
337

12

Distributed Architecture for Intelligent Robotic Assembly

 Part I:

 Design and Multimodal Learning

Ismael Lopez-Juarez and Reyes Rios-Cabrera

1. Introduction

1.1 General Description

In this chapter we describe the general framework design for a distributed ar-

chitecture to integrate multiple sensorial capabilities within an intelligent

manufacturing system for assembly. We will formally define the model of the

M2ARTMAP multimodal architecture. We present some simulated results of

the model using a public domain multimodal data base. Initial findings have

indicated the suitability to employ the M2ARTMAP model in intelligent sys-

tems when three or less modalities are involved. Taking into account these re-

sults and the M2ARTMAP’s modularity it was decided to integrate this model

using the CORBA (Component Object Request Broker Architecture) middle-

ware to develop robotic assembly tasks that includes contact force sensing, an

invariant object recognition system and natural language processing. This

chapter introduces the overall system in the intelligent cell and the task plan-

ner (SIEM) and the object recognition system (SIRIO) are described in detail in

part II and Part III.

Design and experiments of the distributed architecture using a Local Area

network (LAN) and an industrial robot KUKA KR-15 to fusion different mo-

dalities in a common task are first described. The modalities are: vision, con-

tact force sensing (tactile), and natural language processing using context free

grammars. The vision modality and force sensing are implemented based on a

FuzzyARTMAP neural network and a main coordinator. The testbed for the

application and a general distributed environment using CORBA as a mid-

dleware is described. Later several learning simulations using M2ARTMAP,

are presented (Lopez-Juarez & Ordaz-Hernandez, 2005). The main distributed

objects are described in detail, the experimentation is presented and the results

analyzed. Finally, future work is proposed.

Source: Manufacturing the Future, Concepts - Technologies - Visions , ISBN 3-86611-198-3, pp. 908, ARS/plV, Germany, July 2006, Edited by: Kordic, V.; Lazinica, A. & Merdan, M.

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

 Manufacturing the Future: Concepts, Technologies & Visions 338

1.2 The architecture

Robots in unstructured environments have to be adaptable to carry out opera-

tion within manufacturing systems. Robots have to deal with its environment,

using available sensors and their adaptability will depend on how flexible they

are (Wu et al., 1999). To create that system it is necessary to integrate different

techniques of artificial intelligence, on-line learning, sensorial capabilities and

distributed systems.

This work stands on and improves the design of intelligent agents for assem-

bly (Lopez-Juarez et al., 2005a) by integrating the fusion of different modalities

using a distributed system based on CORBA. In the chapter it is designed a

distributed architecture where different sensorial modalities, operating sys-

tems, middleware and programming languages are integrated to perform me-

chanical assembly by robots.

A task coordinator referred as the SICT (Sistema Inteligente Coordinador de Tar-

eas, in Spanish), which plans the assembly and general coordination with the

vision and system and the assembly system was designed. The SICT is de-

scribed, it was built using several operating systems (Linux and windows),

two ORB’s (Object Request Broker) that is ORBit and omniORB and the pro-

gramming languages are C and C++. The communication model includes the

schema client-server in each module of the system.

1.3 Description of the Manufacturing System

The manufacturing system used for experimentation is integrated by a KUKA

KR15/2 industrial robot. It also comprises a visual servo system with a ceiling

mounted camera as shown in figure 1.

The main operation of the manufacturing system is about the peg-in-hole in-

sertion where, there robot grasps a male component from a conveyor belt and

performs the assembly task on a working table where the fixed female compo-

nent is located. A main coordinator starts the assembly cycle using the vision

system that obtains an image from the male component and calculates the ob-

ject’s pose estimation, later it sends information to the coordinator from two

defined zones:

Zone 1 which is located on the conveyor belt. The vision system searches for

the male component and determines the pose information needed by the ro-

bot.

Distributed Architecture for Intelligent Robotic Assembly, Part I: Design… 339

Zone 2 is located on the working table. Once the vision system locates the fe-

male component, it sends the information to the coordinator which executes

the assembly with the available information.

Figure 1. Manufacturing System

 Manufacturing the Future: Concepts, Technologies & Visions 340

The NNC (Neural Network Controller) for assembly is called SIEM (Sistema In-

teligente de Ensamble Mecánico, in Spanish) and is based on a FuzzyARTMAP

neural network working in fast learning mode (Carpenter et al., 1992). The vi-

sion system, called SIRIO (Sistema Inteligente de Reconocimiento Invariante de Ob-

jetos), also uses the same neural network to learn and classify the assembly

components. The SIRIO was implemented with a high speed camera

CCD/B&W, PULNIX 6710, with 640x480 resolution. The camera movement on

the X-Y plane was implemented using a 2D positioning system.

2. State of the Art

2.1 Distributed Robotic Systems

The concept of distributed systems and other technologies recently have made

possible the creation of new application called “Networked Robot Systems”.

The reduction in cost is one of the several advantages of creating distributed

systems. This is mainly for the use and creation of standard components and

infrastructures (Amoretti, 2004); in addition the CORBA standard solves the

heterogeneity problem which is found in the robotic systems in a network. It

permits the interaction and interoperability of different systems developed

with different technologies, programming languages, operation systems or

hardware.

Currently, the development of robot systems base on distributed components

is being developed by different researchers. In (Amoretti et al., 2003), Michael

Amoretti et al., present an analysis of three techniques for data distributing of

sensors through the network. The first technique is called Callback, where the

clients call a method of a server and at the same time send an object reference

to inform the server to which client has to send the answer and information.

When the server finishes the asked task, it checks the object number to which it

has to send the results. The second technique is based on the services or events

of CORBA. Where the servers produce events and the clients receive them us-

ing an event channel. The event channel conducts the events of the servers to

the clients, without having information about the clients and vice versa. In

spite of the advantages of the event channel, when it is used, it generates nega-

tive aspects, such as the data type, since it has to be of type “any” or IDL, and

it makes the communication not very secure. Clients have to convert the data

Distributed Architecture for Intelligent Robotic Assembly, Part I: Design… 341

to their respective type and another problem of the event channel is that it

could saturate the network, since it does not have an event filter and sends all

messages to all clients. The event services does not contemplate the use of QoS

(Quality of Service), related with the priority, liability and order.

The third technique is based on the Notification Service of CORBA. It is an im-

provement of the Service of Events. The most important improvement in-

cludes the use of QoS. In the notification service each client uses the events in

which it is interested.

The implementation of the Callback technique offers a better performance than

the others; however the ones based on the event channel are easily scalable.

The technique used in our research is Callback since the number of clients, is

not bigger of 50.

In (Amoretti, 2004) it is proposed a robotic system using CORBA as communi-

cation architecture and it is determined several new classes of telerobotic ap-

plications, such as virtual laboratories, remote maintenance, etc. which leads to

the distributed computation and the increase of new developments like

teleoperation of robots. They used a distributed architecture supporting a large

number of clients, written in C++ and using CORBA TAO as middleware, but

it is an open architecture, and it does not have intelligence, just remote execu-

tion of simple tasks.

In (Bottazzi et al., 2002), it is described a software development of a distributed

robotic system, using CORBA as middleware. The system permits the devel-

opment of Client-Server application with multi thread supporting concurrent

actions. The system is implemented in a laboratory using a manipulator robot

and two cameras, commanded by several users. It was developed in C++ and

using TAO.

In (Dalton et al., 2002), several middleware are analyzed, CORMA, RMI (Re-

mote Method Invocation) and MOM (Message Oriented Middleware). But

they created their own protocol based on MOM for controlling a robot using

Internet.

In (Jia et al., 2002), (Jia et al., 2003) it is proposed a distributed robotic system

for telecare using CORBA as communication architecture. They implemented

three servers written in C++, the first one controls a mobile robot, the second

one is used to control an industrial robot and the last one to send real time

video to the clients. On the other side of the communication, it is used a client

based on Web technology using Java Applets to make easier the use of the sys-

tem in Internet. In (Jia et al., 2003), the authors increased the number of servers

 Manufacturing the Future: Concepts, Technologies & Visions 342

available in the system, with: a user administrator and a server for global posi-

tioning on the working area.

In (Corona-Castuera & Lopez-Juarez, 2004) it is discussed how industrial ro-

bots are limited in terms of a general language programming that allows learn-

ing and knowledge acquisition, which is probably, one of the reasons for their

reduced use in the industry. The inclusion of sensorial capabilities for autono-

mous operation, learning and skill acquisition is recognized. The authors pre-

sent an analysis of different models of Artificial Neuronal Networks (ANN) to

determine their suitability for robotic assembly operations. The FuzzyART-

MAP ANN presented a very fast response and incremental learning to be im-

plemented in the robotic assembly system. The vision system requires robust-

ness and higher speed in the image processing since it has to perceive and

detect images as fast as or even faster than the human vision system. This re-

quirement has prompted some research to develop systems similar to the

morphology of the biological system of the human being, and some examples

of those systems, can be found in (Peña-Cabrera & Lopez-Juarez, 2006), (Peña-

Cabrera et al., 2005), where they describe a methodology for recognising ob-

jects based on the Fuzzy ARTMAP neural network.

2.2 Multimodal Neural Network

A common problem in working in multimodality for robots systems is the em-

ployment of data fusion or sensor fusion techniques (Martens, S. & Gaudiano,

P., 1998 and Thorpe, J. & Mc Eliece, R., 2002). Multimodal pattern recognition

is presented in (Yang, S. & Chang, K.C., 1998) using Multi-Layer Perceptron

(MLP). The ART family is considered to be an adequate option, due to its su-

perior performance found over other neural network architectures (Carpenter,

G.A. et al., 1992). The adaptive resonance theory has provided ARTMAP-FTR

(Carpenter, G.A. & Streilein, W.W, 1998), MART (Fernandez-Delgado, M &

Barro Amereiro, S, 1998), and Fusion ARTMAP (Asfour, et al., 1993) —among

others— to solve problems involving inputs from multiple channels. Nowa-

days, G.A. Carpenter has continued extending ART family to be employed in

information fusion and data mining among other applications (Parsons, O. &

Carpenter, G.A, 2003).

The Mechatronics and Intelligent Manufacturing Systems Research Group

(MIMSRG) at CIATEQ performs applied research in intelligent robotics, con-

cretely in the implementation of machine learning algorithms applied to as-

Distributed Architecture for Intelligent Robotic Assembly, Part I: Design… 343

sembly tasks —using distributed systems contact forces and invariant object

recognition. The group has obtained adequate results in both sensorial modali-

ties (tactile and visual) in conjunction with voice recognition, and continues

working in their integration within an intelligent manufacturing cell. In order

to integrate other sensorial modalities into the assembly robotic system, an

ART-Based multimodal neural architecture was created.

3. Design of the Distributed System

3.1 CORBA specification and terminology

The CORBA specification (Henning, 2002), (OMG, 2000) is developed by the

OMG (Object Management Group), where it is specified a set of flexible ab-

stractions and specific necessary services to give a solution to a problem asso-

ciated to a distributed environment. The independence of CORBA for the pro-

gramming language, the operating system and the network protocols, makes it

suitable for the development of new application and for its integration into

distributed systems already developed.

It is necessary to understand the CORBA terminology, which is listed below:

A CORBA object is a virtual entity, found by an ORB (Object Request Bro

 ker, which is an ID string for each server) and it accepts

 petitions from the clients.

A destine object in the context of a CORBA petition, it is the CORBA ob

 ject to which the petition is made.

A client is an entity which makes a petition to a CORBA object.

A server is an application in which one or more CORBA objects

 run.

A petition is an operation invocation to a CORBA object, made by a

 client.

An object reference is a program used for identification, localization and di

 rection assignment of a CORBA object.

A server is an identity of the programming language that imple

 ments one or more CORBA objects.

The petitions are showed in the figure 2: it is created by the client, goes

through the ORB and arrives to the server application.

 Manufacturing the Future: Concepts, Technologies & Visions 344

C l i e n t A p p l i c a t i o n

C l i e n t O R B N u c l e u s

D I I S t a t i c

S t u b

O R B

I n t e r f a c e

S e r v e r A p p l i c a t i o n

S e r v e r O R B N u c l e u s

S k e l e t o n O b j e c t

A d a p t e r

O R B

I n t e r f a c e

D S I

N e t w o r k

I D L D e p e n d e n t T h e s a m e f o r a n y a p p l i c a t i o n S e v e r a l o b j e c t a d a p t e r s

Figure 2. Common Object Request Broker Architecture (COBRA)

• The client makes the petitions using static stub or using DII (Dynamic

Invocation Interface). In any case the client sends its petitions to the

ORB nucleus linked with its processes.

• The ORB of the client transmits its petitions to the ORB linked with a

server application.

• The ORB of the server redirect the petition to the object adapter just

created, to the final object.

• The object adapter directs its petition to the server which is imple-

mented in the final object. Both the client and the sever, can use static

skeletons or the DSI (Dynamic Skeleton Interface)

• The server sends the answer to the client application.

In order to make a petition and to get an answer, it is necessary to have the

next CORBA components:

Interface Definition Language (IDL): It defines the interfaces among the pro-

grams and is independent of the programming language.

Language Mapping: it specifies how to translate the IDL to the different pro

 gramming languages.

Object Adapter: it is an object that makes transparent calling to other ob

 jects.

Protocol Inter-ORB: it is an architecture used for the interoperability among

 different ORBs.

The characteristics of the petitions invocation are: transparency in localization,

transparency of the server, language independence, implementation, architec-

ture, operating system, protocol and transport protocol. (Henning, 2002).

Distributed Architecture for Intelligent Robotic Assembly, Part I: Design… 345

3.1 Architecture and Tools

The aim of having a coordinator, is to generate a high level central task con-

troller which uses its available senses (vision and tactile) to make decisions,

acquiring the data on real time and distributing the tasks for the assembly task

operation.

Figure 3. Distributed Manufacturing Cell

Figure 3 shows the configuration of the network and the main components of

the distributed cell, however, the active ones are: SIRIO, SIEM, SICT and

SPLN. The system works using a multiple technology architecture where dif-

ferent operating systems, middleware, programming language and graphics

tools were used, as it can be seen in figure 4. It describes the main modules of

the manufacturing cell SIEM, SIRIO, SICT and SPLN.

 Manufacturing the Future: Concepts, Technologies & Visions 346

Windows 2000 Windows 98 Linux Fedora Core 3 Linux Fedora Core 3

OmniORB OmniORB ORBit ORBit

C++ C++ C C

Visual C++ Visual C++ GTK ====

SIEM SIRIO SICT SPLN

SO

Middleware

Language

Graphics

Figure 4. Different operating systems, middleware, programming languages and

graphic tools.

The architecture of the distributed system uses a Client/Server in each module.

Figure 5 shows the relationship client-server in SICT for each module. But with

the current configuration, it is possible a relationship from any server to any

client, since they share the same network. It is only necessary to know the

name of the server and obtain the IOR (Interoperable Object Reference).

SICT

CLIENT SERVER SIEM

CLIENT

SERVER

SIRIO

CLIENT

SERVER

SPLN

CLIENT

SERVER

Figure 5. Client/server architecture of the distributed cell

The interfaces or IDL components needed to establish the relations among the

modules SICT, SIRIO, SIEM and SPLN are described in the following section.

Distributed Architecture for Intelligent Robotic Assembly, Part I: Design… 347

4. Servers Description

4.1 SICT Interface

This module coordinates the execution of task in the servers (this is the main

coordinator). It is base in Linux Fedora Core 3, in a Dell Workstation and writ-

ten in C language using gcc and ORBit 2.0. For the user interaction of these

modules it was made a graphic interface using GTK libraries.

The figure 6 shows the most important functions of the IDL.

<<Interface>>

SICT IDL

+ EndSIRIO(in finalStatus: long(idl)): void

+ EndSIEM(in finalStatus: long(idl)): void
+ EndSPLN(in finalStatus:

+ ExecuteSPLNCommand(in command: long(idl), in parameters: string(idl)): void

+ GetStatus(): CurrentStatus

…

<<Struct>>

CurrentStatus

+ description: string (idl)
+ error: long(idl)

+ eSirio: long(idl)

+ eSiem: long(idl)
+ eSpln: long(idl)

Figure 6. SICT Interface

iSICT: the functions of this interface are used for SIRIO and SIEM to indicate

that they have finished a process. Each system sends to SICT a finished process

acknowledgement of and the data that they obtain. SICT makes the decisions

about the general process. The module SPLN uses one of the functions of SICT

to ask it to do a task, sending the execution command with parameters. The

figure 7 shows the main screens of the coordinator.

 Manufacturing the Future: Concepts, Technologies & Visions 348

Figure 7. Controls of the interface SICT

Distributed Architecture for Intelligent Robotic Assembly, Part I: Design… 349

4.2 SIRIO Interface

This system is the vision sense of the robot, using a camera Pulnix TM6710,

which can move around the cell processing the images in real time. SIRIO car-

ries out a process based on different marks. It calculates different parameters

of the working pieces, such as orientation, shape of the piece, etc. This system

uses Windows 98 and is written in Visual C++ 6.0 with OmniORB as middle-

ware.

<<Interface>>

SIRIO IDL

+ StartZone(in numZone: long(idl)): void

+ GetCurrentStatus(): SirioStatus
+ GetDataPiece(): pieceZone

+ GetImage(): imageCamera

+ MovePositioningSystem(in command: long(idl), in x: long(idl), in y: long(idl), in vel: long(idl)):void
+ GetRealPositionPS(): realPosition

+ GetCFD(): CFD

…

<<Struct>>

piezeZone

+ x: double(idl)

+ y: double(idl)

+ Angle: double(idl)

<<Struct>>

realPosition

+ positionX: long(idl)

+ positionX: long(idl)

<<Struct>>

SirioStatus

+ activeCamera: Boolean(idl)
+ activePS: Boolean(idl)

+ errorDescription : string(idl)

<<Struct>>

imageCamera

+ dx: long(idl)
+ dy: long(idl)

+ im: octet(idl) [153600]

<<Struct>>

CFD

+ distant: double(idl)[180]

+ cenX: double(idl)
+ cenY: double(idl)

+ orient: double(idl)

+ z: double(idl)
+ cenX: double(idl)

+ id: byte(idl)

Figure 8. SIRIO Interface

iSIRIO interface contains functions used by the SICT to initialize the assembly

cycle, to obtain the status of SIRIO, an image in real time or to move the cam-

era over the manufacturing cell. The function StartZone, calls a process located

in SIRIO to make the positioning system move to different zones of the cell.

The function GetCurrentStatus is used to get the current status of the SIRIO

 Manufacturing the Future: Concepts, Technologies & Visions 350

module, and it sends information about the hardware. When SIRIO finishes

processing an image it sends an acknowledgement to SICT and this ask for the

data using the function GetDataPiece which gives the position and orientation

of the piece that the robot has to assembly.

The function GetImage gives a vector containing the current frame of the cam-

era and its size. The function MovePositioningSystem is used by SICT to indi-

cate to SIRIO where it has to move the camera. The movements are showed in

table 1, where it executes movements using the variables given by the client

that called the function.

Tabla 1. Command Tabla 2. X Tabla 3. Y Tabla 4 Speed

Tabla 5. Start Tabla 6. No Tabla 7. No Tabla 8. Yes

Tabla 9. Zone 1 Tabla 10. No Tabla 11. Tabla 12. Yes

Tabla 13 Zone 2 Tabla 14. No Tabla 15. No Tabla 16. Yes

Tabla 17 Moves

to (x,y)

Tabla 18. Yes Tabla 19. Yes Tabla 20. Yes

Table 1. Commands for moving the positioning system.

The function GetRealPositonPS obtains the position (x, y) where the position-

ing system is located.

Figure 9. SIRIO main scream

Distributed Architecture for Intelligent Robotic Assembly, Part I: Design… 351

The last function GetCFD(), gets the CFD (Current Frame Descriptor) of a

piece. The piece is always the last the system used, or the one being used. The

CFD contains the description of a piece. For more details the reader is referred

to part III of this work (Peña-Cabrera, M. & Lopez-Juarez, I, 2006).

4.3 SIEM Interface

This contact force sensing system resembles the tactile sense, and uses a JR3

Force/Torque (F/M) sensor interacting with the robot and obtaining contact in-

formation from the environment. SIEM is used when the robot takes a piece

from the conveyor belt or when or when an assembly is made. The robot

makes the assemblies with incremental movements and in each movement,

SIEM processes and classifies the contact forces around the sensor, using the

neural network to obtain the next direction movement towards the assembly.

SIEM is implemented in an industrial parallel computer using Windows 2000

and written in Visual C++ 6.0 and OmniORB.

Figure 10 shows the main functions of the IDL SIEM.

<<Interface>>

SIEM IDL

+ MoveRobot(in numZone: long(idl), in Data: pieceZone): void
+ GetCurrentStatus(): SiemStatus

+ GetCurrentForces(): forcesReading

+ RobotMoveCommand(in command: long(idl), in DeltaX: long(idl), in DeltaY: long(idl), in Speed: long(idl), in Distance : long(idl)

…

<<Struct>>

piezeZone

+ x: double(idl)

+ y: double(idl)

+ Angle: double(idl)

<<Struct>>

forcesReading

+ vector: double(idl) [6]

+ Flimit: double(idl)

+ Mlimit: double(idl)

<<Struct>>

siemStatus

+ activeRobot: double(idl)

+ activeSensorFT: long(idl)

+ description: string(idl)

Figure 10. SIEM Interface

iSIEM: SICT moves the robot thought SIEM, obtains the components state and

the reading of the current forces in the different zones of the manufacturing

cell. The function GetCurrentStatus, is used to obtain the status of the hard-

 Manufacturing the Future: Concepts, Technologies & Visions 352

ware (sensor F/T and communication) and software of the SIEM. The function

MoveRobot is used when SIRIO finishes an image processing and sends in-

formation about the piece to the task coordinator.

The GetCurrentForces function helps the SICT to acquire force data from the

JR3 Force/Torque (F/T) sensor at a selected sampling rate. This function returns

a data vector with information about the force and torque around X, Y and Z

axis.

Finally, the function RobotMoveCommand is used by the SICT to indicate ap-

propriate motion commands to SIEM. These types of motions are shown in

Table 2. Here is also shown the required information for each command (dis-

tance, speed). The windows dialog is shown in Figure 11.

Command Distance Speed Command Distance Speed

Do nothing [static] No No Diagonal X+Y- Yes Yes

Home position No No Diagonal X-Y+ Yes Yes

Coordinates world No No Diagonal X-Y- Yes Yes

Tool Coordinates No No Finish Communica-

tion

No No

Axe by Axe Coordi-

nates

No No Open griper No No

Base Coordinates No No Close griper No No

Movement X+ Yes Yes Rotation A1+ Yes Yes

Movement X- Yes Yes Rotation A1- Yes Yes

Movement Y+ Yes Yes Rotation A2+ Yes Yes

Movement Y- Yes Yes Rotation A2- Yes Yes

Movement Z+ Yes Yes Rotation A3+ Yes Yes

Movement Z- Yes Yes Rotation A3- Yes Yes

Rotation X+ Yes Yes Rotation A4+ Yes Yes

Rotation X- Yes Yes Rotation A4- Yes Yes

Rotation Y+ Yes Yes Rotation A5+ Yes Yes

Rotation Y- Yes Yes Rotation A5- Yes Yes

Rotation Z+ Yes Yes Rotation A6+ Yes Yes

Rotation Z- Yes Yes Rotation A6- Yes Yes

Diagonal X+Y+ Yes Yes

Table 2. Commands to move the robot

Distributed Architecture for Intelligent Robotic Assembly, Part I: Design… 353

Figure 11. SIEM screen

4.4 SPLN Interface

The system provides a user interface to receive directions in natural language

using natural language processing and context free grammars. After the in-

struction is given, a code is generated to execute the ordered sentences to the

assembly system. The SPLN is based on Linux Fedora Core 3 operating system

using a PC and programmed in C language and a g++, Flex, Yacc and ORBit

2.0. compiler.

iSPLN: This interface receives the command status from the SPLN, and gets

the system’s state as it is illustrated in Figure 12.

EndedTask is used by the SICT to indicate the end of a command to the SPLN

like the assembly task. As a parameter, SICT sends to SPLN the ending of the

task. GetStatus function serves to obtain the general state of the SPLN.

Thank You for previewing this eBook
You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can
access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

