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Distributed Architecture for Intelligent Robotic Assembly 

 Part II: 

 Design of the Task Planner 
 

 

Jorge Corona-Castuera and Ismael Lopez-Juarez 

 

1. Introduction 

In previous chapter it has been described the overall architecture for multimo-

dal learning in the robotic assembly domain (Lopez-Juarez & Rios-Cabrera, 

2006). The acquisition of assembly skills by robots is greatly supported by the 

effective use of contact force sensing and objects recognition. In this chapter, 

we will describe the robot’s ability to acquire and refine its knowledge through 

operations (i.e. using contact force sensing during fine motions) and how a 

manipulator can effectively learn the assembly skill starting from scratch. 

The use of sensing to reduce uncertainty significantly extends the range of 

possible tasks. One source of uncertainty is that the programmer’s model of 

the environment is incomplete. Shape, location, orientation and contact states 

have to be associated to movements within the robot’s motion space while it is 

in constraint motion. Compliant motion meets external constraints by specify-

ing how the robot’s motion should be modified in response generated forces 

when constraints are violated. Generalizations of this principle can be used to 

accomplish a wide variety of tasks involving constrained motion, e.g., insert-

ing a peg into a hole or following a weld seam under uncertainty. 

The success of robotic assembly operations therefore, is based on the effective 

use of compliant motion, the accuracy of the robot itself and the precise 

knowledge of the environment, i.e. information about the geometry of the as-

sembly parts and their localisation within the workspace. However, in reality 

uncertainties due to manufacturing tolerances, positioning, sensing and con-

trol make it difficult to perform the assembly. Compliant motion can be 

achieved by using passive devices such as the Remote Centre Compliance 

(RCC) introduced by Whitney (Whitney & Nevis, 1979) or other improved ver-

sions of the device (Joo & Miyasaki, 1998). Other alternative is to use Active 

Compliance, which actually modifies either the position of the manipulated 

component as a response to constraint forces or the desired force. Some com-

Source: Manufacturing the Future, Concepts - Technologies - Visions , ISBN 3-86611-198-3, pp. 908, ARS/plV, Germany, July 2006, Edited by: Kordic, V.; Lazinica, A. & Merdan, M.
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mercial devices have emerged in recent years to aid industrial applications 

(Erlbacher, 2004). 

Active compliance can be roughly divided into fine motion planning and reac-

tive control. Fine motion planning relies on geometrical path planning whereas 

reactive control on the synthesis of an accommodation matrix or mapping that 

transform the corresponding contact states to corrective motions. A detailed 

analysis of active compliance can be found in (Mason, 1983) and (De Schutter 

& Brussel, 1988). Perhaps, one of the most significant works in fine motion 

planning is the work developed by Lozano-Perez, Mason and Taylor known as 

the LMT approach (Lozano-Perez, et al, 1984). The LMT approach automati-

cally synthesizes compliant motion strategies from geometric descriptions of 

assembly operations and explicit estimates of the errors in sensing and control.  

Approaches within fine motion planning can also be further divided into 

model-based approaches and connectionist-based approaches though, some 

reactive control strategies can be well accommodated within the model-based 

approach. In either case, a distinctive characteristic in model-based approaches 

is that these take as much information of the system and environment as pos-

sible. This information includes localisation of the parts, part geometry, mate-

rial types, friction, errors in sensing, planning, and control, etc. On the other 

hand, the robustness of the connectionist-based approaches relies on the in-

formation given during the training stage that implicitly considers all the 

above parameters. 

In this chapter we present a “Task Planner”, connectionist-based approach that 

uses vision and force sensing for robotic assembly when assembly components 

geometry, location and orientation is unknown at all times. The assembly op-

eration resembles the same operation as carried out by a blindfold human op-

erator. The task planner is divided in four stages as suggested in (Doersam & 

Munoz, 1995) and (Lopez-Juarez, 2000): 
 

Pre-configuration: From an initial configuration of the hand/arm system, the 

expected solutions are the required hand/arm collision-free paths in which the 

object can be reached. To achieve this configuration, it is necessary to recog-

nize invariantly the components and determining their location and orienta-

tion. 

Grasp: Once the hand is in the Pre-configuration stage, switching strategies be-

tween position/force controls need to be considered at the moment of contact 

and grasping the object. Delicate objects can be broken without a sophisticated 

contact strategy even the Force/Torque (F/T) sensor can be damaged. 
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Translation: After the object is firmly grasped, it can be translated to the as-

sembly point. The possibility of colliding with obstacles has to be taken into 

account. 

Assembly Operation: The assembly task requires robust and reactive posi-

tions/force control strategies. Mechanical and geometrical uncertainties make 

high demands on the controller. 

The pre-configuration for recognition and location of components as well as 

the assembly operation are based on FuzzyARTMAP neural network architec-

ture, situated under the connectionist-based approach employing reactive con-

tact forces. 

In this approach, the mapping between contact states and arm motion com-

mands is achieved by using fuzzy rules that create autonomously an Acquired-

Primitive Knowledge Base (ACQ-PKB) without human intervention. This 

ACQ-PKB is then further used by the Neural Network Controller (NNC) for 

compliance learning. 
 

2. Related Work 

The use of connectionist models in robot control to solve the problem under 

uncertainty has been demonstrated in a number of publications, either in 

simulations (Lopez-Juarez & Howarth, 1996), (Asada, 1990), (Cervera & del 

Pobil, 1996), or being implemented on real robots (Cervera & del Pobil, 1997), 

(Gullapalli, et al, 1994), (Howarth, 1998), (Cervera & del Pobil, 2002). In these 

methods, Reinforcement Learning (RL), unsupervised and supervised type 

networks have been used. 

The reinforcement algorithm implemented by V. Gullapalli demonstrated to be 

able to learn circular and square peg insertions. The controller was a back-

propagation network with 11 inputs. These are the sensed positions and forces: 

(X, Y, Z, θ1, θ2) and (Fx, Fy, Fz, mx, my, mz). The output of the network was the 

position commands. The performance of the operation was evaluated by a pa-

rameter r, which measured the performance of the controller. r varied between 

0 to 1 and was a function of the sensed peg position and the nominal hole loca-

tion. The network showed a good performance after 150 trials with insertion 

times lower than 100 time steps (Gullapalli, 1995). Although the learning capa-

bility demonstrated during experiments improved over time, the network was 

unable to generalise over different geometries. Insertions are reported with 
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both circular and square geometries; however, when inserting the square peg, 

its rotation around the vertical axis was not allowed, which facilitated the in-

sertion. M. Howarth followed a similar approach, using also backpropagation 

in combination with reinforcement learning. In comparison with Gullapalli’s 

work, where the reinforcement learning values were stochastic, Howarth’s re-

inforcement value was based on two principles: minimization of force and 

moment values and continuation of movement in the assembly direction. This 

implied that whenever a force or moment value was above a threshold, an ac-

tion (i.e., reorientation), should occur to minimize the force. Additionally, 

movements in the target assembly direction were favoured. During simulation 

it was demonstrated that 300 learning cycles were needed to achieve a mini-

mum error level with his best network topology during circular insertions 

(Howarth, 1998). A cycle meant to be an actual motion that diminished the 

forces acting on the peg. For the square peg, the number of cycles increased 

dramatically to 3750 cycles. These figures are important, especially when fast 

learning is desired during assembly. 

On the other hand, E. Cervera using SOM networks and a Zebra robot (same 

used by Gullapalli) developed similar insertions as the experiments developed 

by Gullapalli. Cervera in comparison with Gullapalli improved the autonomy 

of the system by obviating the knowledge of the part location and used only 

relative motions. However, the trade-off with this approach was the increment 

of the number of trials to achieve the insertion (Cervera & del Pobil, 1997); the 

best insertions were achieved after 1000 trials. During Cervera's experiments 

the network considered 75 contact states and only 8 out of 12 possible motion 

directions were allowed. For square peg insertions, there were needed 4000 tri-

als to reach 66% success of insertion with any further improvement. According 

to Cervera's statement, “We suspect that the architecture is suitable, but the 

system lacks the necessary information for solving the task”, the situation 

clearly recognises the necessity to embed new information in the control sys-

tem as it is needed. 

Other interesting approaches have also been used for skill acquisition within 

the framework of Robot Programming by Demonstration that considers the 

characteristics of human generated data. Work carried out by (Kaiser & Dill-

man, 1996) shows that skills for assembly can be acquired through human 

demonstration. The training data is first pre-processed, inconsistent data pairs 

are removed and a smoothing algorithm is applied. Incremental learning is 

achieved through Radial Basis Function Networks and for the skill refinement; 
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the Gullapalli’s Stochastic Reinforcement Value was also used. The methodol-

ogy is demonstrated by the peg-in-hole operation using the circular geometry. 

On the other hand (Skubic & Volz, 2000 b), use a hybrid control model which 

provides continuous low-level force control with higher-level discrete event 

control. The learning of an assembly skill involves the learning the mapping of 

force sensor signals to Single-Ended Contact Formations (SECF), the sequences 

of SECFs and the transition velocity commands which move the robot from the 

current SECF to the next desired SECF. The first function is acquired using su-

pervised learning. The operator demonstrates each SECF while force data is 

collected, and de data is used to train a state classifier. The operator then dem-

onstrates a skill, and the classifier is used to extract the sequence of SECFs and 

transitions velocities which comprise the rest of the skill. 

The above approaches can be divided in two groups, those providing autono-

mous assembly skill and those which teach the skill by demonstration. These 

approaches have given some inputs to our research and the work presented 

here is looking to improve some of their limitations. In Gullapalli’s work the 

hole location has to be known. Howarth improved the autonomy by obviating 

the hole’s location; however, the lengthy training process made this approach 

impractical. Cervera considered many contact states, which worked well also 

during the assembly of different type of components. In the case of teaching 

the skill by demonstration, the method showed by Kaiser and Dillman was 

lengthy for real-world problems and the work by Skubic and Volz assumes 

that during supervised training the operator must know which SECF classes to 

include in the set. 

The integration of vision systems to facilitate the assembly operations in un-

calibrated workspaces is well illustrated in (Jörg, et al, 2000) and (Baeten, et al, 

2003) using eye-in-hand vision for different robotic tasks. 

3. Workplace Description 

The manufacturing cell used for experimentation is integrated by a KUKA 

KR15/2 industrial robot. It also comprises a visual servo system with a ceiling 

mounted camera as shown in figure 1. The robot grasps the male component 

from a conveyor belt and performs the assembly task in a working table where 

the female component is located. The vision system gets an image to calculate 

the object’s pose estimation and sends the information to the robot from two 

predefined zones:  
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Zone 1 which is located on the conveyor belt. The vision system searches for 

the male component and determines the pose information needed by the ro-

bot.  

Zone 2 is located on the working table. Once the vision system locates the fe-

male component, it sends the information to the NNC. 

 

 

 

 

Figure 1. Manufacturing cell 

 

The NNC for assembly is called SIEM (Sistema Inteligente de Ensamble 

Mecánico) and is based on a FuzzyARTMAP neural network working in fast 

learning mode (Carpenter, et al, 1992). The vision system, called SIRIO (Sis-

tema Inteligente de Reconocimiento Invariante de Objetos), also uses the same 

neural network to learn and classify the assembly components (Pena-Cabrera 

& Lopez-Juarez, 2006). The SIRIO was implemented with a high speed camera 

CCD/B&W, PULNIX 6710, with 640x480 resolution; camera movements on the 

X and Y axis were implemented using a 2D positioning system. 

For experimental purposes three canonical peg shapes were used: circular, 

square and radiused-square as it is shown in figure 2. Both, chamfered and 

chamferless female components were employed during experimentation. 
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Figure 2. a) Female assembly components, b) Male assembly components 

4. Assembly methodology 

4.1 Pre-Configuration 

4.1.1 Starting from scratch 

Initially, the robot system does not have any knowledge. To accomplish the 

very first assembly the robot has to acquire a Primitive Knowledge Base (PKB) 

using an interactive method. 
 

a) Given Primitive Knowledge Base (GVN-PKB) 

The formation of the PKB basically consists of showing the robot how to react 

to individual components of the F/T vector. This procedure results in creating 

the required mapping between contact states and robot motions within the 

motion space– linear, angular and diagonal movements- , this is illustrated in 

figure 3. The Given PKB (GVN-PKB) used for the experiments reported in this 

chapter considered rotation around Z axis and diagonal motions as it is illus-

trated in figure 4. 
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Using the above mentioned GVN-PKB to start the learning of the assembly 

skill, it showed to be effective, however the robot still lacked for autonomy and 

it was realized that sometimes the robot did not used all the information given 

in the GVN-PKB and also it was noticed a difference between the taught con-

tact forces the actual forces occurring during assembly so that an autono-

mously created PKB was needed in order to provide complete self-adaptive 

behaviour to the robot. 

 

 
 

 

Figure 3. Motion space 
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b) Acquired Primitive Knowledge Base (ACQ-PKB) 

It was decided to embed a fuzzy logic mechanism to autonomously acquire an 

initial knowledge from the contact states. That is, learning the mapping from 

scratch without knowledge about the environment. The only instruction given 

to the robot was the task – assembly – in order to start moving downwards. 

When the contact is made the robot starts acquiring information about the con-

tact states following fuzzy rules and autonomously generating the correspond-

ing motion commands and forming the Acquired PKB (ACQ-PKB). During the 

first contact, the fuzzy algorithm determines the type of operation: chamfered 

or chamferless assembly and chooses the rules to apply depending of moments 

and forces magnitude presents in X and Y directions. 

Fuzzy logic have proved to be useful to model many decision taking processes 

in presence of uncertainty or where no precise knowledge of the process exist 

in an attempt to formalize experience and empiric knowledge of the experts in 

a specific process. The initial knowledge from our proposal comes from a static 

and dynamic force analysis when the components are in contact assuming that 

there is an error in the position with respect to the centre of insertion. With the 

aid of dynamic simulation software (ADAMS), the behaviour of the contact 

impact is obtained for different situations which are to be solved by the 

movements of the manipulator. 

 

There are 12 defined motion directions (X+, X-, Y+, Y-, Z+, Z-, Rz+, Rz-, X+Y+, 

X+Y-, X-Y+ and X-Y-) and for each one there is a corresponding contact state. 

An example of these contact states for a chamfered female squared component 

is shown in figure 5. The contact states for linear motion X+, X-, Y+, Y-, and lin-

ear combined motions X+Y+, X+Y-, X-Y+, X-Y- are shown in figure 5(a). In fig-

ure 5(b), it is shown a squared component having four contact points. Figures 

5(c) and 5(d) provide additional patterns for rotation Rz- and Rz+ respectively 

when the component has only one point of contact. The contact state for map-

ping Z+ is acquired making vertical contact between component and a hori-

zontal surface, Z- direction is acquired with the component is in free space. 

This approach applies also for chamfered circular and radius-squared compo-

nents as well as the chamferless components. 

It is stated to use the following considerations for the generation of the fuzzy 

rules: a) Number of linguistic values: 2 (minimum, maximum), b) Number of 

input variables: 12 (Fxp, Fxn, Fyp, Fyn, Fzp, Fzn, Mxp, Mxn, Myp, Myn, Mzp, 

Mzn) and c) Maximum number of rules: 122 = 144 (only 24 were used). 



 Manufacturing the Future: Concepts, Technologies & Visions 376

 

 

 

  X +   

  

  X -   

  

 Y+ 

 

Y -   

  

 

X - Y+   X - Y-

X+Y-X+Y+   

   

 
Rz+  Rz-

 
 a) b) 

 

 

 

Rz- 

     

 

Rz+

   
 c) d) 

 

Figure 5. Contacts between chamfered components while acquiring the primitive 

knowledge base, 

a) Linear movements, 

b) Pure rotation Rz+ and Rz-,  

c) Rotation Rz-,  

d) Rotation Rz+. 
 

The membership functions are stated as showed in figure 6. Forces and mo-

ments have normalised values between 0 and 1. The normalization was ad-hoc 

and considered the maximum experimental value for both, force and moment 

values. No belong functions were defined for the output, because our process 

does not includes defuzzification in the output. The function limit values are 

chosen heuristically and according to previous experience in the assembly op-

eration. 
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Figure 6. Membership functions 

 

Having those membership values, antecedents and consequents defined, then 

the Rule Statement can be generated and the ACQ-PKB created. An example of 

these rules for chamfered assembly is given in table 1. 
 

 
IF Fxp Fxn Fyp Fyn Fzp Fzn Mxp Mxn Myp Myn Mzp Mzn THEN DIR 

IF Max Min Min Min Max Min Min Min Max Min Min Min THEN X+ 

IF 
Max Min Min Min Max Min Max Min Max Min Min Min 

THEN 
X+ 

IF Min Max Min Min Max Min Min Min Min Max Min Min THEN X- 

IF 
Min Max Min Min Max Min Min Max Min Max Min Min 

THEN 
X- 

IF Min Min Max Min Max Min Min Max Min Min Min Min THEN Y+ 

IF Min Min Max Min Min Min Min Min Min Max Min Min THEN Y+ 

IF 
Min Min Min Max Max Min Max Min Min Max Min Min 

THEN 
Y- 

IF Min Min Min Max Max Min Min Min Min Min Min Min THEN Y- 

IF 
Min Min Min Min Max Min Min Min Min Min Min Min 

THEN 
Z+ 

IF Min Min Min Min Min Min Min Min Min Min Min Min THEN Z- 

IF Min Min Min Min Max Min Min Min Min Min Max Min THEN Rz+ 

IF 
Max Min Min Min Max Min Min Min Max Min Max Min 

THEN 
Rz+ 

IF Min Max Min Min Max Min Min Min Min Max Max Min THEN Rz+ 

IF 
Min Min Max Min Max Min Min Max Min Min Max Min 

THEN 
Rz+ 

IF Min Min Min Max Max Min Max Min Min Min Max Min THEN Rz+ 

IF Min Min Min Min Max Min Min Min Min Min Min Max THEN Rz- 

IF 
Max Min Min Min Max Min Min Min Max Min Min Max 

THEN 
Rz- 

IF Min Max Min Min Max Min Min Min Min Max Min Max THEN Rz- 

IF 
Min Min Max Min Max Min Min Max Min Min Min Max 

THEN 
Rz- 

IF Min Min Min Max Max Min Max Min Min Min Min Max THEN Rz- 

IF Max Min Max Min Max Min Min Max Max Min Min Min THEN X+Y+ 

IF 
Max Min Max Min Max Min Max Min Max Min Min Min 

THEN 
X+Y- 

IF Min Max Min Max Max Min Min Max Min Max Min Min THEN X-Y+ 

IF 
Min Max Min Max Max Min Max Min Min Max Min Min 

THEN 
X-Y- 

Table 1. Fuzzy rules for chamfered assembly 
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For chamferless assembly another knowledge base would have to be generated 

using similar rules as shown above, but without considering force in axis X 

and Y. The reason is that these forces in comparison with the moments gener-

ated around those axes are very small. The inference machine determines the 

rules to apply in a given case.  

To quantify the fuzzy output response a fuzzy logic membership value is used.  

For the “AND” connector we used the product criteria (Driankov, et al, 1996), 

and to obtain a conclusion, the maximum value for the fuzzy outputs in the 

expression (1) response was used. 
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Once the algorithm values have been generated, a routine which allows the 

manipulator for autonomous database generation is created. The mapping ac-

quisition between generated contact states-arm motion commands starts from 

the insertion centre. This information is determined by calculating the centroid 

of the component by the vision system. Positional errors due to the image 
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processing are about 1 mm to 2 mm which were acceptable for the experimen-

tal work since the assembly was always successful. The manipulator starts 

moving in every possible direction generating a knowledge database. The re-

sults given in this research considered only 24 patterns as indicated in the 

fuzzy rules shown in table 1, omitting the rotations around the X and Y axis 

since only straight insertions were considered. Some patterns generated with 

this procedure for the chamfered and chamferless square peg insertion can be 

observed in figure 7. 
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Figure 7. ACQ-PKB, left chamfered assembly, right chamferless assembly 
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In order to get the next motion direction the forces are read, normalized and 

classified using the NNC on-line. The F/T pattern obtained from the sensor 

provides a unique identification. The F/T vector (2) comprises 12 components 

given by the 6 data values (positive and negative). 

 

[ ]Tmzmzmymymxmxfzfzfyfyfxfx

TFCurrent

−−−−−−

=

,,,,,,,,,,,

]/[
 (2)

 

4.1.2 Acquiring location and component type 

The SIRIO system employs the following methodology: a) Finding the region 

of interest (ROI), b) Calculate the histogram of the image, d) Search for com-

ponents, e) Centroid calculation, f) Component orientation, g) Calculate 

Boundary Object Function (BOF), distances between the centroid and the pe-

rimeter points, h) Descriptor vector generation and normalization 

(CFD&POSE) and i) Information processing in the neural network. 

The descriptive vector is called CFD&POSE (Current Frame Descriptor and 

Pose) and it is conformed by (3): 

 

[ ] T

ccn IDZYXDDDDPOSECDF ],,,,,,...,,,[& 321 θ=  (3)

 

Where: Di are the distances from the centroid to the perimeter of the object. 

(180 data values) 

 

- XC, YC, are the centroid coordinates. 

- φ, is the orientation angle. 

- Z is the height of the object. 

- ID is a code number related to the geometry of the components.´ 

 

With this vector and following the above methodology, the system has been 

able to classify invariantly 100% of the components presented on-line even if 

they are not of the same size, orientation or location and for different light 

conditions, see (Pena-Cabrera & Lopez-Juarez, 2006) for details. 
 

The CFD&POSE vector is invariant for each component and it is used for clas-

sification. The vector is normalized to 185 data dimension and normalized in 
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the range [0.0 – 1.0]. The normalization of the BOF is accomplished using the 

maximum divisor value of the vector distance. This method allows having 

very similar patterns as input vectors to the neural network, getting a signifi-

cant improvement in the operation system. In our experiments, the object rec-

ognition method used the above components having 210 patterns as primitive 

knowledge to train the neural network. It was enough to recognize the assem-

bly components with ρa = 0.2 (base vigilance), ρmap = 0.7 (vigilance map) and ρb 

= 0.9 parameters, however, the SIRIO system can recognize more complex 

components (Pena-Cabrera, et al, 2005). 
 

4.2 Grasp 

At this stage, the PKB has been acquired and the location information sent to 

the robot. The motion planning from Home position to zone 1 uses the male 

component given coordinates provided by SIRIO. The robot uses this informa-

tion and the F/T sensor readings to grasp the piece and to control the motion in 

Z direction for two stages: 

 

a) The security stage 

In the event that position and orientation of the male component, given by 

SIRIO, have an error larger than 5 mm in X or Y axis and 10º around Z direc-

tion. Sensing is executed during 10 movements in Z- direction with manipula-

tor steps of 0.2 mm. In this stage a collision is possible to occur between grip-

per and components. The system reacts moving to home position when a force 

limit in Z direction is reached (4 N). The robot continues its trajectory in Z- di-

rection until a distance of 1 mm component is reached. 

 

b) Grasp Component 

This sensing stage begins just before the robot touches the component. The 

sensor is read every 0.1 mm executed by manipulator, this stage ends when 

the robot touches the component, in this situation the force magnitude in Z di-

rection is at least 4 N, then the condition to grasp (close gripper) is satisfied. 

4.3 Translation 

The translation is similar to the grasping operation in zone 1. The path to move 

the robot from zone 1 to zone 2 (assembly point) is accomplished by using the 
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coordinates given by the SIRIO system. The possibility of collision with obsta-

cles is avoided using bounded movements. 
 

4.4 Assembly Operation 

4.4.1 Neural Network Controller (NNC) 

a) ART Models 

Several works published in the literature inspired ideas about contact recogni-

tion and representation (Xiao & Liu, 1998), (Ji & Xiao, 1999), (Skubic &Volz, 

1996), however the fuzzy representation appealed to be suitable to expand the 

NNC capability and further work was envisaged to embed the automatic 

mechanism to consider contact states that are actually present in a specific as-

sembly operation. It was believed that by using only useful information, com-

pliance learning could be effective in terms of avoiding learning unnecessary 

contact information, hence also avoiding unnecessary motions within the mo-

tion space. 

The Adaptive Resonance Theory (ART) is a well established associative brain 

and competitive model introduced as a theory of the human cognitive process-

ing developed by Stephen Grossberg at Boston University. Grossberg sug-

gested that connectionist models should be able to adaptively switch between 

its plastic and stable modes. That is, a system should exhibit plasticity to ac-

commodate new information regarding unfamiliar events. But also, it should 

remain in a stable condition if familiar or irrelevant information is being pre-

sented. An analysis of this instability, together with data of categorisation, 

conditioning, and attention led to the introduction of the ART model that 

stabilises the memory of self-organising feature maps in response to an 

arbitrary stream of input patterns (Grossberg, 1976). 

The theory has evolved in a series of real-time architectures for unsupervised 

learning, the ART-1 algorithm for binary input patterns (Carpenter & Gross-

berg, 1987). Supervised learning is also possible through ARTMAP (Carpenter, 

et al, 1991) that uses two ART-1 modules that can be trained to learn the corre-

spondence between input patterns and desired output classes. Different model 

variations have been developed to date based on the original ART-1 algorithm, 

ART-2, ART-2a, ART-3, Gaussian ART, EMAP, ViewNET, Fusion ARTMAP, 

LaminART just to mention but a few. 
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b) NNC Architecture 

The functional structure of the assembly system is illustrated in figure 8. The 

Fuzzy ARTMAP (FAM) (Carpenter, et al, 1992) is the heart of the NNC. The 

controller includes three additional modules. The Knowledge Base that stores 

initial information related to the geometry of the assembling parts and which 

is autonomously generated. The Pattern-Motion Selection module keeps track 

of the appropriateness of the F/T patterns to allow the FAM network to be re-

trained. If this is the case, the switch SW is closed and the corresponding pat-

tern-action provided to the FAM for on-line retraining. The selection criterion 

is given by expression (3), discussed next. 

Future predictions will be based on this newly trained FAM network. The 

Automated Motion module basically is in charge of sending the incremental 

motion request to the robot controller and handling the communication with 

the Master Computer. 

 

 

 

 
 

Figure 8. System Structure 
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