in order to recover the mixed state [ hTt , aTt ]T . Our proposed approach 

is illustrated in Figure 8. In the first stage, the six degrees of freedom associated with the 3D 
head pose (encoded by the vector ht) are obtained using a deterministic registration 
technique similar to that proposed in (Dornaika & Davoine, 2006). In the second stage, the 

facial actions and the facial expression (encoded by the vector at = [ ( )

T

a tτ , γt]T ) are 

simultaneously estimated using a stochastic framework based on a particle filter. Such 
models have been used to track objects when different types of dynamics can occur (Isard & 
Blake, 1998). Other examples of auxiliary discrete variables beside the main hidden state of 

interest are given in (Perez & Vermaak, 2005). Since τ a(t) and γt are highly correlated their 
simultaneous estimation will give results that are more robust and accurate than results 
obtained with methods estimating them in sequence. In the following, we present the 
parameter estimation process associated with the current frame yt. Recall that the head pose 
is computed using a deterministic approach, while the facial actions and expressions are 
estimated using a probabilistic framework. 

4.2.1 3D head pose 

The purpose of this stage is to estimate the six degrees of freedom associated with the 3D 
head pose at frame t, that is, the vector ht. Our basic idea is to recover the current 3D head 

pose parameters from the previous 12-vector b̂ t-1 = [ θ̂ x(t-1), θ̂ y(t-1), θ̂ z(t-1), t̂ x(t-1), t̂ y(t-1), t̂  z(t-1), 

( 1)τ̂ −T

a t ]T = [ 1
ˆ −Tth , ( 1)τ̂ −T

a t  ]T using the same region-based registration technique outlined in 

Section 2.4. However, this time the unknown parameters are only given by the 3D head pose 
parameters: 

 

(18) 
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4.2.2 Simultaneous facial actions and expression 

In this stage, our goal is to simultaneously infer the facial actions as well as the expression 

label associated with the current frame t given (i) the observation model (Eq.(8)), (ii) the 

dynamics associated with each expression (Eq.(17)), and (iii) the 3D head pose for the 

current frame computed by the deterministic approach (see Section 4.2.1). This will be 

performed using a particle filter paradigm. Thus, the statistical inference of such paradigm 

will provide a posterior distribution for the facial actions τ a(t) as well as a Probability Mass 

function for the facial expression γt . 

Since the 3D head pose ht is already computed, we are left with the mixed state at = [ ( )

T

a tτ ,γt]T. 

The dimension of the vector at is 7. Here we will employ a particle filter algorithm allowing 

the recursive estimation of the posterior distribution p (at⏐ x1:(t)) using a particle set. This is 

approximated by a set of J particles { (a (0)

t ,w (0)

t ),…, (a ( )J

t  ,w ( )J

t )}. Once this distribution is 

known the facial actions as well as the expression can be inferred using some loss function 

such as the MAP or the mean. Figure 9 illustrates the proposed two-stage approach. It shows 

how the current posterior p (at⏐ x1:(t)) can be inferred from the previous posterior  

p (at-1⏐ x1:(t-1)) using a particle filter algorithm. 
On a 3.2 GHz PC, a C code of the approach computes the 3D head pose parameters in 25 ms 

and the facial actions/expression in 31 ms where the patch resolution is 1310 pixels and the 

number of particles is 100. 

4.3 Experimental results 

In this section, we first report results on simultaneous facial action tracking and expression 

recognition. Then we present performance studies, considering different perturbing factors 

such as robustness to rapid facial movements or to imprecise 3D head pose estimation. 

4.3.1 Simultaneous tracking and recognition 

Figure 10 shows the application of the proposed approach to a 748-frame test video 

sequence. The upper part of this figure shows 9 frames of this sequence: 50, 130, 221, 300, 

371, 450, 500, 620, and 740. The two plots illustrate the probability of each expression as a 

function of time (frames). The lower part of this figure shows the tracking results associated 

with frames 130, 371, and 450. The upper left corner of these frames depicts the appearance 

mean and the current shape-free facial patch. Figure 11.a illustrates the weighted average of 

the tracked facial actions, τ̂  a(t). For the sake of clarity, only three out of six components are 

shown. For this sequence, the maximum probability was correctly indicating the displayed 

expression. We noticed that some displayed expressions can, during a short initial phase 

(very few frames), be considered as a mixture of two expressions (the displayed one and 

another one). This is due to the fact that face postures and dynamics at some transition 

phases can be shared by more than one expression. This is not a problem since the frame-

wise expression probabilities can be merged and averaged over a temporal patch including 

contiguous non-neutral frames. Figure 11.b illustrates this scheme and shows the resulting 

segmentation of the used test video. One remarks that this holds true for a human observer, 

who may fail to recognize a gesture from only one single frame. 
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