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Design and Implementation of Fuzzy
Control for Industrial Robot

Muhammad Suzuri Hitam  

1. Introduction 

The dynamic equations of motion for a mechanical manipulator are highly 
non-linear and complex. It is therefore, very difficult to implement real-time 
control based on a detailed dynamic model of a robot, if not impossible (Luh et 
al., 1980; Lee et al., 1982). The control problem becomes more difficult if adap-
tive control is necessary to accommodate changing operational conditions. 
Such a requirement frequently exits in the manufacturing environment; there-
fore, an alternative design approach would be attractive to the industrial prac-
titioner. A better solution to the complex control problem might result if hu-
man intelligence and judgement replaces the design approach of finding an 
approximation to the true process model. A practical alternative would be the 
use of fuzzy logic. It has been reported that fuzzy logic controllers performed 
better, or at least as good as, a conventional controller and can be employed 
where conventional control techniques are inappropriate (Li et al., 1989; 
Sugeno, 1985; Ying et al., 1990). In contrast to adaptive control, fuzzy logic al-
gorithms do not require a detailed mathematical description of the process to 
be controlled and therefore the implementation of fuzzy logic should, theoreti-
cally, be less demanding computationally. Fuzzy logic algorithms can be de-
signed for environments where the available source information is not accu-
rate, subjective and of uncertain quality. Furthermore, these algorithms 
provide a direct means of translating qualitative and imprecise linguistic 
statements on control procedures into precise computer statements. In this 
chapter, a proposed fuzzy logic design to control an actual industrial robot 
arm is outlined. The description of fuzzy logic controller is described in Sec-
tion 2. It includes the methodology for the design of a fuzzy logic controller for 
use in robotic application. Section 3 presents the robot control system architec-
ture. In Section 4, the relevant issues that arise relating to the design tech-
niques employed are discussed in detailed. These issues include choise of 
sampling time, fuzzy rules design strategy, and controller tuning strategy. To 
evaluate the effectiveness of the proposed design strategy, studies are made to 
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investigate which design strategy leads to the best control performance under 
various robot conditions. Section 5 concludes this chapter.

2. Description of Fuzzy Logic Controller Architecture  

The basic structure of the fuzzy logic controller (FLC) most commonly found 
in the literature is presented in Fig. 1 (Lee, 1990a). The basic configuration of a 
fuzzy system is composed of a fuzzification interface, a knowledge base, a 
fuzzy inference machine and a defuzzification interface as illustrated in the 
upper section of Fig. 1. The measured values of the crisp input variables are 
mapped into the corresponding linguistic values or the fuzzy set universe of 
discourse at the fuzzification interface. The knowledge base comprises both 
the fuzzy data and fuzzy control rules. The fuzzy data base contains all the 
necessary definitions used in defining the fuzzy sets and linguistic control 
rules whereas, the fuzzy control rule base includes the necessary control goals 
and control policy, as defined by an experts, in the form of a set of linguistic 
rules. The fuzzy inference engine emulates human-decision making skills by 
employing fuzzy concepts and inferring fuzzy control actions from the rules of 
inference associated with fuzzy logic. In contrast to the fuzzification stage, the 
defuzzification interface converts the values of the fuzzy output variables into 
the corresponding universe of discourse, which yields a non-fuzzy control ac-
tion from the inferred fuzzy control action. 
In general, for a regulation control task, the fuzzy logic controller maps the 
significant and observable variables to the manipulated variable(s) through the 
chosen fuzzy relationships. The feedback from the process output is normally 
returned a crisp input into the fuzzification interface. The crisp or non-fuzzy 
input disturbance, illustrated in Fig. 1, would normally include both error and 
change in error, and these are mapped to their fuzzy counterparts at the fuzzi-
fication stage. These latter variables are the inputs to the compositional rules of 
inference from which the fuzzy manipulated variable is obtained. At the out-
put from the defuzzification process, a crisp manipulated variable is available 
for input to the process. In conclusion, it can be stated that to design a fuzzy 
logic controller, six essential stages must be completed: 

1. Input and output variables to be used must be identified.  
2. Design the fuzzification process to receive the chosen input variables. 
3. Establish the data and rule bases. 
4. Select the compositional rule of inference for decision making.
5. Decide which defuzzification process is to be employed.
6. Develop the computational units to access the data and rule bases.  
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Figure 1. The general form of the fuzzy logic control architecture 

2.1 Input and Output Variables  

In any fuzzy logic control system, the observed input must be fuzzified before 
it is introduced to the control algorithm. The most commonly used antecedents 
at this fuzzification stage are the state variables, error and rate of change in er-
ror. For the case of positioning a joint within a robot arm, the first variable is 
the difference (error) between the desired and the current joint position. The 
value of the second state variable is the numerical difference between two suc-
cessive values of error (change in error). These two state variables give a good 
indication of the instantaneous performance of the system and both variables 
are quantifiable by fuzzy sets.  In this project, error (E) and change in error 
(CE) are defined as the input fuzzy sets and the controlled action (CU) as the 
output fuzzy set. The evaluation of the error and the change in error at sample 
interval, k, is calculated as follows :

Error( k ) = Demand( k ) - Actual position( k )  (1) 

Change in error( k ) = Error( k ) - Error( k - 1)  (2) 

2.2 Method of Representing Fuzzy Sets  

According to Lee (1990a), there are two methods for defining a fuzzy set; nu-
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merical and functional, depending on whether the universe of discourse is dis-
crete or continuous. In the case of a discrete universe, a numerical definition is 
employed where the value of the membership function is represented by a 
vector; the order of the vector dependent on the degree of discretisation. The 
user has to specifically define the grade of membership of each cardinal in the 
fuzzy sets. For a continuous universe of discourse, a functional definition can 
be utilised to define the membership function of a fuzzy set. The triangle, 
trapezoidal and the bell shaped functions are the popular types found in many 
engineering applications. In this Chapter, this latter form of representation is 
adopted. The evaluation of the membership function is evaluated on-line dur-
ing process operation. A combination of bisected trapezoidal, trapezoidal and 
triangular shaped fuzzy set templates are used to represent the input and out-
put variables; template shapes that are readily evaluated and require the 
minimum of computer memory storage. At present, researchers are still look-
ing for the best guidance to determine the best shape for a fuzzy set to provide 
an optimum solution to a specific control problem. In general, the use of sim-
ple shapes could provide satisfactory performance. The geometry of these 
templates can be defined by the base width and the side slope when mapped 
to the universe of discourse.  

2.2.1 Mapping Fuzzy Sets to the Universe of Discourse  

In any application, it is essential for a practitioner to identify the most appro-
priate parameters prior to the mapping of the fuzzy sets to the chosen universe 
of discourse; the determination of the size of both the measurement and con-
trol spaces; the choice of the discretisation levels for both the measurement 
and control spaces, the definition of the basic fuzzy sets within these discre-
tised spaces and finally the sample interval to be used. The size of both the 
measurement and control spaces can be directly determined by estimating the 
probable operating range of the controlled system. However, the choice of the 
discretisation levels in both the measurement and control spaces, and the 
fuzzy set definitions can only be defined subjectively and are normally based 
on the experience and judgement of the design engineer. From a practical 
point of view, the number of quantisation levels should be large enough to 
provide an adequate resolution of the control rules without demanding exces-
sive computer memory storage. Generally 5 to 15 level of discretisations are 
found to be adequate. It should be emphasised that the choice of these parame-
ters has a significant influence on the quality of the control action that can be 
achieved in any application (Lee, 1990a). The use of higher resolution in the 
discretisation levels will result in an increase in the number of control rules 
and thereby make the formulation of these control rules more difficult. It 
should also be emphasised that the fuzzy sets selected should always com-
pletely cover the whole of the intended working range to ensure that proper 
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control action can be inferred for every state of the process. The union of the 
support sets on which the primary fuzzy sets are defined should cover the as-
sociated universe of discourse in relation to some value, . This property is re-
ferred to as the " -completeness" by Lee (1990a). To ensure a dominant rule 
always exists, the recommendation is that the value of  at the crossover point 
of two overlapping fuzzy sets is 0.5. At this value of , two dominant rules will 
be fired. To define the input fuzzy sets, error (E) and change in error (CE), the 
following procedure is adopted. In the case of the former fuzzy sets, the 
maximum range of error for a particular joint actuator is calculated. For exam-
ple, a robot waist joint with a counter resolution of 0.025 degree per count, and 
a maximum allowable rotation of 300.0 degree would result in a maximum po-
sitional error of 12000 counts. A typical schematic representation for the error 
fuzzy set universe of discourse would be as illustrated in Fig. 2. The linguistic 
terms used to describe the fuzzy sets in Fig. 2 are:  

{ NB, NM, NS, ZE, PS, PM, PB }

where N is negative, P is positive, B is big, M is medium, S is small and ZE is 
zero; a notation that is used throughout this chapter. Combinations of these 
letters are adopted to represent the fuzzy variables chosen, for example Posi-
tiveBig, PositiveMedium and PositiveSmall. As a result, 7 discretisation levels 
are initially defined for each input and output domain. The size and shape of 
the fuzzy sets displayed in Fig. 2 are chosen subjectively and tuned during 
process operation to obtain the most appropriate response. The proposed tun-
ing methodology of these fuzzy sets is detailed later in Figure 4.2. 

Figure 2. Universe of discourse: error fuzzy sets 

To determine the domain size for the change in error variable in this project, 
an open loop test was conducted. In this test, a whole range of voltage (from 
the minimum to the maximum) was applied to each of the robot joint actuator 
and the respective change in angular motion error was recorded every sample 
interval. From this information, the fuzzy sets illustrated in Fig. 3 for the 
change in error were initially estimated. Although the open loop response of 
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the system will be different from the close loop response, it will give a good 
initial guide to the size of the domain appropriate for use with the fuzzy logic 
controller.

Figure 3. Change in error fuzzy sets domain of discourse 

It should be noted that the choice of sampling interval is very important be-
cause it will affect the maximum change in error value recorded. It was found 
that the use of a very high sampling rate caused the recorded maximum 
change in angular motion error to be close to zero and this made it impossible 
to define the location of each fuzzy set in the domain of discourse. For exam-
ple, a sampling period of 0.001 seconds will result in a maximum change in 
waist positional error of 2 counts; a value found experimentally. In a similar 
manner, the control variable output fuzzy sets were selected. However, in this 
particular case, the dimentionality of the space is determined by the resolution 
of the available D/A converters. The D/A converters adopted are of an 8-bit 
type which yield 256 resolution levels as indicated on the horizontal axis in  
Fig. 4(a). Again, the universe of discourse was partitioned into 7 fuzzy set 
zones as depicted in Fig. 4(b).

Figure 4(a). A typical characteristic for the waist joint actuator 
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It should be noted that the fuzzy set labelled Zero is defined across the dead 
zone of the dc-servo motor in order to compensate for the static characteristics 
of the motor in this region. The initial sizes and distribution of the fuzzy sets 
are tuned during operation to improve the closed loop performance of the sys-
tem.

Figure 4(b). Control action domain of discourse 

2.2.1.1 Transforming a Crisp Input to a Fuzzy Variable  

Consider the trapezoidal representation of an error fuzzy set as illustrated in 
Fig. 5. Let an input error at sample interval k be ∈ Ee(k) U  and the correspond-

ing membership grade of the fuzzy set ⊂i EE U  be defined by the template [a, 

b, c, d]. Therefore, its membership ership function, 
iE   can be directly evalu-

ated using the expression: 

(3)

where the gradients slope.ab and slope.cd are calculated from the expressions; 

(4)

(5)
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In a similar manner the properties of a triangular or bisected trapezoidal fuzzy 
set template can be defined. 

Figure 5. Trapezoidal representation of an error fuzzy set.  

2.3 Defining the Fuzzy Rule Base

The fuzzy rule base employed in FLC contains fuzzy conditional statements 
which are currently chosen by the practitioner from a detailed knowledge of 
the operational characteristics of the process to be controlled. The fuzzy rule 
base can be derived by adopting a combination of four practical approaches 
which are mutually exclusive, but are the most likely to provide an effective 
rule base. These can be summarised as follows (Lee, 1990a): 1. Expert experi-
ence and control engineering knowledge. In nature, most human decision 
making are based on linguistic rather than numerical descriptions. From this 
point of view, fuzzy control rules provide a natural framework for the charac-
terisation of human behaviour and decision making by the adoption of fuzzy 
conditional statements and the use of an inference mechanism. 2. Operational 
experience. The process performance that can be achieved by a human opera-
tor when controlling a complex process is remarkable because his reactions are 
mostly instinctive. An operator through the use of conscious or subconscious 
conditional statements derives an effective control strategy. These rules can be 
deduced from observations of the actions of the human controller in terms of 
the input and output operating data. 3. Fuzzy model of the process. The lin-
guistic description of the dynamic characteristics of a controlled process may 
be viewed as a fuzzy model of a process. Based on this fuzzy model, a set of 
fuzzy control rules can be generated to attain an optimal performance from a 
dynamic system. 4. Learning. Emulation of human learning ability can be car-
ried out through the automatic generation and modification of the fuzzy con-
trol rules from experience gained. The rule base strategy adopted in this work 
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is developed from operational and engineering knowledge. The initial control 
rule base adopted is displayed in the look-up table, Table 1. This table should 
be read as: 

(6)

Table 1. Initial rules selected for fuzzy logic controller 

2.4 Fuzzy Inference Mechanism  

One virtue of a fuzzy system is its inference mechanisms which is analogous to 
the human decision making process. The inference mechanism employs the 
fuzzy control rules to infer the fuzzy sets on the universe of possible control 
action. The mechanism acts as a rule processor and carries out the tasks of ma-
noeuvring the primary fuzzy sets and their attendant operations, evaluating 
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the fuzzy conditional statements and searching for appropriate rules to form 
the output action. As mention earlier, the input and output variables of error, 
change in error and control action, UE , UCE and UCU. respectively, are all chosen 
to be discrete and finite, and are in the form of; 

(7)

where  indicates a fuzzy subset. As a result of selecting 7 discretisation levels 
for each fuzzy input and output variable, i.e. PB, PM, PS, etc., 49 fuzzy control 
rules result. These control rules are expressed in the form of fuzzy conditional 
statements;

(8)

At sample interval k, the jth fuzzy control rule, equation (8), can be expressed 
as;

(9)

where e(k), ce(k) and cu(k) denote the error, change in error and manipulated 
control variable respectively. The jth fuzzy subsets Ej , CEj and CUj are defined 
as;

(10)

Alternatively, Equation (9) can be evaluated through the use of the composi-
tional rule of inference. If the minimum operator is utilised, the resulting 
membership function can be expressed as; 

(11)

where the symbol � indicates the fuzzy implication function and 

j j j jE CE CUℜ = × × denotes the fuzzy relation matrix on 

(12)

In term of the membership functions, this can be expressed as; 

(13)
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To use the result of Equation (13), a defuzzification process is necessary to 
produce a crisp output for the control action value.

2.5 Choosing Appropriate Defuzzification Method

Several approaches (Lee, 1990b) have been proposed to map the fuzzy control 
action to a crisp value for input to the process. Basically, all have the same aim 
that is, how best to represent the distribution of an inferred fuzzy control ac-
tion as a crisp value. The defuzzification strategies most frequently found in 
the literature are the maximum method and centre of area method:  

1. The maximum method. Generally, the maximum method relies on find-
ing the domain value, zo, that maximises the membership grade which 
can be represented by; 

(14)

In the case when there is more than one maximum membership grade 
in W, the value of zo is determined by averaging all local maxima in W.

This approach known as mean of maximum method (MOM) is ex-
pressed as;

(15)

where
Ti c

z w
z max (z)

∈

=
Ti c

z w
z max (z)

∈

=  and n is the number of times the 

membership function reaches the maximum support value.

2. The center of area method (COA). The center of area method sometimes 
called the centroid method produces the center of gravity of the possi-
bility distribution of a control action. This technique finds the balance 
point in the output domain of the universe of discourse. In the case 
when a discrete universe of discourse with m quantisation levels in the 
output, the COA method produces; 

(16)

where zi is the ith domain value with membership grade of  (zi ).
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3. Experimental Setup

The robot control system is composed of the host computer, the transputer 
network, and the interface system to a small industrial robot. The schematic 
representation of the control structure is presented in Fig. 6.  

Figure 6. Schematic representation of robot control architecture. 

The controller structure is hierarchically arranged. At the top level of the sys-
tem hierarchy is a desktop computer which has a supervisory role for support-
ing the transputer network and providing the necessary user interface and disc 
storage facilities. The Transputer Development System acts as an operating 
system with Occam II as the programming language. At the lower level are the 
INMOS transputers; in this application one T800 host transputer is resident on 
the COMET board and mounted in one of the expansion slots of the desktop 
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computer with the remaining three transputers resident in a SENSION B004 
system. The robot is the RM-501 Mitsubishi Move Master II, with the proprie-
tary control unit removed to allow direct access to the joint actuators, optical 
encoders and joint boundary detection switches. The host transputer also pro-
vides an interface facilities to the user, for example, input and output opera-
tion from the keyboard to the screen. The three transputers resident in the 
SENSION B004 system are a T414 transputer which is resident on the GBUS-96 
board and provides a memory mapped interface to the robot through a Pe-
ripheral Interface Adapter (PIA) Card. The remaining two T800 root transput-
ers are used to execute the controller code to the robot. The PIA card allows a 
parallel input and output interface to the robot joint actuators and conforms to 
the interface protocol implemented on the GBUS-96 which is known as a 
GESPIA Card. The actual hardware arrangement together with the interfacing 
employed is shown in  Fig. 7, with the Mitsubishi RM-501 robot shown in Fig. 
8.

Figure 7.  System hardware and interfacing. (a) host computer, (b) B004 transputer 
system, (c) GESPIA card, (d) DAC cards, (e) counter cards and (f) power amplifier.  
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 Figure 8. The Mitsubishi RM-501 Move Master II Industrial Robot. 

3.1 The Mitsubishi RM-501 Move Master II Robot  

This industrial robot is a five degree of freedom robot with a vertical multi-
joint configuration. The robot actuators are all direct current servo motors, but 
of different powers. At the end of each joint, a sensor is provided to limit the 
angular movement. The length of link and its associated maximum angular 
motion is listed in Table 2. Fig. 9(a) and 9(b) illustrate the details of the robot 
dimensions1 and it’s working envelop. The maximum permissible handling 
weight capacity is 1.2 kg including the weight of the end effector.  Table 2 The 
Mitsubishi RM-501 Move Master II geometry. 

Join Link Length (mm) Maximum Rotation (De-
gree)

Waist 250 300 

Shoulder 220 130 

Elbow 160 90 

Wrist roll 65 +-90 

Wrist pitch 65 +-180 

Table 2. The Mitsubishi RM-501 Move Master II geometry 
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Figure 9(a). Range of movement of waist joint and robot dimensions (all dimensions 
are measured in millimeter).  

Figure 9(b). Robot dimension and range of movement when hand is not attached. 
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4. Experimental Studies

A program code for the development of a FLC was written in the Occam lan-
guage and executed in a transputer environment. This approach would enable 
the evaluation of the robustness of the controller design proposed and applied 
to the first three joint of a RM-501 Mitsubishi industrial robot. A T800 tran-
sputer is assigned to position each joint of the robot independently. To deter-
mine the effect on controller performance of changing different controller pa-
rameters, one joint only is actuated and the other two are locked. In the first 
experiment the impact on overall robot performance of changes in sample in-
terval was assessed. This was followed by an investigation into how best to 
tune a controller algorithm and whether guide-lines can be identified for fu-
ture use. The problem is to overcome the effect of changing robot arm configu-
ration together with a varying payload condition.  

4.1 The Choice of Sampling Time

Inputs (error and change in error) to the fuzzy logic control algorithm that 
have zero membership grades will cause the membership grades of the output 
fuzzy sets to be zero. For each sample period, the on-line evaluation of the al-
gorithm with 49 control rules has been found by experiment to be 0.4 millisec-
onds or less. Hence, to shorten the run time, only inputs with non-zero mem-
bership grades are evaluated. For times of this magnitude, real-time control is 
possible for the three major joint controllers proposed. It has been cited in the 
literature that it is appropriate to use a 0.016 seconds sampling period (60 
Hertz) because of its general availability and because the mechanical resonant 
frequency of most manipulators is around 5 to 10 Hz (Fu et al., 1987). Experi-
ments have been carried out to determine how much improvement can be 
achieved by shorten the sampling period from 0.02 seconds to 0.01 seconds. In 
the first experiment, the waist joint is subjected to a 60.0 degree (1.047 radian 
or 2400 counter count) step disturbance with all other joints in a temporary 
state of rest. The results shown in Fig. 10 suggest that very little improvement 
in transient behaviour will be achieved by employing the shorter sampling pe-
riod. The only benefit gained is a reduction in the time to reach the steady state 
of 0.4 seconds. In a second test, the waist joint is commanded to start from its 
zero position and to reach a position of 5 degree (0.0087 radian or 20 counter 
count) in 2 seconds; it remains at this position for an interval of 1 second after 
which it is required to return to its home position in 2 seconds as showed in 
Fig. 11. Again the benefit is only very marginal and of no significance for most 
industrial applications. Despite these results, it was decided that the higher of 
the two sampling rates would generally ensure better transient behaviour, 
hence the 0.01 seconds sampling period is used throughout this project.
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Figure 10. Waist response to a step input for different sampling periods. 

Figure 11. Waist trajectory tracking at different sampling periods. 
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