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1. Introduction  
 

The present chapter is aimed at systematically exposing the reader to certain modern trends 
in designing advanced robot controllers. More specifically, it focuses on a new and 
improved method for building suitable adaptive controllers guaranteeing asymptotic 
stability. It covers the complete design cycle, while providing detailed insight into most 
critical design issues of the different building blocks. In this sense, it takes a more global 
design perspective in jointly examining the design space at control level as well as at the 
architectural level. 
The primary purpose is to provide insight and intuition into adaptive controllers based on 
Christoffel symbols of first kind for a serial-link robot arm, (Mulero-Martínez, 2007a). These 
controllers are referred to as static since the positional dependence of the nonlinear 
functions. In this context, the preferred method of nonlinear compensation is the method of 
building emulators. Often, however, the full power of the method is overlooked, and very 
few works deal with these techniques at the level of detail that the subject deserves. As a 
result, the chapter fills that gap and includes the type of information required to help control 
engineers to apply the method to robot manipulators. Developed in this chapter are several 
deep connections between dynamics analysis and implementation emphasizing the 
powerful adaptive methods that emerge when separate techniques from each area are 
properly assembled in a larger context. 
After beginning with a comprehensive presentation of the fundamentals of these techniques, 
the chapter addresses the problem of factorization of the Coriolis/centripetal matrix, 
(Mulero-Martinez, 2009). This aspect is crucial when designing non-linear compensators by 
emulation. At this point, it is provided a concise and didactically structured description of 
the design of emulators as matters stand, (Mulero-Martinez, 2006). Specifically, emulators 
are split up into sub-emulators to improve and simplify the design of controllers while 
making faster the updating of parameters. From a practical point of view, the 
implementation is developed by resorting to parametric structures. This means to obtain a 
set of system's own function as regression functions. 
Most of the adaptive schemes start from the notable property of linearity in the parameters, 
which lead naturally to equivalent structures when designing emulators for the nonlinear 
terms. When the linearity in the parameters (LIP) is considered as a first assumption in the 
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development of adaptive schemes, it is clear that there exists a strong connection to the LIP 
emulators formulated in terms of a regression matrix and a vector of parameters. The main 
difference between standard adaptive schemes and the proposed approach stems from the 
idea of developing efficient controllers. The present work is aimed by attempts to mitigate 
the "curse of dimensionality" by exploiting the representation properties associated with the 
matrix of Coriolis/centripetal effects. By recalling the connection between LIP 
representation of robot manipulators and LIP adaptive emulators, it can be asserted that 
standard scheme matches perfectly with a dynamic emulator. Thus, the regression matrix, 
depend not only on the position joint variables but also on the velocity and acceleration 
variables. 
As regards to the control, a novel theorem guarantees the stability for the whole system and 
is based on the Lyapunov energy. The proof is generalized to cope with a realistic case 
where both a functional reconstruction error and an external disturbance are present. It 
should be observed that the functional reconstruction error is caused by not using a number 
of regression functions appropiately distributed in the space. As a result, these 
considerations lead to a quite different approach, since it is required to analyze the initial 
conditions of the errors to guarantee the validity of the approximation. The specification of a 
range of validity causes that the stability holds only inside a compact set. As a consequence, 
the proof guarantees semi-global stability as opposed to the standard schemes where the 
stability is attained in the whole state space, in a global sense. Apart from these 
considerations, a number of remarks have been made to address some special aspects such 
as the boundedness of the parameters, the ultimately uniformly boundedness of all the 
signals and the stability in the ideal case.  
The main benefit of the proposed controller is that it allows to derive tuning laws only for 
inertia, gravitational and frictional parameters. The Coriolis parameters are not necessary to 
be used because of the approximation based on Christoffel symbols. This is very useful to 
implement adaptive controllers since the number of nodes diminishes and the 
computational performance improves. Previously, an extensive analysis of the mechanical 
properties for a robot has been discussed. The regression functions for the adaptive 
controller depend on the non-linear functions associated with the inertia matrix, and 
therefore, a discretization of positions could be done for the inertia matrix. This is a very 
useful aspect because the position space for a revolute robot is compact and in consequence, 
the number of nodes is limited to approximate a non-linear function. 
The plan of the chapter is as follows. In section 2 the representation properties for the 
Coriolis/centripetal matrix are analysed. An interpretation for the Coriolis/centripetal 
matrix is presented and the description by means of the Christoffel symbols of first kind and 
fundamental matrices are provided. In section 3, emulators are used to approximate the 
non-linearities of a robot using the properties presented in the previous section and the 
Kronecker product. The next section presents the design of the adaptive controller in terms 
of a control law and a parameter updating law. This section concludes with a theorem that 
guarantees the stability for the whole system and is based on the Lyapunov energy. Finally 
an example of a 2-dof robot arm is used to illustrate the theorem. 

 
2. Representation of the Coriolis/Centripetal Matrix. Fundamental Matrices 
 

In this section some notions regarding the representation of the Coriolis/centripetal 

 

matrices are introduced. All the ideas presented here constitute an original contribution and 
have many interesting implications in the field of robotics. To this end, fundamental 
matrices are introduced and described in terms of their structure. Moreover, some emerging 
properties are analyzed, allowing one to build the Coriolis/centripetal matrix in a simple 
way. Let start with the definition of the matrix MD  which from now on will be called the 
inertia derivative matrix. 
 
Definition 1: 

 ( )
( )n

T
D j

jj 1

M qM q,x = xe
q=

¶
¶å  (1) 

where ( )M q  is a generalized inertia matrix of dimension n n´ a unitary vector of 

dimension n with a value 1  in the position j  and x  is an arbitrary vector of dimension n . 
It is noted that if x  represents the generalized velocity vector, the matrix DM  will stand for 

the gradient of the generalized momentum with respect to the position coordinates q . This 

means that the gradient of the kinetic energy as a quadratic form ( )T1
2 x M q x  relative to the 

joint position can be written as ( )T1
D2 M q,x x . Another representation of DM  is showed 

below. 
Property 1: The matrix ( )DM q,x can be expressed as  
 

 ( )
n

i
D i

i 1

MM q,x x
q=

¶
=

¶å  (2) 

 
Proof: It is very easy to show that ( ) i

j j

M q MnT T
j i ji 1q qxe x e¶ ¶

=¶ ¶= å  since the following intermediate 

equation is obtained  
 

 ( ) n n
T T T Ti i
j i j i j

j j ji 1 i 1

M q M Mxe e xe x e
q q q= =

æ ö¶ ¶ ¶÷ç ÷ç= =÷ç ÷ç¶ ¶ ¶÷çè ø
å å  (3) 

 
Using the definition 1  and the identity  (3)  the hypothesis of the property is concluded  
 

 ( )
n n n

Ti i
D i j i

ji 1 j 1 i 1

M MM q,x x e x
q q= = =

¶ ¶
= =

¶ ¶åå å  (4) 

Q.E.D. 
Now a new matrix will be introduced and from now on will be called as inertia velocity 
matrix, playing a central role in the representation theory. 
Definition 2: Let define ( )vM q,x   in the following way  
 

 ( )
n

T1 n i
v i

i 1

M M MM q,x x,..., x xe
q q q=

æ ö¶ ¶ ¶÷ç ÷= =ç ÷ç ÷ç ¶ ¶ ¶è ø
å  (5) 
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The inertia velocity matrix ( )vM q,x  receives its name from the fact that when x q=    , the 

term ( )vM q,q  will be the time differentiation of the generalized inertia matrix, i.e. ( )M q . 
The following property provides an alternative way to write the matrix Mv . 
Property 2: The inertia velocity matrix can be also expressed as  
 

 ( ) ( )n

v i
ii 1

M q
M q,x x

q=

¶
=

¶å  (6) 

 
Proof: It is known that i i

j

M MT Tn
i j ij 1q qxe x e¶ ¶

=¶ ¶=å  and using the definition 2  the property is 

proved as follows  
 

 ( ) ( )n n n n n
T Ti i

v j i i j j
j j ji 1 j 1 j 1 i 1 j 1

M qM MM q,x x e e x x
q q q= = = = =

æ ö ¶¶ ¶ ÷ç ÷ç= = =÷ç ÷ç¶ ¶ ¶÷çè ø
åå å å å  (7) 

Q.E.D. 

 
2.1 Properties of the fundamental matrices 
Subsequently, some properties related to the fundamental matrices are analyzed. Following 
a systematic methodology, the properties have been classified into two groups: 
commutation properties and representation properties. 

 
2.1.1. Commutation properties 
Commutation properties permit interchange of an external arbitrary vector y  and a vector 
x passed to a fundamental matrix as an argument. The following property makes possible 
the commutation while keeping the type of the fundamental matrices. This means that the 
transpose of the inertia derivative matrix can be transformed into the same structure by 
simply interchanging the roles of x  and y .  

Property 3: ( ) ( )T T
D DM q,x y M q,y x=   

The proof of the last property follows directly from the definition of DM . The following 
property allows to pass from a type of fundamental matrix to another commuting the 
vectors x  and y . 
Property 4: ( ) ( )v DM q,x y M q,y x=   
Proof : 
 
 ( ) ( )i iM MTn n

v i i Di 1 i 1q qM q,x y xe y xy M q,y x¶ ¶
= =¶ ¶= = =å å  (8) 

Q.E.D. 

 
2.1.2. Properties of representation of the Coriolis/centripetal matrix 
These properties are very important to describe the Coriolis/centripetal matrix from the 
fundamental structures. 

 

Property 5:  
      

T
iMT Tn

i 1D iqM q,q qe  (9) 
 
Proof: First of all, the transpose of the inertia derivative matrix can be represented as          i

j

MT T Tn n
j 1 i 1D j iqM q,q e q e using the definition 1  and the fact that the differentiation of 

the inertia matrix with respect to the generalized coordinate jq is   i

j j

M q M Tn
i 1 iq q e    . Since 

scalar product is commutative the following expression is derived, 
T

i i

j j

M MT
q qq q 
    , and as a 

result   T
i

j

MT Tn n
j 1 i 1D j iqM q,q e qe      . The order of summation is needed to be permutated to 

get the proposed identity.  
 

   T
Tn n n

T T T Ti i
D j i i

i 1 j 1 i 1j

M MM q,q e qe qe
q q  

            (10) 

Q.E.D. 
Below, some representations of the Coriolis/centripetal matrix are introduced as properties 
derived from  DM  and  vM  . 
 Property 6:  The matrix of Coriolis/centripetal effects can be expressed as  
 

              T
v D D v

1 1C q,q M q,q M q,q M q,q M q,q J q,q
2 2

           (11) 

 
where       T

D DJ q,q M q,q M q,q     is a skew symmetric matrix, i.e.     TJ q,q J q,q    . 

Proof: This is an immediate consequence of the representation of   C q,q   by means of the 

property 1  and the fact that the inertia velocity matrix is     vM q,q M q   . 
In a general way, the following representation can be derived  
 

       v
1C q,x M q,x J q,x
2

   (12) 

 
where x is a vector of dimension n and      T

D DJ q,x M q,x M q,x  is a skew symmetric 
matrix. It is remarkable that the definition of the Coriolis/centripetal matrix presented 
above, is different from the definition given by (Wen,1988) in the identity 2,       1

D2C q,z z M q,z J q,z z  . An interesting property which is a direct implication of 

the property 4 is that, by setting x y in  C q,x y . 
Property 7: The Coriolis/centripetal force can be represented as  
 

      T
D

1C q,q q M q M q,q q
2

         (13) 

or in a general form as  
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 ( ) ( ) ( )T
v D

1C q,x x M q,x x M q,x x
2

= -  (14) 

 
where x  is an arbitrary vector of dimension n : 
Property 8: The Coriolis/centripetal matrix commutes with external vectors 
 
 ( ) ( )C q,x y C q,y x=  (15) 
 
Proof: In order to see this point the representation of the Coriolis/centripetal matrix will be 
used as a sum of the inertia velocity matrix, ( )vM q,x and the skew symmetric matrix 

( )J q,x given by equation (12).  

 ( ) ( ) ( )( )v
1C q,x y M q,x y J q,x y
2

= +  (16) 

 
On one hand, it is known that ( ) ( ) ( )T

D DJ q,x M q,x M q,x= - .Using the commutation 
properties 2  and  3  the following expression is derived  
 

 ( ) ( ) ( ) ( )( )T
D D D

1C q,x y M q,y x M q,y x M q,x y
2

= - +  (17) 

 
On other hand, ( ) ( ) ( )T

D DJ q,y x M q,y x M q,y x= - and then applying the commutation 

property  3  to  ( )DM q,x y  the following result is achieved as claimed 
 

 ( ) ( ) ( )( ) ( )v
1C q,x y J q,y x M q,y x C q,y x
2

= + =  (18) 

Q.E.D 

 
3. Design of Emulators for Robot Manipulators. 
 

3.1 Functional and Linear Parameterization. 
The approach that follows is founded on the idea to find an emulator as a function close to 
the non-linear terms involved in the dynamics equations of a robot manipulator. In order to 
get a model from a practical point of view, uncertainties in the nonlinear terms. getting arise 
from the partial information about the exact structure of the dynamics, must be taken into 
account. The inaccuracies of a model can be classified into two classes: structured and 
unstructured uncertainties. The first kind of uncertainties comes out from the inaccuracies of 
the parameters whereas the unstructured uncertainties are related to unmodeled dynamics, 
see (Slotine & Li,1991). Thus, the uncertainties can be adaptatively compensated by defining 
each coefficient as a separate parameter so that the dynamics can be expressed in the linear 
in the parameters (LIP) and this means that nonlinearities can be split up into an unknown 
vector of physical parameters P and a known matrix of basis nonlinear functions  
( )Ψ q,q,x,y   comprising the elements of ( )M q , ( )C q,q , ( )G q  and ( )F q,q , referred to as 

 

regression matrix. Therefore, the nonlinear function ( )f x  can be written in this sense adding 
a term of error ε , see (Ge et al., 1998).  
 
 ( ) ( )f q,q,x,y Ψ q,q,x,y P ε= +   (19) 
 
The linearity of the parameters is the major structural property of robot manipulators and 
has been analyzed in (Lewis et al., 2003). This linear factorization is always possible to be 
done for the rigid body dynamics of a fixed-based manipulator as long as the physical 
uncertainty is on the mass properties of the robot links. Furthermore, linearity of the 
parameters is the first assumption in the most of adaptive controllers. An alternative 
representation of the nonlinear component is as follows 
 
 ( ) ( ) ( )f q,q,x,y R q,q v x,y=   (20) 
 
where ( ) ( ) ( ) ( )( ) ( )n 2n 1R q,q M q C q,q G q ´ +=     and ( )T T 2n 1v y x 1 +=  . This 

factorization is always attainable whereas the linearity in the parameters (LIP) is only 
obtained under some circumstances. In the literature, emulators based on regression 
matrices have been used to approximate the nonlinear dynamics as a whole, as follows  
 
 ( ) ( ) ( ) ( )q,q,q M q q C q,q q G q= + +      (21) 
 
As an attempt to obtain more efficient computation, the emulator approximating the 
nonlinearity ( )f x  is split up into several smaller components: 
 
 ( ) ( ) ( ) ( ) ( )m c g ff q,q,x,y f q,y f q,q,x f q f q,q= + + +    (22) 
 
The function ( ) ( )mf q,x M q y=  , stands for the nonlinearity of inertial terms and can be 

written taking into account that the components of  ( )M q  are continuous functions of their 
arguments so that each component can be uniformly approximated on any compact subset 
of the state space by an appropriately designed emulator. 
From now on we assume that the number of parameters to approximate the column i of a 
matrix is il . 

 
3.2 Inertia matrix ( )M q . 
 

3.2.1 Ideal Case 
The inertia matrix ( )M q  consists of column vectors ( )iM q  that can be approximated by 
regression matrices  
 ( ) ( )

i ii m mM q Ψ q ξ=  (23) 
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1C q,x y M q,y x M q,y x M q,x y
2

= - +  (17) 

 
On other hand, ( ) ( ) ( )T

D DJ q,y x M q,y x M q,y x= - and then applying the commutation 

property  3  to  ( )DM q,x y  the following result is achieved as claimed 
 

 ( ) ( ) ( )( ) ( )v
1C q,x y J q,y x M q,y x C q,y x
2

= + =  (18) 

Q.E.D 

 
3. Design of Emulators for Robot Manipulators. 
 

3.1 Functional and Linear Parameterization. 
The approach that follows is founded on the idea to find an emulator as a function close to 
the non-linear terms involved in the dynamics equations of a robot manipulator. In order to 
get a model from a practical point of view, uncertainties in the nonlinear terms. getting arise 
from the partial information about the exact structure of the dynamics, must be taken into 
account. The inaccuracies of a model can be classified into two classes: structured and 
unstructured uncertainties. The first kind of uncertainties comes out from the inaccuracies of 
the parameters whereas the unstructured uncertainties are related to unmodeled dynamics, 
see (Slotine & Li,1991). Thus, the uncertainties can be adaptatively compensated by defining 
each coefficient as a separate parameter so that the dynamics can be expressed in the linear 
in the parameters (LIP) and this means that nonlinearities can be split up into an unknown 
vector of physical parameters P and a known matrix of basis nonlinear functions  
( )Ψ q,q,x,y   comprising the elements of ( )M q , ( )C q,q , ( )G q  and ( )F q,q , referred to as 

 

regression matrix. Therefore, the nonlinear function ( )f x  can be written in this sense adding 
a term of error ε , see (Ge et al., 1998).  
 
 ( ) ( )f q,q,x,y Ψ q,q,x,y P ε= +   (19) 
 
The linearity of the parameters is the major structural property of robot manipulators and 
has been analyzed in (Lewis et al., 2003). This linear factorization is always possible to be 
done for the rigid body dynamics of a fixed-based manipulator as long as the physical 
uncertainty is on the mass properties of the robot links. Furthermore, linearity of the 
parameters is the first assumption in the most of adaptive controllers. An alternative 
representation of the nonlinear component is as follows 
 
 ( ) ( ) ( )f q,q,x,y R q,q v x,y=   (20) 
 
where ( ) ( ) ( ) ( )( ) ( )n 2n 1R q,q M q C q,q G q ´ +=     and ( )T T 2n 1v y x 1 +=  . This 

factorization is always attainable whereas the linearity in the parameters (LIP) is only 
obtained under some circumstances. In the literature, emulators based on regression 
matrices have been used to approximate the nonlinear dynamics as a whole, as follows  
 
 ( ) ( ) ( ) ( )q,q,q M q q C q,q q G q= + +      (21) 
 
As an attempt to obtain more efficient computation, the emulator approximating the 
nonlinearity ( )f x  is split up into several smaller components: 
 
 ( ) ( ) ( ) ( ) ( )m c g ff q,q,x,y f q,y f q,q,x f q f q,q= + + +    (22) 
 
The function ( ) ( )mf q,x M q y=  , stands for the nonlinearity of inertial terms and can be 

written taking into account that the components of  ( )M q  are continuous functions of their 
arguments so that each component can be uniformly approximated on any compact subset 
of the state space by an appropriately designed emulator. 
From now on we assume that the number of parameters to approximate the column i of a 
matrix is il . 

 
3.2 Inertia matrix ( )M q . 
 

3.2.1 Ideal Case 
The inertia matrix ( )M q  consists of column vectors ( )iM q  that can be approximated by 
regression matrices  
 ( ) ( )

i ii m mM q Ψ q ξ=  (23) 
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where  ( ) ( )
i im n lΨ q ´   is a regression matrix of known robot functions and i

i

l
mξ   is a 

vector of unknown parameters (e.g. masses, inertia moments and link parameters). Then, 
with an arbitrary vector  nx , there follows the decomposition 
 

 ( ) ( ) ( )
i i

n n

i i m i m
i 1 i 1

M q x M q x Ψ q x ξ
= =

æ ö÷ç ÷ç= = ÷ç ÷÷çè ø
å å  (24) 

 
On the assumption that the same regression matrix serves for each column, i.e. 

( ) ( ) ( ) ( ) ( )
1 2 nm m m m n lΨ q Ψ q Ψ q Ψ q ´= = =   , one may rewrite equation (24) by 

resorting to the Kronecker product as 
 
 ( ) ( )m mM q x Φ q,x ξ=  (25) 
 
where  l

mξ   is an l-dimensional vector of parameters and  

( ) ( )( ) ( )T
m m n lΦ q,x x Ψ q ´= Ä    is the regression matrix of the generalized inertia 

matrix. 

 
3.2.2 Real Case 
Given a closed, bounded subset  nΩÍ , and a specified accuracy  

imε , there exist values 

for the design parameters il  and 
imξ  so that for all ( )q t Ω  the following inequality is 

satisfied: 
 ( ) ( )

i i ii m m mM q Ψ q ξ ε- £  (26) 

 
For the sake of simplicity, we have assumed that ( )

imΨ q  are equal for all i 1, ,n=  . The 
inertia matrix consists of column vectors that can be approximated as  
 

 ( ) ( ) ( ) ( )
i i

n n
T T

i i m m i m
i 1 i 1

M q M q e Ψ q ξ e ε q
= =

æ ö÷ç ÷ç= = +÷ç ÷÷çè ø
å å  (27) 

 
where  ( ) n n

mε q ´  is the functional reconstruction error. 

It is convenient to underline that the vector function ( )mΦ q,x   only can be expressed by the 

Kronecker product whenever the hypothesis  ( ) ( ) ( )
im m mΦ q,x Ψ q Ψ q= =  holds for all 

i 1, ,n=  . As a consequence, a linear transformation with a change of basis can be derived 
in terms of the Kronecker product  
 
 ( ) ( ) ( )m m mM q x Φ q,x ξ E q,x= +  (28) 

 

The expansion given by (28)  actually approximates the linear transformation  ( )M q x  to a 

certain degree of accuracy  ( )m mE q,x ε x=  by using an emulator with the position joint 

vector as the input. Specifically, the emulator in  (28)  has the vector  ( )TT Tq ,x   as its input 

and n  outputs, and a collection of simple computing elements ( )mΦ q,x  are used to 

approximate the function ( )mf q,x . 

 
3.3 Fundamental matrices. 
For the sake of simplicity in the following, the matrix derivative of ( )mΨ q  with nq  will 
be denoted as 

 ( )
( )

( )

( )

m

1

2

m

n

Ψ q
q

m
n l

Ψ q
q

Ψ q
q

¶
¶

´
¶
¶

æ ö÷ç ÷ç ÷ç ÷¶ ç ÷ç ÷ç ÷÷ç¶ ÷ç ÷ç ÷ç ÷çè ø

     (29) 

 
3.3.1 Inertia Derivative Matrix ( )DM q,x  
 

3.3.1.1 Real Case 
It is possible to express the inertia derivative matrix as consisting of two terms, the 
approximation component ( )DM̂ q,x  and the reconstruction error  ( )DE q,x  . 
 

 ( ) ( ) ( )n n
T m T

D j j
j jj 1 j 1

M̂ q E q,x
M q,x xe e

q q= =

¶ ¶
= +

¶ ¶å å  (30) 

 
Following the discussion given in the ideal case, the approximation term ( )DM̂ q,x y  can be 
expressed in the regression form: 
 
 ( ) ( )D D mM̂ q,x y Φ q,x,y ξ=  (31) 
 
3.3.1.2 Ideal Case 
The following lemmas are helpful for characterizing the inertia derivative matrix in LIP 
form. 
 Lemma 1 (LIP form of DM ). For arbitrary vectors  nx,y ,  n

qq Ω Í  , the inertia 
derivative matrix can be written in the LIP form as follows 
 
 ( ) ( )D D mM q,x y Φ q,x,y ξ=  (32) 
 
where  l

mξ   is the parameter vector of the generalized inertia matrix and 
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and n  outputs, and a collection of simple computing elements ( )mΦ q,x  are used to 

approximate the function ( )mf q,x . 

 
3.3 Fundamental matrices. 
For the sake of simplicity in the following, the matrix derivative of ( )mΨ q  with nq  will 
be denoted as 
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¶
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¶
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It is possible to express the inertia derivative matrix as consisting of two terms, the 
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M̂ q E q,x
M q,x xe e

q q= =

¶ ¶
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Following the discussion given in the ideal case, the approximation term ( )DM̂ q,x y  can be 
expressed in the regression form: 
 
 ( ) ( )D D mM̂ q,x y Φ q,x,y ξ=  (31) 
 
3.3.1.2 Ideal Case 
The following lemmas are helpful for characterizing the inertia derivative matrix in LIP 
form. 
 Lemma 1 (LIP form of DM ). For arbitrary vectors  nx,y ,  n

qq Ω Í  , the inertia 
derivative matrix can be written in the LIP form as follows 
 
 ( ) ( )D D mM q,x y Φ q,x,y ξ=  (32) 
 
where  l

mξ   is the parameter vector of the generalized inertia matrix and 
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( )D n lΦ ´  a regression matrix:  
 

 
( ) ( ) ( )

( ) ( )

T
D n

T m

Φ q,x,y y I ψ q,x

Ψ q
ψ q,x x

q

= Ä

æ ö¶ ÷ç ÷= Äç ÷ç ÷ç ¶è ø

 (33) 

 
Proof: This fact can be straightforward proved by resorting to the definition of DM  given 
above: 
 

 ( ) ( ) ( ) ( ) ( )
n n n

m T m
D i i m i m D m

i i ii 1 i 1 i 1

M q Φ q,x Ψ q
M q,x y xy y ξ x y ξ Φ q,x,y ξ

q q q= = =

æ ö æ ö¶ ¶ ¶÷ ÷ç ç÷ ÷ç ç= = = Ä =÷ ÷ç ç÷ ÷÷ ÷ç ç¶ ¶ ¶è ø è ø
å å å (34) 

 
By closely examining the structure of DΦ  and using the property  
 

 ( ) ( ) ( )n
m T m

i n
ii 1

Ψ q Ψ q
y y I

q q=

¶ ¶
= Ä

¶ ¶å  (35) 

 
it is easy to conclude that 
 

 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

TT
T T m m

D n n

TT
m T

n n

Ψ q Ψ q
Φ q,x,y x y I x y I

q q

Ψ q
x y I y I ψ q,x

q

é ùæ öæ ö¶ ¶ ÷ç÷ ê úç ÷÷ ç= Ä Ä = Ä Ä =ç ÷÷ ê úçç ÷÷ç ç ÷¶ ¶è ø è øê úë û
é ùæ ö¶ ÷çê ú÷ç= Ä Ä = Ä÷ê úç ÷ç ÷¶è øê úë û

 (36) 

 
3.3.2 Fundamental Matrix ( )vM q,x  
 

3.3.2.1 Ideal Case 
Lemma 2. For arbitrary vectors nx,y  , n

qq Ω Í   , the inertia velocity matrix can be 
written as 
 
 ( ) ( )v v mM q,x y Φ q,x,y ξ=  (37) 
 

where ( ) ( )m

i

Φ q,yn
v ii 1 qΦ q,x,y x¶

= ¶=å  . 

Proof: Owing to the commutation property of fundamental matrices the result is direct. 
Remark: It is easy to show that the Jacobian matrix ( )vΦ q,x,y  also satisfies the 

commutation property, ( ) ( )v DΦ q,x,y Φ q,y,x=  .This is an immediate consequence of the 

commutation property of ( )vM q,y  and ( )DM q,x  as given in the identity  3 . 

 

3.3.2.2 Real Case 
The inertia velocity matrix ( )vM q,x  can be seen as consisting of an approximation term 

( )vM̂ q,x  and a reconstruction error ( )vE q,x . The approximation term  ( )vM̂ q,x  can be 

written in terms of the Jacobian of  ( )vΦ q,x,y  as 
 
 ( ) ( )v v mM̂ q,x y Φ q,x, y ξ=  (38) 
 
and the error  ( )vE q,x  is derived from the gradient of the inertia error  ( )mε q  . 
 

 ( ) ( )n n
mm

v i i
i ii 1 i 1

ε qεE q,x x x
q q= =

¶¶
= =

¶ ¶å å  (39) 

 
3.3.3 Transpose of the Inertia Derivative Matrix 
Now that it is known how DM  can be written in LIP form, the main challenge, now, is to 
extend this result to its transpose. This is more difficult since involves a permutation matrix 
as stated in the following lemma. 
 Lemma 3: Let  nx,y , n

qq Ω Í   arbitrary vectors with appropriate units and P  a 
permutation matrix1 defined as follows 
 

 ( )
n n

ij ji
i 1 j 1

P n,m E E
= =

= Äåå  (40) 

 
where  T

ij i jE e e=  is a unit matrix having 1  in position ( )i, j  and all other entries are zero. 

Under these conditions, the term  ( )T
DM q,x  can be written in LIP form as follows 

 
 ( ) ( ) ( ) ( )T T

D n mM q,x y x I P n,n ψ q,y ξ= Ä  (41) 

 
Proof: By virtue of definition 1 and lemma 1, the generalized force  ( )T

DM q,x y  can be 
directly derived in the LIP form which can be detailed into 
 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n
T T T
D i n

ii 1

mT T T m
n m n m

M q M q
M q,x y e x y I x y

q q

Φ q,y Ψ q
I x ξ I x y ξ

q q

=

æ ö¶ ¶÷ç ÷= = Ä =ç ÷ç ÷ç ¶ ¶è ø
æ ö¶ ¶ ÷ç ÷= Ä = Ä Äç ÷ç ÷ç¶ ¶è ø

å
 (42) 

 

                                                 
1 ( )P m,n is a matrix of zeroes and ones for which ( ) ( ) ( )1 TP m,n P m,n P m,n- = =  . 
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( )D n lΦ ´  a regression matrix:  
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T
D n

T m

Φ q,x,y y I ψ q,x

Ψ q
ψ q,x x

q

= Ä

æ ö¶ ÷ç ÷= Äç ÷ç ÷ç ¶è ø

 (33) 

 
Proof: This fact can be straightforward proved by resorting to the definition of DM  given 
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 ( ) ( ) ( ) ( ) ( )
n n n

m T m
D i i m i m D m

i i ii 1 i 1 i 1

M q Φ q,x Ψ q
M q,x y xy y ξ x y ξ Φ q,x,y ξ

q q q= = =

æ ö æ ö¶ ¶ ¶÷ ÷ç ç÷ ÷ç ç= = = Ä =÷ ÷ç ç÷ ÷÷ ÷ç ç¶ ¶ ¶è ø è ø
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¶ ¶
= Ä

¶ ¶å  (35) 
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( ) ( ) ( ) ( )

TT
T T m m

D n n

TT
m T

n n

Ψ q Ψ q
Φ q,x,y x y I x y I

q q

Ψ q
x y I y I ψ q,x

q
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and the error  ( )vE q,x  is derived from the gradient of the inertia error  ( )mε q  . 
 

 ( ) ( )n n
mm

v i i
i ii 1 i 1

ε qεE q,x x x
q q= =

¶¶
= =

¶ ¶å å  (39) 

 
3.3.3 Transpose of the Inertia Derivative Matrix 
Now that it is known how DM  can be written in LIP form, the main challenge, now, is to 
extend this result to its transpose. This is more difficult since involves a permutation matrix 
as stated in the following lemma. 
 Lemma 3: Let  nx,y , n

qq Ω Í   arbitrary vectors with appropriate units and P  a 
permutation matrix1 defined as follows 
 

 ( )
n n

ij ji
i 1 j 1

P n,m E E
= =

= Äåå  (40) 

 
where  T

ij i jE e e=  is a unit matrix having 1  in position ( )i, j  and all other entries are zero. 

Under these conditions, the term  ( )T
DM q,x  can be written in LIP form as follows 

 
 ( ) ( ) ( ) ( )T T

D n mM q,x y x I P n,n ψ q,y ξ= Ä  (41) 

 
Proof: By virtue of definition 1 and lemma 1, the generalized force  ( )T

DM q,x y  can be 
directly derived in the LIP form which can be detailed into 
 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

n
T T T
D i n

ii 1

mT T T m
n m n m

M q M q
M q,x y e x y I x y

q q

Φ q,y Ψ q
I x ξ I x y ξ

q q

=

æ ö¶ ¶÷ç ÷= = Ä =ç ÷ç ÷ç ¶ ¶è ø
æ ö¶ ¶ ÷ç ÷= Ä = Ä Äç ÷ç ÷ç¶ ¶è ø

å
 (42) 

 

                                                 
1 ( )P m,n is a matrix of zeroes and ones for which ( ) ( ) ( )1 TP m,n P m,n P m,n- = =  . 
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With reference to the property  ( ) ( ) ( )TB A P m,p A B P n,qÄ = Ä  for all  ( )m nA ´    and 

( )p qB ´  , (see Corollary 4.3.10., p. 260, in (Horn & Johnson,1999)), the term  ( )T
nx IÄ  

can be commutated as 
 
 ( ) ( ) ( ) ( )TT T

n nx I P n,1 I x P n,nÄ = Ä  (43) 

 
The last identity can be simplified further by exploiting the structure of the permutation 
matrices. In particular, it is easy to show that ( ) ( ) nP n,1 P 1,n I= =  (see problem 18, section 
4.3, p. 265, in (Horn & Johnson, 1999)), which leads to 
 
 ( ) ( ) ( )T T

n nI x x I P n,nÄ = Ä  (44) 

Therefore,  

 
( ) ( ) ( )

( )

( ) ( ) ( )

T T T m
D n m

T
n m

Ψ q
M q,x y x I P n,n y ξ

q

x I P n,n ψ q,y ξ

æ ö¶ ÷ç ÷= Ä Ä =ç ÷ç ÷ç ¶è ø

= Ä

 (45) 

 
Remark: The permutation matrix in the last lemma can be also written as 
 

 ( )
n n

T T
i n i i n i

i 1 i 1
P n,n e I e e I e

= =

= Ä Ä = Ä Äå å  (46) 

 
For more details the reader is referred to the problem 21, section 4.3. p.286,in (Horn & 
Johnson, 1999). 

 
3.3.4 Coriolis/Centripetal Matrix 
On the basis of the description of DM and T

DM in LIP form, the skew-symmetric matrix J can 
be also represented as LIP. 
 
Lemma 4: Let   nx,y , W Í n

qq arbitrary vectors with appropriate units. The skew-
symmetric matrix ( )J q,x  can be expressed is linear in the parameters, 
( ) ( )=F xJ mJ q,x y q,x,y  

where  ( ) ( ) ( )( ) ( )F = Ä - y2
T

J n nq,x,y y I I P n,n q,x  . 
Proof: It is straightforward that 
( ) ( ) ( ) ( ) ( )( ) ( )= - = Ä - y x2

T T
D D n mnJ q,x y M q,x y M q,x y y I I P n,n q,x  

 
Lemma 5: For arbitrary vectors  nx,y  , W Í n

qq  , the inertia velocity matrix can be 
written as 

( ) ( )=F xv v mM q,x y q,x,y  

 

where  ( ) ( )¶F
= ¶F = å m

i

q,yn
v ii 1 qq,x,y x  . 

Proof: This is direct. 
Remark: It is observed the following identity:  ( ) ( )F = FD vq,x,y q,y,x  , which is consistent 
with the commutation property. 
 Remark: An alternative way for J is obtained by resorting to the commutation property: 
 

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

- = - =

= Ä - y x =2

T T
v D D D

T
n mn

M q,x y M q,x y M q,y x M q,y x
x I I P n,n q,y J q,y x

 

 
Remarkably, the above lemmas can be conveniently used to write the Coriolis/centripetal 
matrix in LIP form. 
Proposition 1 (Coriolis/Centripetal matrix in LIP form): Let  nx,y , W Í n

qq   
arbitrary vectors, the Coriolis/centripetal effect  ( )C q,x y can be linearly factorized as a 
regression matrix  ( )FC q,x,y   and a parameter vector  xm  , i.e. ( ) ( )=F xC mC q,x y q,x,y , 
where FC  is given by 

( ) ( ) ( ) ( ) ( )( ) ( )é ùF = Ä y + Ä - yë û2
T T

C n n n
1q,x,y x I q,y y I I P n,n q,x
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Proof: By restoring to the LIP form of vM and J , matrix C can be written as 
 

( ) ( ) ( )( )
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3.4 Model Errors 
The dynamic model of the robot manipulator is allowed to be imprecise since the nonlinear 
function  ( ) ( ) ( ) ( )= + + f q,q,x,y M q x C q,q y G q  , (where   nx,y   are arbitrary vectors 
usually with units of acceleration and velocity respectively),is not exactly known. The 
imprecision comes from unstructured uncertainties, namely modeling errors caused by the 
truncation of the Gaussian expansion series. A detailed description of the approximation 
errors is demanding from a modeling viewpoint. To point out the fundamental aspects of 
error modeling, it is convenient to express the total error as composed by three terms, 
(Mulero-Martinez, 2007a), 

( ) ( ) ( )= + +m C GE E q,x E q,q,y E q  
 
By referring to the expression of the Coriolis/centripetal matrix in (Mulero-Martínez,2007a) 
from the fundamental matrices DM and VM , the Coriolis/centripetal errors  ( )CE q,q,y   can 
be written as 

( ) ( ) ( ) ( )( )= - +   T
C D D V

1E q,q,y E q,q E q,q E q,q y
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nx IÄ  
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( ) ( ) ( )

( )

( ) ( ) ( )

T T T m
D n m

T
n m

Ψ q
M q,x y x I P n,n y ξ

q

x I P n,n ψ q,y ξ

æ ö¶ ÷ç ÷= Ä Ä =ç ÷ç ÷ç ¶è ø

= Ä

 (45) 

 
Remark: The permutation matrix in the last lemma can be also written as 
 

 ( )
n n

T T
i n i i n i

i 1 i 1
P n,n e I e e I e

= =

= Ä Ä = Ä Äå å  (46) 

 
For more details the reader is referred to the problem 21, section 4.3. p.286,in (Horn & 
Johnson, 1999). 
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i
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v ii 1 qq,x,y x  . 
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The error term ( )DE q,q is the approximation error associated with the fundamental matrix 
( )DM q,q  and ( )VE q,q  regards with the velocity matrix ( )VM q,q  . For the sake of 

simplicity the gradient of the inertia error  ( )em q   will be denoted as  
 

´æ ö¶e ¶e ¶e ÷ç ÷ç ÷ç¶ ¶ ¶è ø
    2m m m n n

1 n
, ,

q q q
 

 
These errors can be expressed in terms of the gradient of the inertia error ( )em q   as follows  

 
( )

( )

( )
( )

n
m T

D i
ii 1

n
m

V i
ii 1

qE q,q qeq

qE q,q q
q

=

=

¶e
=

¶

¶e
=

¶

å

å

 

 
 (47) 

 
For the following derivation, it is worth rewriting the mathematical errors in a more suitable 
form using the Kronecker product. This is written down in the following properties. 
Claim 3: The linear transformation  ( ) D rE q,q q   can be formulated in terms of the 
Kronecker product as  

 ( )
( )

( )m
D r r

qE q,q q q q
q

¶e
= Ä

¶
     (48) 

 
Proof:  The proof is derived directly from the definition of  ( )DE q,q   

( )
( ) ( ) ( )

( )
= =

¶e ¶e ¶e
= = = Ä

¶ ¶ ¶å å       
j

n n
m m mT

D r j r r r
j jj 1 j 1

q q qE q,q q qe q qq q q
q q q

 

Claim 4: The linear transformation  ( ) V rE q,q q   is expressed in terms of the Kronecker 
product as  

 ( )
( )

( )m
V r r

qE q,q q q q
q

¶e
= Ä

¶
     (49) 

 
Proof: This fact can be trivially proved from the definition in equation (47)  
 

( )
( ) ( )

( )
=

¶e ¶e
= = Ä

¶ ¶å     
n

m m
V r i r r

ii 1

q qE q,q q q q q q
q q

 

 
Remark: Equations (48) and (49) are not the same since the Kronecker product is not 
commutative, i.e.  ( ) ( )Ä ¹ Ä   r rq q q q  . 

 
4. Design of the Adaptive Controller. 
 

4.1 Error Dynamic Equation 
In order to manage equilibrium points at the origin, it is necessary to make a coordinate 

 

transformation so that a position error variable is considered,  ( ) ( ) ( )= -de t q t q t  . Thus, 
convergene of trajectory ( )q t to the desired trajectory ( )dq t   can be analysed observing 
position error trajectories ( )e t  close to the origin in the phase space. The objective of the 
controller is both the stable tracking of trajectories and the rejection of disturbances. A good 
tracking performance means that the error converge to zero (asymptotic stability) or to a 
finite value,  ( )¥ = <¥tlim e t E  . This idea is also applied to ( )q t  and ( )q t  because a 
position trajectory is given by three quantities  ( ) ( ) ( )( ) q t ,q t ,q t  . Measurements of 
velocities are easy to get by tachometers, but sensors of acceleration are noisy and are not 
used for implementation in robotics field. This fact conjures up to use a filtered error signal,  
( )r t  , that is a derivative filter or PD (Slotine & Li, 1991): 

 
 ( ) ( ) ( )rr t q t q t= -   (50) 
 
From (50)  it is shown that  ( )r t   is a measurement of error between real velocity ( )q t and 
reference velocity ( ) rq t . This reference velocity must not be confused with the desired 
velocity ( ) dq t . In fact, reference velocity is defined as follows  
 
 ( ) ( ) ( )r dq t q t e t= +L   (51) 
 
whereL is a diagonal matrix of design parameters with big positive elements so that the 
system is BIBO stable. This matrix allows to filter errors so that no acceleration of errors  
( )e t  will appear in the error dynamic equation. The definition of filtered error ( )r t  in 

terms of position and velocity errors can be obtained from (50)  and (51)  
 

( ) ( ) ( )= +Lr t e t e t  
 
Substituting  ( )q t   from  (50)  into the plant, the error dynamic equation is derived. 
 

( ) ( ) ( )=- + -t + t  dM q r C q,q r f x  
 
where  ( ) ( ) ( ) ( ) ( )= + + +   r rf x M q q C q,q q G q F q,q   stands for non-linear terms to be 

compensated. This non-linear function could be parametrised by  ( )=    TT T T T T
r rx q ,q ,q ,q   or 

using the definition of  ( ) rq t   in  (51)  by  ( )=    TT T T T T T
d d dx e ,e ,q ,q ,q  . 

A structural property of robot manipulators is the linearity of parameters (LIP) (Craig, 1989), 
(Sciavicco, 2002). This means that non-linearities can be split up into a parameter vector P   
and a vector of basis functions  ( )Y x  . Therefore the non-linearity function  ( )f x   can be 
expressed in this sense adding a term of error e  .  
 

( ) ( )r rf x q,q,q ,q P= Y + e    
 
Linearity of parameters (LIP) is a first assumption in most of the adaptive controllers. 
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The error term ( )DE q,q is the approximation error associated with the fundamental matrix 
( )DM q,q  and ( )VE q,q  regards with the velocity matrix ( )VM q,q  . For the sake of 

simplicity the gradient of the inertia error  ( )em q   will be denoted as  
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For the following derivation, it is worth rewriting the mathematical errors in a more suitable 
form using the Kronecker product. This is written down in the following properties. 
Claim 3: The linear transformation  ( ) D rE q,q q   can be formulated in terms of the 
Kronecker product as  
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Claim 4: The linear transformation  ( ) V rE q,q q   is expressed in terms of the Kronecker 
product as  
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Proof: This fact can be trivially proved from the definition in equation (47)  
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Remark: Equations (48) and (49) are not the same since the Kronecker product is not 
commutative, i.e.  ( ) ( )Ä ¹ Ä   r rq q q q  . 

 
4. Design of the Adaptive Controller. 
 

4.1 Error Dynamic Equation 
In order to manage equilibrium points at the origin, it is necessary to make a coordinate 

 

transformation so that a position error variable is considered,  ( ) ( ) ( )= -de t q t q t  . Thus, 
convergene of trajectory ( )q t to the desired trajectory ( )dq t   can be analysed observing 
position error trajectories ( )e t  close to the origin in the phase space. The objective of the 
controller is both the stable tracking of trajectories and the rejection of disturbances. A good 
tracking performance means that the error converge to zero (asymptotic stability) or to a 
finite value,  ( )¥ = <¥tlim e t E  . This idea is also applied to ( )q t  and ( )q t  because a 
position trajectory is given by three quantities  ( ) ( ) ( )( ) q t ,q t ,q t  . Measurements of 
velocities are easy to get by tachometers, but sensors of acceleration are noisy and are not 
used for implementation in robotics field. This fact conjures up to use a filtered error signal,  
( )r t  , that is a derivative filter or PD (Slotine & Li, 1991): 

 
 ( ) ( ) ( )rr t q t q t= -   (50) 
 
From (50)  it is shown that  ( )r t   is a measurement of error between real velocity ( )q t and 
reference velocity ( ) rq t . This reference velocity must not be confused with the desired 
velocity ( ) dq t . In fact, reference velocity is defined as follows  
 
 ( ) ( ) ( )r dq t q t e t= +L   (51) 
 
whereL is a diagonal matrix of design parameters with big positive elements so that the 
system is BIBO stable. This matrix allows to filter errors so that no acceleration of errors  
( )e t  will appear in the error dynamic equation. The definition of filtered error ( )r t  in 

terms of position and velocity errors can be obtained from (50)  and (51)  
 

( ) ( ) ( )= +Lr t e t e t  
 
Substituting  ( )q t   from  (50)  into the plant, the error dynamic equation is derived. 
 

( ) ( ) ( )=- + -t + t  dM q r C q,q r f x  
 
where  ( ) ( ) ( ) ( ) ( )= + + +   r rf x M q q C q,q q G q F q,q   stands for non-linear terms to be 

compensated. This non-linear function could be parametrised by  ( )=    TT T T T T
r rx q ,q ,q ,q   or 

using the definition of  ( ) rq t   in  (51)  by  ( )=    TT T T T T T
d d dx e ,e ,q ,q ,q  . 

A structural property of robot manipulators is the linearity of parameters (LIP) (Craig, 1989), 
(Sciavicco, 2002). This means that non-linearities can be split up into a parameter vector P   
and a vector of basis functions  ( )Y x  . Therefore the non-linearity function  ( )f x   can be 
expressed in this sense adding a term of error e  .  
 

( ) ( )r rf x q,q,q ,q P= Y + e    
 
Linearity of parameters (LIP) is a first assumption in most of the adaptive controllers. 
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Proceeding in a similar way, the approximation of the non-linear function using estimation 
of the parameters P̂ can be represented by means of linearity of parameters.  
( ) ( )r r

ˆ ˆf x q,q,q ,q P= Y     

 
4.2 Controller Structure, Control Law and Updtating Law. 
Up unto this point, LIP property has been analyzed via fundamental matrices. The control 
approach employs an inertia-related linearization approach, i.e. a conservation of energy 
formulation, as an attempt to derive update laws and control laws. To be specific, it is 
required to define an inertia-related Lyapunov function in the stability analysis which 
utilizes physical properties inherent to a mechanical manipulator (such as those presented 
above). Thus, the stability of the tracking error system is ensured by formulating the 
adaptive update rule and by analyzing the stability of the tracking error system at the same 
time. It is well known that dynamic models even though quite complex are anyhow an 
idealization of reality. Specifically, robots show uncertainties that are mainly found from 
two sources: variability of parameters and nonlinearity terms in the system. One way of 
dealing with parametric uncertainties would be to use the inertia-related approach, see 
(Lewis et al., 2003). The benefits of this approach as compared to others is that avoids a 
direct measurement of acceleration and the invertibility of the generalized inertia matrix, 
which are restrictions of some controllers such as those inspired in the adaptive computed-
torque approaches. 
 

 
Fig. 1. Adaptive Control Structure 
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The controller consists of three terms: a PD-controller to guarantee a good tracking 
performance, ( )pd v vK r K e et = = +L  , a compensator of non-linearities, nl f̂t =   and a 
robust controller to absorb unmodelled dynamics  rt  . 
 
 v r

ˆK r ft = + +t  (52) 
 
where  T

v vK K 0= >   is the gain matrix.  
The control structure appears in figure 1. In this scheme, two loops can be spoted: an outer 
loop to track signals and an inner loop to compensate non-linearities. The inner loop is 
driven by an adaptive control and the outer loop is driven by a robust and PD terms. 
An important feature of this class of controllers is that of being based on the all-important 
closed-loop error dynamics, which results from the substitution of the filtered tracking error 
into the robot dynamics 
 
 ( ) ( ) ( ) ( ) ( )v rM q r C q,q r f x C q,q r K r f x=- + -t =- - + -t    (53) 
 
where  ( ) ( ) ( )ˆf x f x f x= -   stands for the functional estimation error with x being a vector 
of appropriate variables as shown below. The nominal nonlinearity f can be computed as  
( ) ( ) ( ) ( )r r r rf q,q,q ,q M q q C q,q q G q= + +       

where rq  is the reference acceleration, ( ) ( ) ( )r dq t q t e t+L   , and rq  the reference 
velocity, ( ) ( ) ( )r dq t q t e t+L   . The nonlinearity f can be conveniently partitioned into 
several smaller terms, resulting into an added controller structure  
( ) ( ) ( ) ( )m c gf x f x f x f x= + +  

where ( ) ( )gf x G q=  . The terms mf  and cf  can be defined in terms of  rq  and rq   as 
follows 
 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

m r r m r m

c r r c r m

g g g

f q,q M q q q,q
f q,q,q C q,q q q,q,q

f q G q q

= =F x

= = F x

= = F x

  
       

 
where  mlmx    ,  gl

gx     are parameter vectors and  m c g, ,F F F   regression matrices. 
Theorem 1: Let the desired trajectory ( )dq t  bounded by  Bq  , i.e.  ( )d Bq t q£  . Suppose 
that the approximation error  e   and unmodeled disturbances  ( )d tt   are upper bounded 
by Ne  and Bd  respectively. Let the control law given by  (52)  with a robust term,  
( ) ( )r rt K sgn rt =   where  ( )iir rK diag k 0= >  with iir n Bk d³ e +  . The next parameter 

updating laws are considered  
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The controller consists of three terms: a PD-controller to guarantee a good tracking 
performance, ( )pd v vK r K e et = = +L  , a compensator of non-linearities, nl f̂t =   and a 
robust controller to absorb unmodelled dynamics  rt  . 
 
 v r
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where  T

v vK K 0= >   is the gain matrix.  
The control structure appears in figure 1. In this scheme, two loops can be spoted: an outer 
loop to track signals and an inner loop to compensate non-linearities. The inner loop is 
driven by an adaptive control and the outer loop is driven by a robust and PD terms. 
An important feature of this class of controllers is that of being based on the all-important 
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into the robot dynamics 
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of appropriate variables as shown below. The nominal nonlinearity f can be computed as  
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velocity, ( ) ( ) ( )r dq t q t e t+L   . The nonlinearity f can be conveniently partitioned into 
several smaller terms, resulting into an added controller structure  
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where  mlmx    ,  gl

gx     are parameter vectors and  m c g, ,F F F   regression matrices. 
Theorem 1: Let the desired trajectory ( )dq t  bounded by  Bq  , i.e.  ( )d Bq t q£  . Suppose 
that the approximation error  e   and unmodeled disturbances  ( )d tt   are upper bounded 
by Ne  and Bd  respectively. Let the control law given by  (52)  with a robust term,  
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