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Abstract 
The chapter focuses on the enhanced stiffness modeling and analysis of serial kinematic 
chains with passive joints, which are widely used in parallel robotic systems. In contrast to 
previous works, the stiffness is evaluated for the loaded working mode corresponding to the 
static equilibrium of the elastic forces and the external wrench acting upon the manipulator 
end point. It is assumed that the manipulator elasticity is described by a multidimensional 
lumped-parameter model, which consists of a chain of rigid bodies connected by 6-dof 
virtual springs. Each of these springs characterize flexibility of the corresponding link or 
actuating joint and takes into account both their translational/rotational compliance and the 
coupling between them. The proposed technique allows finding the full-scale “load-
deflection” relation for any given workspace point and to linearise it taking into account 
variation of the manipulator Jacobian due to the external load. These enable evaluating 
critical forces that may provoke non-linear behavior of the manipulator, such as sudden 
failure due to elastic instability (buckling). The advantages of the developed technique are 
illustrated by several examples that deal with kinematic chains employed in typical parallel 
manipulators. 
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1. Introduction 
 

Due to the increasing industrial needs, novel approaches in mechanical design of robotic 
manipulators are targeted at essential reduction of moving masses and achieving high 
dynamic performances with relatively low energy consumption. This motivates using 
advanced kinematical architectures and light-weight materials, as well as minimization of 
the cross-sections of all manipulator elements (Siciliano & Khatib, 2008). The primary 
constraint for such minimization is the mechanical stiffness of the manipulator, which must 
be evaluated taking into account external disturbances (loading) imposed by a relevant 
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manufacturing process. However, in robotic literature, the manipulator stiffness is usually 
evaluated by a linear model, which defines the static response to the external force/torque, 
assuming that the compliant deflections are small and the external loading is insignificant 
(Zhang et al., 2009; Majou et al., 2007). At the same time, in many practical applications 
(such as milling, for instance), the loading is essential and conventional stiffness modeling 
techniques must be used with great caution (Los et al., 2008). Moreover, for the 
manipulators with light-weight links, there is a potential danger of buckling phenomena 
that is known from general theory of elastic stability (Timoshenko & Goodier, 1970). Hence, 
the existing stiffness modeling techniques for high-performance robotic manipulators must 
be revised and enhanced, in order to add ability of detecting non-linear effects and avoid 
structural failures caused by the loading.   
The existing approaches for the manipulator stiffness modeling may be roughly divided into 
three main groups:  the Finite Element Analysis (FEA) (Piras et al., 2005; Hu et al., 2007; 
Nagai & Liu 2007), the matrix structural analysis (SMA) (Deblaise et al. 2006, Martin, 1966, 
Li et al., 2002), and the virtual joint method (VJM) that is often called the lumped modeling 
(Gosselin, 1990; Pashkevich et. al. 2008; Quennouelle & Gosselin 2008 a). The most accurate 
of them is the Finite Element Analysis, which allows modeling links and joints with its true 
dimension and shape. However it is usually applied at the final design stage because of the 
high computational expenses required for the repeated remeshing of the complicated 3D 
structure over the whole workspace. The SMA also incorporates the main ideas of the FEA, 
but operates with rather large elements – 3D flexible beams that are presented in the 
manipulator structure. This leads obviously to the reduction of the computational expenses, 
but does not provide clear physical relations required for the parametric stiffness analysis. 
And finally, the VJM method is based on the expansion of the traditional rigid model by 
adding the virtual joints (localized springs), which describe the elastic deformations of the 
links, joints and actuators (Salisbury, 1980; Gosselin, 1990). The VJM technique is widely 
used at the pre-design stage and will be extended in this paper for the case of the preloaded 
manipulators. 
It should be noted, that there are a number of variations and simplifications of the VJM, 
which differ in modeling assumptions and numerical procedures. Recent modification of 
this method allows to extend it to the over-constrained manipulator and to apply it at any 
workspace point, including the singular ones (Pashkevich et. al. 2009 a, b). Besides, to take 
into account real shape of the manipulator components, the stiffness parameters may be 
evaluated using the FEA modeling. The latter provided the FEA-accuracy throughout the 
whole workspace without exhaustive remeshing required for the classical FEA. 
At present, there is very limited number of publication that directly addressed the problem 
of the stiffness modeling for loaded manipulators. The most essential results were obtained 
in (Alici, & Shirinzadeh; 2005; Quennouelle & Gosselin, 2008 b; Kovecses & Angeles, 2007) 
where the stiffness matrix was computed taking into account the change in the manipulator 
configuration due to the preloading. However, the problem of finding the corresponding 
loaded equilibrium was omitted, so the Jacobian and Hessian were computed in a 
traditional way, i.e. for the neighborhood of the unloaded equilibrium. The latter yielded 
essential computational simplification but also imposed crucial limitations, not allowing 
detecting the buckling and other non-liner effects. 
This chapter focuses on the stiffness modeling of serial kinematic chains with passive joints, 
which are widely used in parallel robotic systems. It presents an enhanced solution of the 

 

considered problem, taking into account influence of the external force/torque on the 
manipulator configuration as well as change in the Jacobian due to the external loading. It 
implements the virtual joint technique that describes the compliance of the manipulator 
elements by a set of localized six-dimensional springs separated by rigid links and perfect 
joints. In contrast to previous works, the developed technique allows to obtain the full-scale 
“load-deflection” relation for any given workspace point and to compute the desired matrix 
for any manipulator configuration (including singular ones), implicitly taking into account 
the kinematic redundancy imposed by the passive joints. Besides, it enables designer to 
evaluate critical forces that may provoke non-linear manipulator behaviour, such as sudden 
failure due to elastic instability (buckling) which has not been previously studied in robotic 
literature. Another contribution is a numerical algorithm for computing the loaded 
equilibrium and its analytical criteria for its stability analysis. 
The remainder of the chapter is organized as follows. Section 2 defines the research problem 
and basic assumptions. In Section 3, it is proposed a numerical algorithm for computing of 
the loaded static equilibrium and its stability analysis. Section 4 focuses on the stiffness 
matrix evaluation taking into account external loading and presence of passive joints. 
Section 5 contains a set of illustrative examples that demonstrate possible nonlinear 
behavior of loaded serial kinematic chains. And finally, Section 6 summarizes the main 
results and contributions. 

 
2. Problem of Stiffness modelling 
 

2.1 Manipulator Architecture 
Let us consider a general serial kinematic chain, which consists of a fixed “Base”, a number 
of flexible actuated joints “Ac”, a serial chain of flexible “Links”, a number of passive joints 
“Ps” and a moving “Platform” at the end of the chain (Fig. 1). It is assumed that all links are 
separated by the joints (actuated or passive, rotational or translational) and the joint type 
order is arbitrary.  Besides, it is admitted that some links may be separated by actuated and 
passive joints simultaneously. Such architecture can be found in most of parallel 
manipulators (Fig. 2) where several similar kinematic chains are connected to the same base 
and platform in a different way (with rotation of 90° or 120°, for instance), in order to 
eliminate the redundancy caused by the passive joints. It is obvious that such kinematic 
chains are statically under-constrained and their stiffness analysis can not be performed by 
direct application of the standard methods.     
Typical examples of the examined kinematic chains can be found in 3-PUU translational 
parallel kinematic machine (Li & Xu, 2008), in Delta parallel robot (Clavel, 1988) or in 
parallel manipulators of the Orthoglide family (Chablat & Wenger, 2003) and other 
manipulators (Merlet, 2006). It worth mentioning that here a specific spatial arrangement of 
under-constrained chains yields the over-constrained mechanism that posses a high structural 
rigidity with respect to the external force. In particular, for Orthoglide, each kinematic chain 
prevents the platform from rotating about two orthogonal axes and any combination of two 
kinematic chains suppresses all possible rotations of the platform. Hence, the whole set of 
three kinematic chains produces non-singular stiffness matrix while for each separate chain 
the stiffness matrix is singular. This motivates development of dedicated stiffness analysis 
techniques that are presented below. 
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Fig. 1. General serial kinematic chain and its VJM model  (Ac – actuated joint, Ps – passive 
joint). 
 

 
Fig. 2. Architecture of typical parallel manipulators and their kinematics chains 

 
2.2 Basic Assumptions 
To evaluate the stiffness of the considered serial manipulator, let us apply a modification of 
the virtual joint method (VJM), which is based on the lump modeling approach (Gosselin, 
1990). According to this approach, the original rigid model should be extended by adding 
virtual joints (localized springs), which describe elastic deformations of the links. Besides, 
virtual springs are included in the actuating joints, to take into account the stiffness of the 
control loop. Under such assumptions, the kinematic chain can be described by the 
following serial structure:  
(a) a rigid link between the manipulator base and the first actuating joint described by the 
constant homogenous transformation matrix BaseT ; 
(b) the 6-d.o.f. actuating joints defining three translational and three rotational actuator 
coordinates, which are described by the homogenous matrix function  3

i
D aT θ  where 

 , , , , ,i ai ai ai ai ai ai
a x y z x y z        θ  are the virtual spring coordinates; 

(c) the 6-d.o.f. passive joints defining three translational and three rotational passive joins 
coordinates, which are described by the homogenous matrix function  3

i
D pT q  where 

 , , , , ,i i i i i i i
p x y z x y zq q q q q q  q  are the passive joint coordinates; 

(d) the rigid links, which are described by the constant homogenous transformation matrix 
i
LinkT ; 

(e) a 6-d.o.f. virtual joint defining three translational and three rotational link-springs, which 
are described by the homogenous matrix function  3

i
D LinkT θ , where 

 

 , , , , ,i i i i i i i
Link x y z x y z        θ ,  , ,i i i

x y z    and  , ,i i i
x y z      correspond to the elementary 

translations and rotations respectively; 
(f) a rigid link from the last link to the end-effector, described by the homogenous matrix 
transformation ToolT .  
In the frame of these notations, the final expression defining the end-effector location subject 
to variations of all joint coordinates of a single kinematic chain may be written as the 
product of the following homogenous matrices  
 

         2 1 2
3 3 3 3

i i i i i
Base D a D p Link D Link D p Tool

i

      T T T θ T q T T θ T q T  (1) 

 
where the components  3, (...), ,i

Base D Link ToolT T T T  may be factorized with respect to the terms 
including the joint variables, in order to simplify computing of the derivatives (Jacobian and 
Hessian) .  
This expression includes both traditional geometric variables (passive and active joint 
coordinates) and stiffness variables (virtual joint coordinates). Explicit position and 
orientation of the end-effector can by extracted from the matrix T  in a standard way 
(Angeles, 2007) , so finally the kinematic model can be rewritten as the vector function 
 
 ( , )t g q θ  (2) 
 
where the vector  ( , )Tt p φ  includes the position ( , , )Tx y zp  and orientation 

( , , )Tx y z   φ  of the end-platform, the vector 1 2( , , ..., )Tnq q qq  contains all passive joint 

coordinates, the vector 1 2( , , ..., )Tm   θ  collects all virtual joint coordinates, n  is the 
number of passive joins, m  is the number of virtual joints.  

 
2.3 Problem statement 
In general, the stiffness model describes the resistance of an elastic body or a mechanism to 
deformations caused by an external force or torque. It can be defined by the relation 

( )fF Δt , where (...)f  is the function that associates a deformation Δt  with an external 
force F  that causes it. It worth mentioning that the function (...)f  can de determined even 
for the singular configurations (or redundant kinematics) while the inverse statement is not 
generally true. For relatively small deformations, this function is defined through the 
‘‘stiffness matrix” K , which defines the linear relation  
 
 0 0( , ) F K q θ Δt  (3) 
 
between the six-dimensional translational/rotational displacements 

(Δ , Δ , Δ , Δ , Δ , Δ )Tx y zx y z   Δt , and the static forces/torques  , , , , ,x y z x y zF F F M M MF  

causing this transition. Here, the vector 0 01 02 0( , , ..., )Tnq q qq  includes all passive joint 
coordinates, the vector 0 01 02 0( , , ..., )Tm   θ  collects all virtual joint coordinates, n  is the 
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number of passive joins, m  is the number of virtual joints. Usually, the manipulator is 
assembled without internal preloading, so the vector 0θ   is equal to zero.  
However, for the loaded mode, similar relation is defined in the neighborhood of another 
static equilibrium, which corresponds to a different manipulator configuration ( , )q θ , that is 
caused by external forces/torques F . Respectively, in this case, the stiffness model 
describes the relation between the increments of the force δF and the position δt  
 
 ( , )F δF K q θ δt  (4) 
 
where  0q q Δq  and  0θ θ Δθ  denote the new configuration of the manipulator, and 
Δq , Δθ  are the deviations of the passive joint and virtual spring coordinates respectively. 
Hence, the considered problem may be divided into three sequential subtasks: (i) finding the 
static equilibrium for the loaded configuration and checking its stability, (ii) linearization of 
the relevant force/position relations in the neighborhood of this equilibrium, and finally (iii) 
determining the critical force for the kinematic chain that may cause undesired buckling 
phenomena. 

 
3. Static equilibrium for loaded mode 
 

Computing of the static equilibrium is a key issue for the stiffness analysis, since it defines 
the manipulator configuration ( , )q θ  required for the linearization of the “load-deflection” 
relation. In previous works, this issue was usually ignored and the linearization was 
performed in the neighborhood of the unloaded configuration assuming that the external 
load is small enough. It is obvious that the latter essentially limits relevant results and do 
not allow to detect non-linear effects such as the buckling. From mathematical point of view, 
the problem is reduced to finding solutions of a system of non-linear equations that may be 
unique or non-unique, stable or unstable.  

 
3.1 Configuration of loaded manipulator  
Let us assume that, due to the external force F , the end-effector of the manipulator is 
relocated from the initial (unloaded) position 0 0 0( , )gt q θ  to a new position ( , )gt q θ , 
which satisfies the condition of the mechanical equilibrium. Here 0q  is computed via the 
inverse kinematics and 0θ  is equal to zero (since there are no external loading in the 
springs), ,q θ  are passive and virtual joint coordinate in the loaded mode respectively. For 
rather small displacement 0 Δt t t , a new position of the end-effector 

0 0( , )P  t q Δq θ Δθ  may be expressed as  
 
 0 q    t t J Δθ J Δq  (5) 
 
where J  and qJ are the kinematic Jacobians with respect to the coordinates , q, which 
may be computed from (1), (2) analytically or semi-analytically, using the factorization 

 

technique. However, in general case, the model is highly non-linear and computing J  and 

qJ  requires some additional efforts.  
For computational reasons, let us consider the dual problem that deals with determining the 
external force F  and the manipulator configuration ( , )q θ  that correspond to the output 
position t .  
Let us assume that the joints are given small, arbitrary virtual displacements  , q θ  in the 
equilibrium neighborhood.  
According to the principle of virtual displacements, the virtual work of the external force F  
applied to the end-effector along the corresponding displacement q      t J θ J q  is 

equal to the sum    T T
q     F J θ F J q . Since  the passive joints do not produce the 

force/torque reactions, the virtual work includes only one component  T  τ θ  (the minus 
sign takes into account the force-displacement directions for the virtual spring). In the static 
equilibrium, the total virtual work of all forces is equal to zero for any virtual displacement, 
therefore the equilibrium conditions may be written as  
 
 ;T T

q    J F τ J F 0  (6) 
 
Taking into account (3), the latter system of equations can be rewritten as 
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It is evident that there is no general method for analytical solution of this system and it is 
required to apply numerical techniques. To derive the numerical algorithm, let us linearize 
the kinematic equation in the neighborhood of the current position ( , )i iq θ   
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where the starting point ( 0 0,q θ ) can be chosen using the non-loaded configuration, and 
computed via the inverse kinematics.  
As follows from computational experiments, for typical values of deformations the 
proposed iterative algorithm possesses rather good convergence (3-5 iterations are usually 
enough). However, in the case of buckling or in the area of multiple equilibriums, the 
problem of convergence becomes rather critical and highly depends on the initial guess. To 
overcome this problem, the value of the joint variables  ,i iθ q  computed at each iteration 
were disturbed by adding small random noise. Further enhancement of this algorithm may 
be based on the full-scale Newton-Raphson technique (i.e. linearization of the static 
equilibrium equations in addition to the kinematic one), this obviously increases 
computational expenses but potentially improves convergence. 

 
3.2 Stability of the static equilibrium 
To evaluate stability of the computed static equilibrium ( , )q θ , let us assume that the 
manipulator end-effector is fixed at the point p  corresponding to the external load F , but 
the joint coordinates are given small virtual displacements q , θ  satisfying the 
geometrical constraint (2), i.e. 
 
 ( , ); ( , )     p g q θ p g q q θ θ  (12) 
 
For these assumptions, let us compute the total virtual work in the joints that must be 
positive for a stable equilibrium and negative for an unstable one.  
To achieve the virtual configuration ( , )   q q θ θ  and restore the equilibrium conditions, 
each of the joints must include virtual motors that generate the generalized forces/torques 

qτ , τ  which satisfies the equations: 
 

 
; ( ) ( )
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T T
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q q q q

            
    

J F K θ J J F K θ θ τ
J F J J F τ

    (13) 

 
After relevant transformations, the virtual torques may be expressed as 
 
 ( ) ; ( )T T

q q         τ J F K θ τ J F  (14) 
 
where (.)  denotes the differential with respect to  q , θ  that may be expanded via the 
Hessians of the scalar function ( , )T  g q θ F :  
 

 

 ( ) ; ( )T F F T F F
q q qq q            J F H q H θ J F H q H θ    (15) 

 
provided that  
 
 2 2 2 2 2/ ; / ; /F F F F

qq q q               H q H θ H H q θ     (16) 
 
Further, taking into account that the virtual displacement from ( , )q θ   to ( , )   q q θ θ   
leads to a gradual change of the virtual torques from (0, 0) to ( , )q  τ τ , the virtual work 
may be computed as a half of the corresponding scalar products 
 

  1
2

T T
qW        τ θ τ q ,    (17) 

 
where the minus sign takes into account the adopted conventions for the positive directions 
of the forces and displacements. Hence, after appropriate substitutions and transforming to 
the matrix form, the desired stability condition may be written as 
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2

F F
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F F
q qq
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
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H K H θ

θ q
H H q

   (18) 

 
where q  and θ  must satisfy to the geometrical constraints (12).  
In order to take into account the relation between q  and θ  that is imposed by (12), let us 
apply the first-order expansion of the function ( , )g θ q  that yields the following linear 
relation  
 

 q
        
θ

J J 0
q

. (19) 

 
Then, applying the SVD- factorization (Strang, 1998) of the integrated Jacobian  
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VS

J J U U
V0

   (20) 

 
and extracting from V  , qV  the sub-matrices oV  , o

qV  corresponding to the zero singular 
values, a relevant null-space of the system (19) may be presented as  
 
 o o; q       θ V μ q V μ       (21) 
 
where μ  is the arbitrary vector of the appropriate dimension (equal to the rank-deficiency 
of the Integrated Jacobian). Hence, the stability condition (18) may be rewritten as inequality  
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where the starting point ( 0 0,q θ ) can be chosen using the non-loaded configuration, and 
computed via the inverse kinematics.  
As follows from computational experiments, for typical values of deformations the 
proposed iterative algorithm possesses rather good convergence (3-5 iterations are usually 
enough). However, in the case of buckling or in the area of multiple equilibriums, the 
problem of convergence becomes rather critical and highly depends on the initial guess. To 
overcome this problem, the value of the joint variables  ,i iθ q  computed at each iteration 
were disturbed by adding small random noise. Further enhancement of this algorithm may 
be based on the full-scale Newton-Raphson technique (i.e. linearization of the static 
equilibrium equations in addition to the kinematic one), this obviously increases 
computational expenses but potentially improves convergence. 

 
3.2 Stability of the static equilibrium 
To evaluate stability of the computed static equilibrium ( , )q θ , let us assume that the 
manipulator end-effector is fixed at the point p  corresponding to the external load F , but 
the joint coordinates are given small virtual displacements q , θ  satisfying the 
geometrical constraint (2), i.e. 
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For these assumptions, let us compute the total virtual work in the joints that must be 
positive for a stable equilibrium and negative for an unstable one.  
To achieve the virtual configuration ( , )   q q θ θ  and restore the equilibrium conditions, 
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Further, taking into account that the virtual displacement from ( , )q θ   to ( , )   q q θ θ   
leads to a gradual change of the virtual torques from (0, 0) to ( , )q  τ τ , the virtual work 
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where q  and θ  must satisfy to the geometrical constraints (12).  
In order to take into account the relation between q  and θ  that is imposed by (12), let us 
apply the first-order expansion of the function ( , )g θ q  that yields the following linear 
relation  
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Then, applying the SVD- factorization (Strang, 1998) of the integrated Jacobian  
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that must be satisfied for all non-zero μ . In other words, the considered static equilibrium 
( , )q θ  is stable if (and only if) the matrix 
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T F F

q
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q q qq

    
 

                    
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      (23) 

 
is positive-negative. It is worth mentioning that the obtained result is in a good agreement 
with previous studies (Alici & Shirinzadeh, 2005), where (for manipulators without passive 
joints) the stiffness properties were defined by the matrix F K H  that must be positive-
definite. 

 
4. Stiffness model for the loaded mode 
 

The previous section presents a technique that allows obtaining an exact relation between 
the elastic deformations and corresponding external force/torque. It is based on sequential 
computations of loaded equilibriums (and relevant force/torque) for various displacements 
of the manipulator end-point with respect to its unloaded location. However, in general 
case, this relation is highly non-linear while common engineering practice operates with the 
stiffness matrix derived via the linearization.  
To compute the desired stiffness matrix, let us consider the neighborhood of the loaded 
configuration and assume that the external force and the end-effector location are 
incremented by some small values F , t . Besides, let us assume that a new configuration 
also satisfies the equilibrium conditions. Hence, it is necessary to consider simultaneously 
two equilibriums corresponding to the manipulator state variables ( , , , )F q θ t  and 
( , , , )       F F q q θ θ t t . Relevant equations of statics may be written as  
 
 ; 0T T

q     F J K θ F J     (24) 
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F F J J K θ θ

F F J J
   (25) 

 
where ( , )qJ q θ  and ( , )J q θ  are the differentials of the Jacobians due to changes in ( , )q θ . 
Besides, in the neighborhood of ( , )q θ , the kinematic equation may be also  presented in the 
linearized form:  
 

 

 ( , ) ( , )q   δt J q θ δθ J q θ δq , (26) 
 
Hence, after neglecting the high-order small terms and expending the differentials via the 
Hessians of the function ( , )T  g q θ F   (similar to sub-section 3.2), equations (24), (25)  may 
be rewritten as  
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and the general relation between the increments  F , t , θ , q  can be presented as  
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.    (28) 

 
The latter gives a straightforward numerical technique for computing of the desired stiffness 
matrix: direct inversion of the matrix in the left-hand side of (28) and extracting from it the 
upper-left sub-matrix of size 66. Similarly, there can be computed the matrices defining 
linear relations between the end-effector increment t  and the increments of the joint 
variables θ , q , i.e.: 
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      (30) 

 
In the case when the above matrix inverse is computationally hard, the variable θ  can be 
eliminated analytically, using corresponding static equation:  F T F F

q         θ k J F k H q ,  . 

where   1F 
    Fk K H . This leads to a reduced system of matrix equations with 

unknowns  F  and q  
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J k J J J k H δF δt
J H k J H H k H δq 0

. (31) 

 
that may be treated in the similar way, i.e. the desired stiffness matrix is also obtained by 
direct inversion of the matrix in the left-hand side of (31) and extracting from it the upper-
left sub-matrix of size 66: 
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that must be satisfied for all non-zero μ . In other words, the considered static equilibrium 
( , )q θ  is stable if (and only if) the matrix 
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      (23) 

 
is positive-negative. It is worth mentioning that the obtained result is in a good agreement 
with previous studies (Alici & Shirinzadeh, 2005), where (for manipulators without passive 
joints) the stiffness properties were defined by the matrix F K H  that must be positive-
definite. 

 
4. Stiffness model for the loaded mode 
 

The previous section presents a technique that allows obtaining an exact relation between 
the elastic deformations and corresponding external force/torque. It is based on sequential 
computations of loaded equilibriums (and relevant force/torque) for various displacements 
of the manipulator end-point with respect to its unloaded location. However, in general 
case, this relation is highly non-linear while common engineering practice operates with the 
stiffness matrix derived via the linearization.  
To compute the desired stiffness matrix, let us consider the neighborhood of the loaded 
configuration and assume that the external force and the end-effector location are 
incremented by some small values F , t . Besides, let us assume that a new configuration 
also satisfies the equilibrium conditions. Hence, it is necessary to consider simultaneously 
two equilibriums corresponding to the manipulator state variables ( , , , )F q θ t  and 
( , , , )       F F q q θ θ t t . Relevant equations of statics may be written as  
 
 ; 0T T
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and  
 

 
     
   

;

0

T

T

        
     

θ θ θ

q q

F F J J K θ θ

F F J J
   (25) 

 
where ( , )qJ q θ  and ( , )J q θ  are the differentials of the Jacobians due to changes in ( , )q θ . 
Besides, in the neighborhood of ( , )q θ , the kinematic equation may be also  presented in the 
linearized form:  
 

 

 ( , ) ( , )q   δt J q θ δθ J q θ δq , (26) 
 
Hence, after neglecting the high-order small terms and expending the differentials via the 
Hessians of the function ( , )T  g q θ F   (similar to sub-section 3.2), equations (24), (25)  may 
be rewritten as  
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 (27) 

 
and the general relation between the increments  F , t , θ , q  can be presented as  
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The latter gives a straightforward numerical technique for computing of the desired stiffness 
matrix: direct inversion of the matrix in the left-hand side of (28) and extracting from it the 
upper-left sub-matrix of size 66. Similarly, there can be computed the matrices defining 
linear relations between the end-effector increment t  and the increments of the joint 
variables θ , q , i.e.: 
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In the case when the above matrix inverse is computationally hard, the variable θ  can be 
eliminated analytically, using corresponding static equation:  F T F F

q         θ k J F k H q ,  . 

where   1F 
    Fk K H . This leads to a reduced system of matrix equations with 

unknowns  F  and q  
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q
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J k J J J k H δF δt
J H k J H H k H δq 0

. (31) 

 
that may be treated in the similar way, i.e. the desired stiffness matrix is also obtained by 
direct inversion of the matrix in the left-hand side of (31) and extracting from it the upper-
left sub-matrix of size 66: 
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It worth mentioning that the structure of the latter matrix is similar to one obtained for the 
unloaded manipulator in (Pashkevich et al., 2009 c) and differs only by Hessians that take 
into account influence of the external load. It should be also noted that, because of presence 
of the passive joints, the stiffness matrix of a separate serial kinematic chain is always 
singular, but aggregation of all the manipulator chains of a parallel manipulator produce a 
non-singular stiffness matrix. 
Hence, the presented technique allows computing the stiffness matrix in the presence of the 
external load and to generalize previous results both for serial kinematic chains and for 
parallel manipulators. It the following Section, it will be applied to several examples that 
deal with kinematic chains employed in typical parallel manipulators. 

 
5. Illustrative examples 
 

Let us apply the developed technique to the stiffness analysis of a serial kinematic chain 
consisting of three similar links separated by two similar rotating actuated joints. It is 
assumed that the chain is a part of a parallel manipulator and it is connected to the robot 
base via a universal passive joint and the end-platform connection is achieved via a 
spherical passive joint. In order to investigate possible non-linear effects in the stiffness 
behavior of such architecture, let us consider several cases that differ in stiffness models of 
the links and actuated joints.  

 
5.1 Examined models 
 

5.1.1 Manipulator geometry 
In general, the geometry of the examined kinematic chain (Fig. 2) can be defined as UpRaRaSp 
where R, U and S denote respectively the rotational, universal and spherical joints, and the 
subscripts ‘p’ and ‘a’ refer to passive and active joints respectively. Using the homogenous 
matrix transformations, the chain geometry may be described by the equation  
 
 0 1 1 2 2 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )u x s z a x s z a x s s tL q L q L         T R q T T θ R T T θ R T T θ R q     (33) 
 
where (...)zR   and (...)xT  are the elementary rotation/translation matrices  around/along 
the z- and x-axes, (...)uR  is the homogeneous rotation matrix of the universal joint 
(incorporating two elementary rotations), (.)sR is the homogeneous rotation matrix of the 
universal joint (incorporating three elementary rotations), 1 2,a aq q  are the coordinates of the 
actuated joints, L  is the length of the links, 0q is the coordinate vector of the universal 
passive joint located at the robot base, tq  is the coordinate vector corresponding to the 
passive spherical joint at the end-platform, (.)sT  is the homogenous vector-function 
describing elastic deformations in the links and actuators (they are represented by the 
virtual coordinates incorporated in the vectors  1 2 3, ,θ θ θ ). It is obvious that this model can 

 

be easily transformed into the form  ( , )t g q θ  used in the frame of the developed 
technique. 
 

 
Fig. 3. Examined kinematical chain and its typical configurations ( Up – passive universal 
joint, Ra1, Ra2 – actuated rotating joints, Sp – passive spherical joint) 
 
To investigate particularities of this architecture, let us also define three typical postures that 
differ in values of the actuated coordinates:  

S-configuration:  the links are located along the straight line (Fig. 2a), 
the actuated coordinates are 1 2 0a qq q   
-configuration:  the chain takes a trapezoid shape (Fig. 2b), 
the actuated coordinates are 1 2 30a qq q           
Z-configuration:  the chain takes a zig-zag shape (Fig. 2c), 
the actuated coordinates are 1 2 30a qq q           

For presentational convenience, let us also assume that the coordinates 0q  of the universal 
passive joint are computed to ensure location of the end-effector on the Cartesian axis x.  
For each of these configurations, let us consider three types of the virtual springs 
corresponding to different physical assumptions concerning the stiffness properties of the 
actuators/links. They cover the cases, in which the main flexibility is caused by the torsion 
in the actuators, by the link bending, and by the combination of elementary deformations of 
the links. 

 
5.1.2 Case of 1D-springs: Model A 
Here, it is assumed that the flexible elements are localized in the actuating drives while the 
links are considered as strictly rigid. It allows, without loss of generality, to reduce the 
original UpRaRaSp model down to RpRaRaRp and define a single stiffness parameter  K  
(similar for both actuators) that will be used as a reference value for the further analysis. 
Besides, it is possible to ignore the end-effector orientation and consider a single passive 
joint coordinate q  (at the base) and two virtual joint coordinates 1 , 2  (at actuators). This 
restricts the end-effector motions to Cartesian xy-plane where the geometrical model is 
defined by equations  
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It worth mentioning that the structure of the latter matrix is similar to one obtained for the 
unloaded manipulator in (Pashkevich et al., 2009 c) and differs only by Hessians that take 
into account influence of the external load. It should be also noted that, because of presence 
of the passive joints, the stiffness matrix of a separate serial kinematic chain is always 
singular, but aggregation of all the manipulator chains of a parallel manipulator produce a 
non-singular stiffness matrix. 
Hence, the presented technique allows computing the stiffness matrix in the presence of the 
external load and to generalize previous results both for serial kinematic chains and for 
parallel manipulators. It the following Section, it will be applied to several examples that 
deal with kinematic chains employed in typical parallel manipulators. 

 
5. Illustrative examples 
 

Let us apply the developed technique to the stiffness analysis of a serial kinematic chain 
consisting of three similar links separated by two similar rotating actuated joints. It is 
assumed that the chain is a part of a parallel manipulator and it is connected to the robot 
base via a universal passive joint and the end-platform connection is achieved via a 
spherical passive joint. In order to investigate possible non-linear effects in the stiffness 
behavior of such architecture, let us consider several cases that differ in stiffness models of 
the links and actuated joints.  

 
5.1 Examined models 
 

5.1.1 Manipulator geometry 
In general, the geometry of the examined kinematic chain (Fig. 2) can be defined as UpRaRaSp 
where R, U and S denote respectively the rotational, universal and spherical joints, and the 
subscripts ‘p’ and ‘a’ refer to passive and active joints respectively. Using the homogenous 
matrix transformations, the chain geometry may be described by the equation  
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where (...)zR   and (...)xT  are the elementary rotation/translation matrices  around/along 
the z- and x-axes, (...)uR  is the homogeneous rotation matrix of the universal joint 
(incorporating two elementary rotations), (.)sR is the homogeneous rotation matrix of the 
universal joint (incorporating three elementary rotations), 1 2,a aq q  are the coordinates of the 
actuated joints, L  is the length of the links, 0q is the coordinate vector of the universal 
passive joint located at the robot base, tq  is the coordinate vector corresponding to the 
passive spherical joint at the end-platform, (.)sT  is the homogenous vector-function 
describing elastic deformations in the links and actuators (they are represented by the 
virtual coordinates incorporated in the vectors  1 2 3, ,θ θ θ ). It is obvious that this model can 

 

be easily transformed into the form  ( , )t g q θ  used in the frame of the developed 
technique. 
 

 
Fig. 3. Examined kinematical chain and its typical configurations ( Up – passive universal 
joint, Ra1, Ra2 – actuated rotating joints, Sp – passive spherical joint) 
 
To investigate particularities of this architecture, let us also define three typical postures that 
differ in values of the actuated coordinates:  

S-configuration:  the links are located along the straight line (Fig. 2a), 
the actuated coordinates are 1 2 0a qq q   
-configuration:  the chain takes a trapezoid shape (Fig. 2b), 
the actuated coordinates are 1 2 30a qq q           
Z-configuration:  the chain takes a zig-zag shape (Fig. 2c), 
the actuated coordinates are 1 2 30a qq q           

For presentational convenience, let us also assume that the coordinates 0q  of the universal 
passive joint are computed to ensure location of the end-effector on the Cartesian axis x.  
For each of these configurations, let us consider three types of the virtual springs 
corresponding to different physical assumptions concerning the stiffness properties of the 
actuators/links. They cover the cases, in which the main flexibility is caused by the torsion 
in the actuators, by the link bending, and by the combination of elementary deformations of 
the links. 

 
5.1.2 Case of 1D-springs: Model A 
Here, it is assumed that the flexible elements are localized in the actuating drives while the 
links are considered as strictly rigid. It allows, without loss of generality, to reduce the 
original UpRaRaSp model down to RpRaRaRp and define a single stiffness parameter  K  
(similar for both actuators) that will be used as a reference value for the further analysis. 
Besides, it is possible to ignore the end-effector orientation and consider a single passive 
joint coordinate q  (at the base) and two virtual joint coordinates 1 , 2  (at actuators). This 
restricts the end-effector motions to Cartesian xy-plane where the geometrical model is 
defined by equations  
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where 12 1q q    and 13 1 2q q     . In this case, the Jacobian matrices are also computed 
easily 
 

 12 13 12 13 13
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sin sin sin sin sin sin
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q q q q q q
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q q q q q q
                   J J  (35) 

 
and corresponding stiffness analysis will be performed analytically and compared with 
numerical results that were obtained using the developed methodology. 

 
5.1.3 Case of 2D springs: Model B 
For this model, let us assume that the actuators do not include flexible components but the 
manipulator links are subject to non-negligible deformations in Cartesian xy-plane (bending 
and compression). Correspondingly, the link flexibility is defined by a 33 matrix that 
includes elements describing deformation in x- and y- directions and rotational deformation 
with respect to z-axis. Relevant stiffness matrix may be written as (Connor, 1976)  
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A L
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              
K     (36) 

 
where L  is the length of the links, I  and  A  are respectively its second moment and area of 
the cross-section , and  E  is the Young module. Further, for comparison purposes, let us re-
parameterize this matrix K to be closer to model A. In particular, let us denote the element 

3,3k  (corresponding to z-rotation) of the compliant matrix 1k K  as 1 / K  and eliminate 
the Young module. This yields expression  
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       
k   (37) 

 
where, for a rectangular  cross-section a b , the required parameters may be computed as 
A ab  and 3 / 12I ab . 

From kinematical point of view, model B is also restricted to Cartesian xy-plane and is 
described by the expression RpRaRaRp.  However, in addition to a single passive joint 
coordinate q  , here there are nine coordinates of the virtual spring (three for each link). The 
kinematic model of this manipulator is defined by equations 
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where 1L L , 2 1L L   , 3 4L L   , 4 7L   , 12 3q q   , 13 3 6q q     , 

14 3 6 9q q       , and 1 1 2 3( , , )   θ , 2 4 5 6( , , )   θ , 3 7 8 9( , , )   θ  are the spring joint 
coordinates for the first, second and third links respectively. The Jacobian matrices in this 
case can be also computed analytically but their dimensions are too high for analytical 
computations. Hence, in this case this stiffness analysis will be performed numerically. 

 
5.1.4 Case of 3D springs: Model C 
This case also assumes that that the actuators are strictly rigid but the link flexibility is 
described by a full-scale 3D model that incorporates all deflections along and around x-,y-,z-
axes of the three-dimensional Cartesian space. Relevant 66 stiffness matrix of the link may 
be expresses as (Connor, 1976) 
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where A, ,y zI I  are the area and the second moments of the link cross-section, J  is the 
polar moment, E and G are the Young Coulomb modules of the link material. For a 
rectangular cross-section a b , the required parameters may be computed as A ab  and 

3 / 12yI a b , 3 / 12zI ab  . 
Similar to previous subsection, let apply the re-parameterization by defining the compliance 
with respect the z-axis as 1 / K  (here, it is element 6,6k  of the compliant matrix 1k K  ).  
This leads to expression 
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where the coefficient Jk  depends on cross-section shape, /I y zk I I , and   is the Poisson 
ratio coefficient. 
The kinematics of model C corresponds to the general expression UpRaRaSp (see sub-section 
5.1.1), it is described by the complete product of homogeneous matrices (33) that includes 
two passive joints  , tq q  incorporating five passive coordinates and three virtual-springs 
with 18 virtual coordinates totally (six for each link). It is obvious that analytical 
computation in this case is rather cumbrous, so the stiffness analysis will be performed 
numerically. 
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where 12 1q q    and 13 1 2q q     . In this case, the Jacobian matrices are also computed 
easily 
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and corresponding stiffness analysis will be performed analytically and compared with 
numerical results that were obtained using the developed methodology. 

 
5.1.3 Case of 2D springs: Model B 
For this model, let us assume that the actuators do not include flexible components but the 
manipulator links are subject to non-negligible deformations in Cartesian xy-plane (bending 
and compression). Correspondingly, the link flexibility is defined by a 33 matrix that 
includes elements describing deformation in x- and y- directions and rotational deformation 
with respect to z-axis. Relevant stiffness matrix may be written as (Connor, 1976)  
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where L  is the length of the links, I  and  A  are respectively its second moment and area of 
the cross-section , and  E  is the Young module. Further, for comparison purposes, let us re-
parameterize this matrix K to be closer to model A. In particular, let us denote the element 

3,3k  (corresponding to z-rotation) of the compliant matrix 1k K  as 1 / K  and eliminate 
the Young module. This yields expression  
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where, for a rectangular  cross-section a b , the required parameters may be computed as 
A ab  and 3 / 12I ab . 

From kinematical point of view, model B is also restricted to Cartesian xy-plane and is 
described by the expression RpRaRaRp.  However, in addition to a single passive joint 
coordinate q  , here there are nine coordinates of the virtual spring (three for each link). The 
kinematic model of this manipulator is defined by equations 
 

 1 2 12 2 12 3 13 5 13 4 14 8 14

1 2 12 2 12 3 13 5 13 4 14 8 14

cos cos sin cos sin cos sin ,
sin sin cos sin cos sin cos

x L q L q q L q q L q q
y L q L q q L q q L q q
                
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where 1L L , 2 1L L   , 3 4L L   , 4 7L   , 12 3q q   , 13 3 6q q     , 

14 3 6 9q q       , and 1 1 2 3( , , )   θ , 2 4 5 6( , , )   θ , 3 7 8 9( , , )   θ  are the spring joint 
coordinates for the first, second and third links respectively. The Jacobian matrices in this 
case can be also computed analytically but their dimensions are too high for analytical 
computations. Hence, in this case this stiffness analysis will be performed numerically. 

 
5.1.4 Case of 3D springs: Model C 
This case also assumes that that the actuators are strictly rigid but the link flexibility is 
described by a full-scale 3D model that incorporates all deflections along and around x-,y-,z-
axes of the three-dimensional Cartesian space. Relevant 66 stiffness matrix of the link may 
be expresses as (Connor, 1976) 
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where A, ,y zI I  are the area and the second moments of the link cross-section, J  is the 
polar moment, E and G are the Young Coulomb modules of the link material. For a 
rectangular cross-section a b , the required parameters may be computed as A ab  and 

3 / 12yI a b , 3 / 12zI ab  . 
Similar to previous subsection, let apply the re-parameterization by defining the compliance 
with respect the z-axis as 1 / K  (here, it is element 6,6k  of the compliant matrix 1k K  ).  
This leads to expression 
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where the coefficient Jk  depends on cross-section shape, /I y zk I I , and   is the Poisson 
ratio coefficient. 
The kinematics of model C corresponds to the general expression UpRaRaSp (see sub-section 
5.1.1), it is described by the complete product of homogeneous matrices (33) that includes 
two passive joints  , tq q  incorporating five passive coordinates and three virtual-springs 
with 18 virtual coordinates totally (six for each link). It is obvious that analytical 
computation in this case is rather cumbrous, so the stiffness analysis will be performed 
numerically. 
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5.2 Stiffness analysis for model A 
Let us examine first the model A that includes minimum number of flexible elements (two 
1D virtual springs in the actuated joints) and may be tackled analytically. However, in spite 
of its simplicity, this model is potentially capable to detect the buckling phenomena at least 
if the initial posture of the kinematic chain is straight (S-configuration), because of evident 
mechanical analogy to straight columns behavior under axial compression. It is matter of 
research interest to evaluate other types of initial configurations with respect to the multiple 
loaded equilibriums, their stability and to compare with numerical results provided by the 
developed technique. 

 
5.2.1 Computing static equilibriums 
As follows from the kinematic equations (see subsection 5.1.2), model A includes there joint 
variables ( q , 1 , 2  ) one of  which may be treated as a kinematically redundant one.  Let 
us assume that the redundant variable is the passive joint coordinate q  while the 
manipulator end-effector is located at the point ( , ) (3 , 0)x y L   , where   is a linear 
displacement along x-axis. Then, assuming that the initial values of the actuating 
coordinates (i.e. before the loading) are denotes as 0

1 , 0
2  , the potential energy stored in the 

virtual springs may be expressed as the following function of the redundant variable  
 

     2 20 0
1 1 2 2

1 1( ) ( ) ( )
2 2

E q K q K q               (41) 
 

where the 1 , 2  are computed via the inverse kinematics as 
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              
                     

   (42) 

 

Using these equations, the desired equilibriums may be computed from the extrema of 
)(qE . In particular, stable equilibriums correspond to minima of this function, and unstable 

ones correspond to maxima: 
         0/)(;0/)( 22  dqqdEdqqdE  :   stable equilibrium ( minE ) 

         0/)(;0/)( 22  dqqdEdqqdE  :   unstable equilibrium ( maxE ) 
To illustrate this approach, Fig. 4 and Table 1 present a case study corresponding to the 
initial S-configuration of the examined kinematic chain (i.e. when 0 0

1 2 0    ).  They allow 
comparing 12 different shapes of the deformated chain and selecting the best and the worst 
case with respect to the energy. As follows from these results, here there are two 
symmetrical maxima and two minima, i.e. two stable and two unstable equilibriums. 
Besides, the stable equilibriums correspond to -shaped deformated postures, and the 
unstable ones correspond to Z-shaped postures, as it is shown in Fig. 5.  More detailed 
analysis allows deriving analytical expressions for the force and energy for small values of  
that will be used in the following subsection: 

 

stable equilibrium:         LKE /min   ;     LKFs /       
unstable equilibrium:    LKE /3max   ;   LKFs /3   
It worth also mentioning that only stable equilibriums may be observed in practice and only 
this type of solutions is produced by the algorithm proposed in Section 3. 
 

Configuration q  1  2  Potential  
Energy 

Configuration for stable  
static equilibrium 

 
5  2  0  1.5 K

L
  

 

 
1  1  1  1.0 K

L
  

 

 
4  0  2  1.5 K

L
  

 

 
0  1  3  2.5 K

L
  

 

 
4  2  2  3.0 K

L
  

 

 
1  3  1  2.5 K

L
  

 

 
5  2  0  1.5 K

L
  

 

 
1  1  1  1.0 K

L
  

 

 
4  0  2  1.5 K

L
  

 

 
0  1  3  2.5 K

L
  

 

 
4  2  2  3.0 K

L
  

 

 
1  3  1  2.5 K

L
  

 

1
1arccos(1 )
2

    ; 2
2

3 1arccos(1 )
2 4

      ; 2
3

1arccos(1 2 )
4

      ;

2

4
12 6arccos

4(3 )
          ;

2

5
6 6arccos

2(3 )
           

Table 1. Selected postures of the deformated kinematic chain and their corresponding 
equilibriums (case of unloaded S-configuration, / 10L  ) 
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5.2 Stiffness analysis for model A 
Let us examine first the model A that includes minimum number of flexible elements (two 
1D virtual springs in the actuated joints) and may be tackled analytically. However, in spite 
of its simplicity, this model is potentially capable to detect the buckling phenomena at least 
if the initial posture of the kinematic chain is straight (S-configuration), because of evident 
mechanical analogy to straight columns behavior under axial compression. It is matter of 
research interest to evaluate other types of initial configurations with respect to the multiple 
loaded equilibriums, their stability and to compare with numerical results provided by the 
developed technique. 

 
5.2.1 Computing static equilibriums 
As follows from the kinematic equations (see subsection 5.1.2), model A includes there joint 
variables ( q , 1 , 2  ) one of  which may be treated as a kinematically redundant one.  Let 
us assume that the redundant variable is the passive joint coordinate q  while the 
manipulator end-effector is located at the point ( , ) (3 , 0)x y L   , where   is a linear 
displacement along x-axis. Then, assuming that the initial values of the actuating 
coordinates (i.e. before the loading) are denotes as 0

1 , 0
2  , the potential energy stored in the 

virtual springs may be expressed as the following function of the redundant variable  
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Using these equations, the desired equilibriums may be computed from the extrema of 
)(qE . In particular, stable equilibriums correspond to minima of this function, and unstable 

ones correspond to maxima: 
         0/)(;0/)( 22  dqqdEdqqdE  :   stable equilibrium ( minE ) 

         0/)(;0/)( 22  dqqdEdqqdE  :   unstable equilibrium ( maxE ) 
To illustrate this approach, Fig. 4 and Table 1 present a case study corresponding to the 
initial S-configuration of the examined kinematic chain (i.e. when 0 0

1 2 0    ).  They allow 
comparing 12 different shapes of the deformated chain and selecting the best and the worst 
case with respect to the energy. As follows from these results, here there are two 
symmetrical maxima and two minima, i.e. two stable and two unstable equilibriums. 
Besides, the stable equilibriums correspond to -shaped deformated postures, and the 
unstable ones correspond to Z-shaped postures, as it is shown in Fig. 5.  More detailed 
analysis allows deriving analytical expressions for the force and energy for small values of  
that will be used in the following subsection: 

 

stable equilibrium:         LKE /min   ;     LKFs /       
unstable equilibrium:    LKE /3max   ;   LKFs /3   
It worth also mentioning that only stable equilibriums may be observed in practice and only 
this type of solutions is produced by the algorithm proposed in Section 3. 
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1  3  1  2.5 K
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5  2  0  1.5 K
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Table 1. Selected postures of the deformated kinematic chain and their corresponding 
equilibriums (case of unloaded S-configuration, / 10L  ) 
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