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1. Introduction 

Quantum Finite State Machines (QFSM) are a well known model of computation that was 
originally formalized by Watrous [Wat95a, Wat95b, Wat97], Kondacs [KW97] and more 
generally Quantum Turing Machines (QTM) have been described by Bernstein [BV97]. In 
particular the 2-way QFSM have been shown to be more powerful than classical FSM 
[KW97]. Thus the interest in quantum computational models of automata and machines is 
not only theoretical but has also possible applications realization of future quantum 
computer and robotics controllers. 
In this chapter we present the evolutionary approach to the synthesis of QFSM’s specified 
by a quantum circuits. This approach was originally proposed by [LP09] and is possible on 
yet only theoretical basis. In particular this approach requires a selective qubit-initialization 
in a quantum register. In contrast the current methodology and approaches to practical 
Quantum Computation, the current practical realization of quantum computation always 
starts with the initialization of the whole quantum register and terminates by the 
measurement of either all of the qubits or by the measurement of a given subset of qubits. 
Moreover in general there is no reuse of any element of the quantum register. 
In this text we analyze in details what type of QFSM can be successfully synthesized. 
The evolutionary approach will evaluate the results based on both the correctness and the 
cost of the evolved machines. Multiple parameters such as type of error evaluation, 
synthesis constraints and evolutionary operators will be discussed when evaluating to the 
obtained results. 
In particular we show how to synthesize QFSMs as sequence detectors and illustrate their 
functionality both in the quantum world and in the classical (observable) world. The application 
of the synthesized quantum devices is illustrated by the analysis of recognized sequences. 
Finally, we provide analytic method for the used evolutionary approach and we describe 
the experimental protocol, and its heuristic improvements. We also discuss the results. In 
addition, we investigate the following aspects of the Evolutionary Quantum Logic Synthesis: 
• Quantum probabilistic FSM and Reversible FSM. 

• Hardware acceleration for the Fitness evaluation using CBLAS [cbl] and using CUBLAS 
[cud] (CUDA[cud] implemented Basic Linear Algebra Subprograms (BLAS)[cbl] 
subroutines). 

Source: New Achievements in Evolutionary Computation, Book edited by: Peter Korosec,  
 ISBN 978-953-307-053-7, pp. 318, February 2010, INTECH, Croatia, downloaded from SCIYO.COM
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2. Background in quantum computing 

In Quantum Computing the information is represented by a Quantum Bit also called qubit. 
The wave equation is used to represent a qubit or a set of them. Equation 1 shows a general 
form in the Dirac notation. 

 

(1) 

In Dirac notation |⋅〉 represents a column vector, also called a ket. The bra element denoted 〈⋅| 
stands for hermitian conjugate. In this manner a bra-ket 〈⋅|⋅〉 represents the inner, dot-vector 
product while |⋅〉〈⋅| represents the outer vector product. The general equation (1), 

 can be written as  and is 

the probability of observing the state |0〉 while  is the probability of observing |1〉. 
In general, to describe basis states of a Quantum System, the Dirac notation is preferred to 
the vector-based Heisenberg notation. However, Heisenberg notation can be more practical 
to represent the exponential growth of the quantum register. Let two orthonormal quantum 
states be represented in the vector (Heisenberg) notation eq. 2. 

 

(2) 

Different states in this vector notation are then multiplications of all possible states of the 
system, and for a two-qubit system we obtain (using the Kronecker product[Gru99, Gra81, 
NC00]) the states represented in eq. 3: 

 

(3) 

The Kronecker product exponentially increases the dimension of the space for matrices as well: 

 

(4) 

This tensor product operation for a parallel connection of to wires is shown in Figure 1. 
Assume that qubit a (with possible states |0〉 and |1〉) is represented by  
and qubit b is represented by . Each of them is represented by the 
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Fig. 1. Circuit representing the W ⊗X operation 

superposition of their basis states, but put together the characteristic wave function of their 
combined states will be: 

 
(5) 

with αa and βb being the complex amplitudes of states of each EP respectively. As shown 

before, the calculations of the composed state used the Kronecker multiplication operator. 

Hence comes  the possibility to create quantum memories with extremely large capacities 

and the requirement for efficient methods to calculate such large matrices. 
Quantum Computation uses a set of Quantum properties. These are the measurement, the 
superposition and the entanglement. First, however, the principles of multi-qubit system 
must be introduced. 

2.1 Multi-Qubit System 
To illustrate the superposition let’s have a look at a more complicated system with two 
quantum particles a and b represented by  and  
respectively. For such a system the problem space increases exponentially and is 
represented using the Kronecker product [Gru99]. 

 

(6) 

Thus the resulting system is represented by  
 (5) where the double coefficients obey the unity (completeness) rule and 

each of their powers represents the probability to measure the corresponding state. The 
superposition means that the quantum system is or can be in any or all the states at the same 
time. This superposition gives the massive parallel computational power to quantum 
computing. 

2.2 Entanglement and projective measurements 
Assume the above two-particle vector  (two-qubit quantum system) is transformed using 
the quantum circuit from Figure 2. 
This circuit executes first a Hadamard transform on the top qubit and then a Controlled-Not 
operation with the bottom qubit as the target. Depending on the initial state of the quantum 
register the output will be either  . 
Thus it is not possible to estimate with 100% probability the initial state of the quantum 
register. 
Let   at level a (Figure 2). The first step is to apply the [H] gate on the qubit-a and 
the resulting state at level b of the circuit is 
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Fig. 2. EPR producing circuit 

 

(7) 

Next the application of the CNOT gate results in: 

 

(8) 

For an output 0 (on the qubit-a), the projective measurement of the first (topmost) qubit 
(qubit-a on Figure 2) on this stage would collapse the global state (with a single 
measurement) to the state |00〉: 

 

(9) 

with 

 

(10) 

and 
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(11) 

Similarly, the probability of measuring output on the qubit-a in state |0〉 is: 

 

(12) 

If one would look to the output of the measurement on the second qubit (qubit-b), the 

probability for obtaining |0〉 or |1〉 is in this case the following: 

 

(13) 

Thus the expectation values for measuring both values 0 or 1 on each qubit independently 
are  . 

If however one looks on the second and non-measured qubit (if the qubit-a is measured, it is 
the qubit-b, and vice versa) and calculates the output probabilities, the output is 
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contradictory to the expectations given by standard probabilistic distribution such as a coin 
toss q = 1 − p. To see this let’s start in the state 

 

(14) 

and measure the qubit-a and obtain a result. In this case assume the result of the 
measurement is given by: 

 

(15) 

Then measuring the second qubit (qubit-b) will not affect the system because the 
measurement of the qubit-a has collapsed the whole system into a single basis state: 

 (16) 

The probability for obtaining a |1〉 on the qubit-b is thus 0 and the measurement on qubit-b 
(after having measured qubit-a) has no effect on the system at all.  The states of qubits are 
thus correlated. This non-locality paradox was first described by Einstein-Podolsky-Rosen 
work[EPR35] and is known as the EPR paradox. This particular phenomenon is one of the 
most powerful in quantum mechanics and quantum computing, as it allows together with 
superposition the speedup of finding solutions to certain types of problems. Finally, it can 
be noted that mathematically, the entangled state is such that it cannot be factored into 

simpler terms. For example, the state 
 
and thus it can be factored. 

However, the states as those introduced in eq. 15 cannot be transformed in such a manner 
and are thus entangled; physically implying that they are related through measurement or 

observation.  

2.3 Single-Qubit quantum gates 
We are now concerned with matrix representation of operators. The first class of important 
quantum operators are the one-qubit operators realized in the quantum circuit as the one-
qubit (quantum) gates. Some of their matrix representations can be seen in equation 17. 

 

(17) 

Each matrix of an Operator has its inputs from the top (from left to right) and the outputs on 
the side (from top to bottom). Thus taking a state  (eq.18) and an unitary operator H (eq. 19) 

 (18) 
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(19) 

the result of computation is represented in equation 20. 

 

(20) 

 

(21) 

Equation 21 shows the inputs (input minterms) on the top of the matrix and the output 
minterms on the left side. Thus for an input |10〉 (from the top) the output is |11〉 (from the 
side). 

2.4 Multi-Qubit quantum gates 
The second class of quantum gates includes the Controlled-U gates. Schematic 
representation of such gates can be seen in Figure 3. Gates in Figure 3a – Figure 3c represent 
the general structures for single-control-qubit single-qubit gate, two-control-qubit single-
qubit gate, single-control-qubit two-qubit gate and two-control-qubit two-qubit gate 
respectively. The reason for calling these gates Controlled is the fact that they are based on 
two operations: first there is one or more control bits and second there is a unitary 
transformation similar to matrices from equation 17 that is controlled. For instance the 
Feynman gate is a Controlled-NOT gate and has two input qubits a and b as can be seen in  
 

 
Fig. 3. Schematic representation of Controlled-U gates: a) general structure of single-qubit 
controlled-U gate (control qubit a, target qubit, b) two-qubit controlled, single-qubit 
operation, c) single-qubit controlled, two-qubit target quantum gate, d) Feynman (CNOT), 
e) Toffoli (CCNOT), f) Fredkin. a, b, c are input qubits and a’, b’ and c’ are respective 
outputs. 
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Figure 3. Its unitary matrix with input and output minters is shown in eq. (21). Thus qubits 
controlling the gate are called the control qubits and the qubits on which the unitary 
transform is applied to are called the target qubits. 
Figures 3d - Figure 3f represent special cases where the controlled unitary operator is Not, 
Not and Swap, respectively. The respective unitary matrices are in equations 21, 22a and 
22b. 
Equation 21 shows that if the input state is for instance |00〉 (from the top) the output is 
given by . Similarly for all other possible input /output 

combinations. 

(a) (b) 

 

(22) 

The Controlled-U gate means that while the controlled qubit a is equal to 0 the qubits on 
output of both wires are the same as they were before entering the gate (a’ = a, b’ = b). Now 
if qubit a equals to 1, the result is a’ = a and b’ = ¬b according to matrix in equation (17.a). It 
can be easily verified that the CCNOT (Toffoli) gate is just a Feynman gate with one more 
control qubit and the Fredkin gate is a controlled swap as shown on Figure 3. 
A closer look at equations (21 and 22) gives more explanation about what is described in eq. 
21: CNOT, eq. 22a : Toffoli and eq. 22b : Fredkin gates. For instance, equation 21 shows that 
while the system is in states |00〉 and |01〉 the output of the circuit is a copy of the input. For 
the inputs |10〉 and |11〉 the second output is inverted and it can be seen that the right-lower 
corner of the matrix is the NOT gate. Similarly in the other two Controlled gates the NOT 
gate matrix can be found. 

2.5 NMR-based quantum logic gates 
The NMR (Nuclear Magnetic Resonance) technology approach to quantum computing 
[Moo65, PW02, DKK03] is the most advanced quantum realization technology used so far, 
mainly because it was used to implement the Shor algorithm [Sho94] with 7 qubits [NC00]. 
Yet other technologies such as Ion trap [DiV95], Josephson Junction [DiV95] or cavity QED 
[BZ00] are being used. The NMR quantum computing has been reviewed in details in 
[PW02, DKK03] and for this paper it is important that it was so far the NMR computer that 
allowed the most advanced algorithm (7 qubit logic operation) to be practically realized and 
analyzed in details. Thus it is based on this technology that the constraints of the synthesis 
are going to be established for the cost and function evaluation. Some prior work on 
synthesis has been also already published [LLK+06] and few simple cost functions have been 
established. 
For the NMR-constrained logic synthesis the conditions are: 

• Single qubit operations: rotations Rx,Ry,Rz for various degrees of rotation θ. With each 

unitary rotation (Rx, Ry, Rz) represented in equation 23 
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(23) 

• Two-qubit operation; depending on approach the Interaction operator is used as Jzz or 

Jxy for various rotations θ 

Thus a quantum circuit realized in NMR will be exclusively built from single qubit rotations 

about three axes x,y,z and from the two-neighbor-qubit operation of interaction allowing to 

realize such primitives as CNOT or SWAP gates. Examples of gates realized using NMR 

quantum primitives are shown in Figure 5 to Figure 8. 
 

 

Fig. 4. Structure of the Toffoli gate 
 

 

Fig. 5. Single pulse Logic gate – NOT 
 

 

Fig. 6. Two-pulses logic gate – Hadamard 
 

 

Fig. 7. Detailed Realization of Feynman Gate with five EM pulses. 
 

 

Fig. 8. Five-pulses logic gate - Controlled-V 

Also, the synthesis using the NMR computing model using EM pulses, is common to other 
technologies such as Ion Trap [CZ95, PW02] or Josephson Junction [BZ00]. Thus the cost 
model used here can be applied to synthesize circuits in various technologies, all of these 
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technologies having the possibility to express the implemented logic as a sequence of EM 
pulses. 

3. Quantum finite state machines 

The paradigms of quantum circuits from Section 2 are applied in this paper to the synthesis 
of computational models such as QFSM as defined in [LPK09]. This section briefly 
introduces the knowledge about Quantum computational models and their properties as 
well as specifies the types of devices that are going to be synthesized. We describe the 1-way 
Quantum Finite State Machines (FSM) from both the theoretical (computational) point of 
view as well as from the engineering (circuit) point of view. Most of the work in this area is 
still on the theoretical level but the proofs of concept quantum devices [Dun98, SKT04, 
MC06, RCHCX+08, YCS09] allow to speculate that such models will be useful for quantum 
logical devices that will appear in close future. 

3.1 1-way quantum finite automata 
Quantum Finite State Machines (QFSM) are a natural extension of classical (probabilistic) 
FSM’s. Two main types of QFSM are well known: One-way QFSM (1QFSM) [AF98, MC00] 
and two-way QFSM (2QFSM)[AW02, KW97]. As will be illustrated and explained the 
1QFSM, can accept sequentially classical input, quantize it, process it and measures its 
quantum memory after each operation (Figure 9). In this work the focus is on the synthesis 
of the 1QFSM from Figure 9(b). From now on the general designation of QFSM will refer to 
1QFSM in this work. Other type of described QFSMs will be specifically named. 
 

 

Fig. 9. Schematic representation of a 1QFSM; (a) after each  computation step the machine 
state is measured, (b) after each computation step the output is measured, (c) after each 
computational step the machine state and the output state are measured. 

In contrast to that, the 2QFSM is designed to operate on quantum input data (allowing to 

put the reading head in superposition with the input tape, and requiring all the input data 

to be present at once for the maximum efficiency) and the measurement is done only at the 

end of a whole process. 

Definition 3.1 

Quantum State Machine - a QFSM is a tuple Γ = {Q,Λ, q0,Qac,QrjI , δ}, where Q is a finite set 

of states, σ is the input alphabet, δ is the transition function. The states q0 ∈ Q′, Qac ⊂ Q and 

Qrj ⊂ Q are the initial states, the set of accepting states and the set of rejected states, 

respectively.                                                                                                                                            

The QFSM machine action maps the set of machine states and the set of input symbols into 

the set of complex machine next states. The computation of such machine is required to be 
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done using unitary operators and is performed on the basis set
 
B

q
 using unitary operators 

Uθ, θ ∈Θ. In particular the QFSM uses a set of Unitary Operators corresponding to the input 

of input characters on the input tape. Thus for a given string to be processed and prior to the 

whole process termination (string either accepted or rejected), the overall processing can be 

represented as: 

 (24) 

with M  being the application of the  operator to the current state and creating the 

configuration |q〉 followed by the measurement of the current state M (projecting the 

state into G). 
The 1QFSM was proven to be less powerful or equally powerful to its classical counterpart 
1FSM [Gru99, KW97] in that it can recognize the same classes of regular languages as the 
classical FSM can recognize. 
The above described 1QFSM is also called the measure-many quantum finite automaton 
[KW97]. A model called measure-once quantum finite automata was also introduced and 
studied by Moore [MC00]. The measure-many 1QFSM is similar to the concepts of the 
2QFSM. For comparison we illustrate the main differences between the 1QFSM and 2QFSM 
below. 
Example 3.1.1 1QFSM 
Let be two possible states (including the accepting and rejecting states) of a 

single-qubit machine M and with transition functions specified by the transitions defined in 
eq. 25 corresponding to the state diagram in Figure 10a. 
 

 

Fig. 10. (a) State transition diagram for the 1QFSM defined by the transition function 25, (b) 

the representation of the QFSM using quantum multiplexers. Observe two control outputs 

|q 〉 specifying the machine action/states and the input symbols selecting the appropriate 

unitary transform Vλ for λ ⊂ {#, $, 0, 1}. 
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(25) 

The machine M, specified in eq. 25 represents a state machine that uses the H gate when the 
input is 0 (V0 = H) and the Pauli-Z rotation gate when the input is 1 (V1 = Z). Observe that 
machine M would have different behavior for measure-once and measure-many 
implementation. In the measure-many case, the machine generates a quantum coin-flip 
while receiving input 0 and while receiving input 1 the Pauli-Z rotation is applied. Observe 

in the measure-once case, that for example for the string input θ = ”010” the many-measure 
machine will implement a NOT using [H][Z][H].                                                                            

Note that in this approach to QFSM each input symbol λ∈{#, $, 0, 1} is represented by a 

unitary transform that can be seen as shown in Figure 10.  No measurement is done here on 

|q〉 while the sequence of quantum operators is applied to this state. The 2QFSM operates on a 
similar principle as the 1QFSM model but with the main difference being the application of the 
measurement. This is schematically shown in Figure 11 for the completeness of explanation. 
 

 

Fig. 11. Schematics representing the difference between the 1QFSM and 2QFSM. On the top, 
the 1QFSM - for each input character read from left to right from the tape, a unitary 
transform U is applied on the state and the state is measured. On the bottom, the 2QFSM 
moves on the input tape left and right, the unitary transform U is applied on the state and 
only once the computation is terminated the final state is observed/measured. 
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3.2 Quantum logic synthesis of sequence detectors 
The problem to synthesize the QFSM is to find the simplest quantum circuit for a given set 

of input-output sequences thus letting the state assignment problem for this machine be 

directly solved by our synthesis algorithm. This direct synthesis approach can be applied to 

binary, multiple-valued and fuzzy quantum machines with no principle differences - only 

fitness functions are modified in an evolutionary algorithm [LPG+03, LP05]. 

Let us assume that there exists a sequential oracle that represents for instance Nature, robot 

control or robot’s environment. In our example this oracle is specified by a state diagram in 

Figure 12a. This oracle can represent partial knowledge and a deterministic or probabilistic 

machine of any kind. Assume that there is a clearing signal (denoted by an arrow in Figure 

12a) to set the oracle into its initial state. By giving initial signals and input sequences and 

observing output sequences the observer can create a behavior tree from Figure 12b. 

 
 

 
 

Fig. 12. Example of a deterministic oracle and its diagnostic tree. 

As in general this oracle is never fully known, we perform experiments with it to determine 

some of its input-output behaviors. Assume that the oracle from Figure 12a is represented 

by the sequences from the experiments. These input-output sequences are shown in eq. 26 

with |iqo〉 represents the input qubit, the state qubit and the output qubit respectively. 

Observe that the diagnostic tree form Figure 12(b) shows the state with {a, b} and the inputs 

and the outputs as 0 and 1. 
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(26) 

As the full knowledge of the oracle is in general impossible - the oracle is approximated by 
sets of input-output sequences and the more such sequences that we create - the more 
accurate characterization of the oracle as a QFSM can be created. 

The overall procedure for the detection of a sequence of length j can be summarized as 

follows: 
1. Initialize all qubits of the quantum register to the initial desired state, 

2. repeat j times: 
a. Initialize the input qubit to a desired state and set the output qubit to |0〉 
b. Apply the quantum operator on the quantum register of the QFSM 
c. Measure the output qubit and observe the result 

Using the procedure describe above one can synthesize quantum circuits for oracles being 
well known universal quantum gates such as Fredkin. The input-output sequences found 
from this oracle are next used to synthesize the QFSM from Figure 13a. Figure 13b shows 
the state-diagram of the machine. 
 

 

Fig. 13. Example of implementation of Fredkin gate as a quantum FSM of first class. Observe 

the notation where |i〉 is the input, |q〉 is the machine state and |o〉 is the machine output. 

We will call the machine in Figure 13(a) the QFSM of the first class. This is because both the 
output and the input qubits are initialized after each computation. Observe that it is 
represented with feedback lines as in Figure 9 with input and output being initialized for 
each input and the state initialized only once - at the beginning of the computation. The 
interested reader can read more on this representation in [LP09], however it is important to 
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understand that the feedback lines are shown here only as the equivalent notation to the 
classical FSM as in Figure 9. The circuit-based approach to QFSM does not require this 
notation as this ”loop” is represented by the fact that the quantum qubit preserves its state 
[LP09]. 
A set of input-output sequences defining partially the "Fredkin QFSM" is represented in eq. 27. 

 

(27) 

A class two QFSM has in turn the initialization In applied only to the input qubit. This way 

the generated sequence is now expressed not only as a function  but rather as 

. This means that now the output is directly dependent also on the previous 

output state. This QFSM of the second class is shown in Figure 14. The difference between 
the QFSM of the first and of the second class can be seen on the output qubit   where in 

the case of the QFSM of the first class the initialization  means the initialization of the 

output at each computation step while the class two QFSM uses  initializes the output 

only once, at the beginning of the computation. 
 

 

Fig. 14. Example of implementation of Fredkin gate as a quantum FSM of second class 
where the output is initialized only once and the measurement is done either after each 
input or only completely at the end. 

For instance, a class two QFSM constructed from a  "Fredkin oracle" differs from the class by 

different possible state transition. This is shown in Table 1. The first column represent the 

current state of the quantum register build from the input, state and output qubits |iqo〉. The 

second column shows the state transitions of the class one QFSM. Observe that as the output 

qubit is always being initialized to |0〉 only four possible initial states exists (see eq. 27). The 

third column representing the state transitions of the class two QFSM and as can be seen in 

this case the state transition function is the full  "Fredkin oracle" function. 

Moreover, the difference between the first and the second class of these QFSM’s has also 

deeper implications. Observe that the QFSM presented in this paper, if implemented 

without the measurement on the output and the input qubit (the measurement is executed 

only after l computational steps) the QFSM becomes the well-known two-way QFSM 
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Table 1. Comparison of the state transition between the class one and class two QFSMs 

[KW97] because the machine can be in superposition with the input and the output. This is 
equivalent to stating that the reading head of a QFSM is in superposition with the input tape 
as required for the time-quadratic recognition of the {anbn} language [KW97]. 
Observe that to represent the 1-way and the 2-way QFSM in the circuit notation the main 
difference is in the missing measurement operations between the application of the different 
CU (Controlled-U) operations. This is represented in Figures 15 and 16 for 1-way and the 2-
way QFSMs, respectively. 
 

 

Fig. 15. Example of circuit implementing 1-way QFSM. 
 

 
 

Fig. 16. Example of circuit implementing 2-way QFSM. 

An interesting example of QFSM is a machine with quantum controls signals. For instance a 

circuit with the input qubit in the superposition generating the EPR quantum state [NC00] is 

shown in Figure 17. 
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Fig. 17. Example of the EPR circuit used as a QFSM. 

Observe the behavior of this QFSM as both class one and class two machine given in Table 2. 
In this case the distinction between the class one and class two machines is negligible 
because any measurement of the system collapses the whole system as the result of the 
entanglement present in it. 
 

 

Table 2. Comparison of the state transition between the class one and class two EPR circuit 
QFSM 

Figure 17 shows that because of the entanglement this machine has two distinct possible 
recognizable sequences. When the machine uses exclusively the output qubit initialized to 

|0〉 the possible initial states are only |00〉 and |10〉 because the measurement of the output 

state resulting in  and . 

4. Evolutionary algorithms and quantum logic synthesis 

In general the evolutionary problem solving can be split into two main categories; not 

separated by the methods that each of the trends are using but rather by the problem 

representation and by the type of problem solved. On one hand, there is the Genetic 

Algorithm (GA) [Gol89, GKD89] and Evolutionary strategies (ES) [Bey01, Sch95] that in 

general represents the information by strings of characters/integers/floats and in general 

attempts to solve combinatorial problems. On the other hand the design of algorithms as 

well as state machines was traditionally done by the Genetic Programming (GP) [Koz94, 

KBA99] and the Evolutionary Programming (EP) [FOW66, ES03]. 

Each of this approaches has its particular advantages and each of them has been already 
more or less successfully applied to the Quantum Logic synthesis. In the EQLS field the 
main body of research was done using the Genetic Programming (GP) for the synthesis of 
either quantum algorithms and programs [WG98, Spe04, Lei04, MCS04] or some specific 
types of quantum circuits[WG98, Rub01, SBS05, SBS08, LB04, MCS05]. While the GP 
approach has been quite active area of research the Genetic Algorithm approach is less 
popular and recently only [LP08, YI00] were using a Genetic Algorithm for the synthesis of 
quantum circuits. However, it was shown in [LP09] that it is also possible to synthesize 
quantum finite state machines specified as quantum circuit using a GA. The difference 
between the popularity of the usage between the GP and the GA for EQLS is mainly due to 
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