
349

12

Collision Free Path Planning

for Multi-DoF Manipulators

Samir Lahouar, Said Zeghloul and Lotfi Romdhane

1. Introduction

Path planning is a very important issue in robotics. It has been widely studied
for the last decades. This subject has gathered three interesting fields that were
quite different in the past. These fields are robotics, artificial intelligence and
control. The general problem of path planning consists of searching a collision
free trajectory that drives a robot from an initial location (position and orienta-
tion of the end effector) to a goal location. This problem is very wide and it has
many variants such as planning for mobile robots, planning for multiple ro-
bots, planning for closed kinematic chains and planning under differential
constraints. It includes also time varying problems and molecular modeling,
see (LaValle, 2006) for a complete review. In this study we focus on the case of
multi-Degrees of Freedom (DoF) serial manipulators.
The first works on serial manipulators path planning began in the seventies
with Udupa (Udupa, 1977), then with Lozano-Pérez and Wesley (Lozano-
Pérez & Wesley, 1979) who proposed solving the problem using the robot's
configuration space (CSpace). Since then, most of path planning important
works have been carried out in the CSpace. There are two kinds of path plan-
ning methods: Global methods and Local methods. Global methods (Paden et
al., 1989; Lengyel et al., 1990; Kondo, 1991) generally act in two stages. The first
stage, which is usually done off-line, consists of making a representation of the
free configuration space (CSFree). There are many ways proposed for that: the
octree, the Voronoï diagram, the grid discretization and probabilistic road-
maps. For each chosen representation, an adapted method is used in order to
construct the CSFree, see (Tournassoud, 1992; LaValle, 2006). The representa-
tion built in the first stage is used in the second one to find the path. This is not
very complicated since the CSFree is known in advance. Global methods give
a good result when the number of degrees of freedom (DoF) is low, but diffi-
culties appear when the number of DoF increases. Moreover, these methods
are not suitable for dynamic environments, since the CSFree must be recom-
puted as the environment changes. Local methods are suitable for robots with
a high number of DoF and thus they are used in real-time applications. The

Source: Industrial-Robotics-Theory-Modelling-Control, ISBN 3-86611-285-8, pp. 964, ARS/plV, Germany, December 2006, Edited by: Sam Cubero

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

350 Industrial Robotics: Theory, Modelling and Control

potential field method proposed by Khatib (Khatib, 1986) is the most popular
local method. It assumes that the robot evolves in a potential field attracting
the robot to the desired position and pushing its parts away from obstacles.
Because of its local behavior these methods do not know the whole robot's en-
vironment, and can easily fall in local minima where the robot is stuck into a
position and cannot evolve towards its goal. Constructing a potential field
with a single minimum located in the goal position, is very hard and seems to
be impossible, especially if there are many obstacles in the environment.

Faverjon and Tournassoud proposed the constraint method (Faverjon &
Touranssoud, 1987), which is a local method acting like the potential field
method in order to attract the end effector to its goal and dealing with the ob-
stacles as constraints. Although it yields remarkable results with high DoF ro-
bots, this method suffers from the local minima problem.

Probabilistic methods were introduced by Kavraki et al. (Kavraki et al., 1996)
in order to reduce the configuration free space complexity. These methods
generate nodes in the CSFree and connect them by feasible paths in order to
create a graph. Initial and goal positions are added to the graph, and a path is
found between them. This method is not adapted for dynamic environments
since a change in the environment causes the reconstruction of the whole
graph. Several variants of these methods were proposed: Visibility based PRM
(Siméon et al., 2000), Medial axis PRM (Wilmarth et al., 1999) and Lazy PRM
(Bohlin & Kavraki, 2000).

Mediavilla et al. (Mediavilla et al., 2002) proposed a path planning method for
many robots cooperating together in a dynamic environment. This method
acts in two stages. The first stage chooses off-line, a motion strategy among
many strategies generated randomly, where a strategy is a way of moving a
robot. The second stage is the on-line path planning process, which makes
each robot evolve towards its goal using the strategy chosen off-line to avoid
obstacles that might block its way.
Helguera et al. (Helguera & Zeghloul, 2000) used a local method to plan paths
for manipulator robots and solved the local minima problem by making a
search in a graph describing the local environment using an A* algorithm until
the local minima is avoided.

Yang (Yang 2003) used a neural network method based on biology principles.
The dynamic environment is represented by a neural activity landscape of a
topologically organized neural network, where each neuron is characterized
by a shunting equation. This method is practical in the case of a 2-DoF robot
evolving in a dynamic environment. It yields the shortest path. However, the
number of neurons increases exponentially with the number of DoF of the ro-
bot, which makes this method not feasible for realistic robots.
Here, we propose two methods to solve the path planning problem. The first
method (Lahouar et al., 2005a ; Lahouar et al., 2005b) can be qualified as a

Collision free Path Planning for Multi-DoF Manipulators 351

global method. It is suitable for serial robot manipulators in cluttered static
environments. It is based on lazy grid sampling. Grid cells are built while
searching for the path to the goal configuration. The proposed planner acts in
two modes. A depth mode while the robot is far from obstacles makes it
evolve towards its goal. Then a width search mode becomes active when the
robot gets close to an obstacle. This mode ensures the shortest path to go
around an obstacle. This method reduces the gap between pre-computed grid
methods and lazy grid methods. No heuristic function is needed to guide the
search process. An example dealing with a robot in a cluttered environment is
presented to show the efficiency of the method.
The second method (Lahouar et al., 2006) is a real-time local one, which is used
to solve the path planning problem for many manipulator robots evolving in a
dynamic environment. This approach is based on the constraints method cou-
pled with a procedure to avoid local minima by bypassing obstacles using a
boundary following strategy. The local planner is replaced by the boundary
following method whenever the robot gets stuck in a local minimum. This
method was limited to 2-DoF mobile robots and in this work we show how it
can be applicable to a robot with n degrees of freedom in a dynamic environ-
ment. The path planning task is performed in the configuration space and we
used a hyperplane in the n dimensional space to find the way out of the dead-
lock situation when it occurs. This method is, therefore, able to find a path,
when it exists and it avoids deadlocking inherent to the use of the local
method. Moreover, this method is fast, which makes it suitable for on-line path
planning in dynamic environments.

2. Sampling and construction of the CSpace

Many planning algorithms need samples of CSpace in order to compute a tra-
jectory. There are many ways of sampling; the easiest way is to use a grid with
a given resolution. The number of the grid cells grows exponentially according
to the number of DoF of the robot. In the same way, the time and the memory
space required to compute and store the grid increase. Random sampling was
introduced in order to reduce the number of samples needed to represent the
CSpace. It consists of choosing random configurations and constructing a
graph representing feasible paths between them. This method needs a long
time of computation.
We give an example of sampling using a grid with a low resolution and we de-
fine constraints used to detect if there is a free path between two neighboring
cells. On one hand, these constraints make the path between two neighboring
cells in the CSfree safe even if the step is quite large, and on the other hand
they speed up the collision checking process as the constraints computed in a
cell are useful to check all the neighboring cells. There is no need to check for
collision in all cells of the grid before starting to search for a path. The con-

352 Industrial Robotics: Theory, Modelling and Control

straints calculated in a cell allow us to judge whether a path exists to a
neighboring cell or not.

2 neighbor cells in 1D

8 neighbor cells in 2D 26 neighbor cells in 3D

Figure 1. Each cell has 3N-1 neighbors

Therefore, the constraints-calculating process is equivalent to 3N-1 times the
collision checking process, as a cell has 3N -1 neighbors (Fig. 1). The number N
represents the number of DoF of the robot.

3. Non-collision constraints

Here, we define non-collision constraints necessary to accelerate the global
method (see paragraph 4) and useful for the local planner of the second
method (see paragraph 5). Non-collision constraints as proposed by Faverjon
and Tournassoud are written as follows:

i

si

s dd
dd

dd
d ≤

−

−
−≥ if ξ& (1)

With d is the minimal distance between the robot and the object and d& is the
variation of d with respect to time. id is the influence distance from where the

objects are considered in the optimization process, sd is the security distance

and ξ is a positive value used to adjust the convergence rate.

Collision free Path Planning for Multi-DoF Manipulators 353

Object 1

Object 2

011 /V RRx ∈

r

022 /V RRx ∈

r

n
r

1x

2x

Figure 2. Two objects evolving together

0

5

10

15

20

25

30

35

40

45

0 4 8

1
2

1
6

2
0

2
4

2
8

3
2

3
6

4
0

4
4

4
8

5
2

5
6

6
0

6
4

6
8

7
2

7
6

8
0

8
4

8
8

1=ξ

2=ξ
3=ξ

id

sd

t

d

Figure 3. Evolution of the distance according to the convergence rate

If we consider two mobile objects in the same environment as shown in Fig. 2,

d& can be written as follows:

() () nn .V.V
011022 //

T
RRx

T
RRxd ∈∈ −=& (2)

Where ()0/V RRx ii∈

 is the velocity vector evaluated at the point ix of object i hav-

ing the minimal distance with the second object and n is the unit vector on the
line of the minimal distance.
The non-collision constraints, taking into account the velocities of objects, are
written as:

354 Industrial Robotics: Theory, Modelling and Control

() ()
si

sT
RRx

T
RRx

dd

dd

−

−
≤− ∈∈ ξnn .V.V

022011 // (3)

A robot evolving towards an obstacle, if it respects constraints given by equa-
tion (1), it will evolve exponentially to the security distance without going
closer than this distance (see Fig. 3).
Fig. 4 shows a PUMA robot placed next to a static obstacle. The constraint cor-
responding to that obstacle is written as:

()
si

sT
RRx

dd

dd

−

−
≤∈ ξn.V

011 / (4)

By introducing ()qx1

J , the Jacobian matrix of the robot in configuration q de-

fined in point 1x , we get:

Figure 4.The distance between a robot and an obstacle

()
si

s
x

T

dd

dd
qq

−

−
≤Δ ξ

1
Jn (5)

Condition (5) will be written in the following manner:

[][] bqqaa
T

NN ≤ΔΔ LL 11 (6)

Collision free Path Planning for Multi-DoF Manipulators 355

with [] Jn
T

Naa =L1 , []TNqqq ΔΔ=Δ L1 and
is

i

dd

dd
b

−

−
= ξ

Figure 5. shows two PUMA robots evolving together. We consider that each
robot is controlled separately.
In that manner, each robot is considered as a moving obstacle by the other one.

Figure 5. Two PUMA robots working in the same environment

The motion of the two robots must satisfy the following conditions:

()
is

iT
RRx

dd

dd

−

−
≤∈ '.V

011 / ξn and ()
is

iT
RRx

dd

dd

−

−
≤− ∈ '.V

022 / ξn (7)

Where ξξ
2

1'= . While adding the two conditions of equation (7), we notice that

the non-collision constraint defined by (3) is satisfied. So with a suitable choice
of the parameters ξ , id and sd , it is possible to use only condition (5) to avoid

collisions with all objects in the environment.
In the next paragraph, we propose an approach that does not construct the
whole grid, representing the CSpace. Only cells necessary to find the path to
the goal position are checked for collision.

356 Industrial Robotics: Theory, Modelling and Control

4. Path planning in static cluttered environments

The planner we propose uses two modes. The first one makes the robot evolve
towards its goal position if there is no obstacle obstructing its way and the sec-
ond mode is active near the obstacles and enables the robot to find the best
way to avoid them. This latter mode is the most important as it needs to gen-
erate all the cells near the obstacle until it is avoided. For this reason, we do
not have to store all the cells but just the ones near the obstacles which are suf-
ficient to describe the CSfree.

4.1 Definitions

In order to explain the algorithm of this method, we need to define some
terms.

A Cell
The algorithm we propose is based on a “Cell” class in terms of object oriented
programming. A cell ci is made of:

A pointer to the parent cell (ci.parent):
the path from the initial configuration to the goal is made of cells. Each one of
these cells has a pointer to the parent cell, that generated it previously. Start-
ing from a cell, the next one in the path is the one that is closest to the goal and
respecting the non-collision constraints. When the goal cell is reached the al-
gorithm stops and the path is identified by all the selected cells.

A configuration defining a posture of the robot:
each cell corresponds to a point in the CSpace. If a cell configuration is written

as []T11
11 Nqqq L= where N is the number of DoF of the robot, and let qΔ be

the step of the grid, the neighboring cells are then defined as the configura-
tions belonging to the following set:

() [] () { } (){ }0,,0/1,0,1,,; 1

T1
1

1
11 KKL

N

NNN ssqsqqsqqqVic −∈Δ+Δ+== (8)

A distance to the goal(ci.distance_to_goal):
it represents the distance in configuration space between the goal configura-
tion and the cell configuration. This distance allows the planner’s first mode to
choose the closest cell to the goal configuration. While the robot is far from ob-
stacles, the shortest path to the goal configuration is a straight line in CSpace.

A boolean “collision” variable (ci.collision):
it takes false if the cell verifies the constraints and true if it does not.

Collision free Path Planning for Multi-DoF Manipulators 357

A boolean “computed” variable(ci.computed):
used by the planner in order to know whether the cell has already been used
to search for the path or not.
A boolean “near an obstacle” variable (ci.near_an_obstacle):
used by the second mode of the planner allowing it to stay stuck to the obsta-
cle while performing its width search in order to find the best direction to go
around the obstacle.

Queue
Another important item in our approach is the Queue, Q, which is defined as
an ordered set of cells. The first cell in the Queue is named head and denoted
h(Q). While the last cell is the tail of the Queue and denoted t(Q). If the Queue
is empty we write () () 0tQh /== Q .

In order to handle the Queue Q, we use some operators that we define here.

()1cQ,h+ adds the cell 1c to the head of Q.

()1cQ,t+ adds 1c to the tail of Q.

()Qh− removes the head cell from Q.

()Qt− removes the tail cell from Q.

Stop Condition
We define the stop condition as the condition for which we judge that the goal
position has been found. We write this condition as follows:

qqqgoal Δ<− (9)

where goalq is the goal configuration, q is the configuration of the cell verifying

the stop condition and qΔ is the step of the grid.

If the algorithm can no longer evolve and the stop condition is not satisfied, it
means that there is no possible solution for the given density of the grid.

4.2 Algorithm

The algorithm outlined in Fig. 6, starts by constructing the initial cell in step 1.
It sets the parent pointer to NULL and evaluates the distance to the goal. The
algorithm uses a variable c representing the cell searched by the algorithm.
ℵ is the set of explored cells and 1ℵ is the set of unexplored cells in the vicinity

of cell c.
Step 6 computes non-collision constraints using distances between obstacles
and robot parts evaluated in the posture defined by cell c. Steps 8 to 13 con-
struct unexplored cells in the vicinity of cell c. For each cell the parent pointer

358 Industrial Robotics: Theory, Modelling and Control

is set to c, the distance to goal is evaluated and the non-collision constraints are
checked. A cell is considered a collision if it does not verify constraints given
by equation (3).
Step 15 determines the nearest cell to the goal in the vicinity of c, using the dis-
tance to goal already evaluated. If that cell is not an obstacle, it is placed in the
head of the queue Q at step 17. This makes the planner perform a depth search
since there is no obstacle bothering the robot.
However, if the cell computed by step 15 is a collision, all non-collision cells in
the vicinity of c that are close to collision cells are placed in the tail of the
queue Q by step 22. This makes the planner perform a depth search until the
obstacle is bypassed.

1. Construct initial cell 1c

2. Set 1cc =

3. Let { }1c=ℵ

4. While 0c /=/ and c does not satisfy the stop condition do

5. c.computed=true
6. Compute non-collision constraints for the configuration represented by the cell c

7. () ℵ=ℵ \1 cVic

8. For each cell 12c ℵ∈ do

9. Set c2.parent = c
10. Evaluate c2.distance_to_goal
11. Verify the non-collision constraints and determine c2.collision
12. Set c2.computed to false
13. End for

14. 1ℵ∪ℵ=ℵ

15. Choose c3 in 1ℵ with the minimal distance to goal

16. If c3.collision=false then

17. ()3cQ,h+

18. Else (c3.collision=true)

19. For each ()cVicc ∈2 such as c2.collision=true do

20. For each () ℵ∩∈ 23 cVicc set c3.near_an_obstacle=true

21. End for

22. For each () Q\2 cVicc = such as c2.Near_an_obstacle = true and c2.collision=false and

c2.computed=false do ()2cQ,t+

23. For each Q2 ∈c such as () ℵ⊂2cVic remove c2 from the Queue Q and set

c2.computed=true
24. End if

25. ()Qh=c

26. ()Qh−

27. End while

Figure 6. Pseudo-code of the method

Collision free Path Planning for Multi-DoF Manipulators 359

1q

2q

2l1l

x
r

y
r

Figure 7. A 2 DoF robot

Steps 19 to 21 evaluate the “near an obstacle” property. This property is set to
false when the cell is constructed. Then for each cell in the vicinity of a colli-
sion cell, itself in the vicinity of the cell c, this property is set to true.
Step 23 removes from the queue Q all cells for which their vicinity has been al-
ready explored and sets their computed property to true, so they do not return
to the queue when the algorithm evolves. The search procedure is stopped
when a cell verifying the stop condition is found and the path is done by join-
ing this cell to the initial cell by going back through the parent cells using the
pointer of each cell. The procedure can also be stopped if the Queue Q is
empty, in that case there is no possible path for the chosen resolution of the
grid.

-10

0

10

20

0 10 20 30

x
r

y
r

1O
2O

3O

Start position

Goal position

Obstacles

Figure 8. Path planning consists of moving the robot from the start position to the
goal position while avoiding obstacles

360 Industrial Robotics: Theory, Modelling and Control

Obstacle O1 O2 O3

x 16 4 10
y 12 10 4

Table 1. Position of obstacles

4.3 A planar example

In order to illustrate the proposed algorithm we consider a 2D example, of a
2R robot (Fig. 7) evolving among point obstacles. The simulations are made us-
ing three point obstacles defined by table 1.

The start configuration is []T3020 °°−=sq and the goal configuration is

[]T4550 °−°=gq . Fig. 8 shows the robot in its starting and goal positions, re-

spectively, and the three point obstacles. We set the lengths of the arms of the
robot 1021 == ll .

Fig. 9 shows the CSpace of the robot, the dark regions correspond to CSpace
obstacles.

1q

2q

Goal configuration

Start configuration

Figure 9. The configuration space

Collision free Path Planning for Multi-DoF Manipulators 361

231 232 233 234

223 224 225 235 238

217 218 219 236 239 242

205 208 209 237 240 243 246

206 193 196 197 241 244 247 250

207 194 181 184 185 245 248 251 254

210 195 182 169 172 173 249 252 255 258

198 183 170 157 160 161 253 256 259 263

186 171 158 151 152 153 257 260 264 268

174 159 139 142 143 261 262 265 269 273

162 140 130 133 134 266 267 270 274 278

141 131 121 122 123 271 272 275 279 283

144 132 112 115 116 276 277 280 284 288

135 113 103 104 105 281 282 285 289 293

114 97 98 99 286 287 290 294 298

117 88 91 92 291 292 295 299 303

89 81 82 83 296 297 300 304 308

2 5 7 90 70 71 72 301 302 305 309 313

3 1 8 12 93 64 65 66 306 307 310 314

4 6 9 13 17 58 59 60 311 312 315

10 11 14 18 22 51 52 53 316 317 318

15 16 19 23 27 40 41 319 320 321

20 21 24 28 32 42 322 323 324

25 26 29 33 37 325 326 327

30 31 34 38 328 329 330

35 36 39 48 331 332 333 371 372

43 44 45 49 334 335 336 366 367

54 46 47 50 337 338 339 346 361

55 56 57 340 341 342 347 362

61 62 63 343 344 345 348 355

67 68 69 78 349 350 351 356

73 74 75 79 352 353 354 357

84 76 77 80 358 359 360

85 86 87 373 363 364 365

94 95 96 109 374 368 369 370

100 101 102 110 375 376 377

106 107 108 111 127

118 119 120 128

124 125 126 129 148

136 137 138 149

145 146 147 150 166

154 155 156 167 178

163 164 165 168 179 190

175 176 177 180 191 202

187 188 189 192 203 214

199 200 201 204 215

230 211 212 213 216

229 220 221 222

226 227 228

Obstacle cells

Start cell

Goal cell

Investigated cells

Generated path

1q

2q

Figure 10. Cell generation order

The construction order of cells is shown in Fig. 10. The algorithm evolves to-
wards its goal using the depth-search mode while there is no obstacle bother-
ing it. When an obstacle is detected the algorithm uses the width-search mode.
The algorithm overlaps the obstacle in order to find the best direction to by-
pass it. When the obstacle is avoided the depth search mode is resumed. The
algorithm gives the best way to go around the C obstacle (which is the portion
of CSpace corresponding to a collision with one obstacle).

362 Industrial Robotics: Theory, Modelling and Control

-10

-5

0

5

10

15

20

Figure 11. Simulation results for the planar robot

1

2

3

4

5

6

7

8

9

Figure 12. Simulation results for the PUMA robot

Collision free Path Planning for Multi-DoF Manipulators 363

The result of the simulation is shown in Fig. 11. Moreover, out of 5329 cells,
which corresponds to 73 points on each axis, only 375 cells were computed.
This represents less than 10% of the whole workspace.

4.4 Simulation and results

The simulation has been performed on a robotic-oriented-Software named
SMAR (Zeghloul et al., 1997). This software is made of two modules: a model-
ing module and a simulation one. The modeling module is used to generate a
model of the robot in its environment. The simulation module is used to simu-
late the motion of the robot in its environment. It contains a minimal distance
feature we used to implement our algorithm.
Fig. 12 shows the simulation results of a 5 DoF ERICC robot carrying a large
object and standing in an environment containing ladder-shaped obstacles.
The planner determines the path in 20 steps. The robot is carrying a beam
whose length is greater than the width of the ladder-shaped obstacle. Regular
local path planners would be stuck in the initial position. The proposed
method explores all possible configurations capable of going around the ob-
stacle and chooses the one that yields the minimum distance to the goal. The
sequence of frames shown in Fig. 12, shows the solution found by the pro-
posed planner. In this case the total number of cells is 12252303 while the
number of computed cells is only 220980, which represents less than 2% of the
whole workspace.

5. Real-time path planning in dynamic environments

The method described above is useful in the case of cluttered static environ-
ments. It can be used offline to generate repetitive tasks. In many cases robots
evolve in dynamic environments, which are unknown in advance. That is why
we propose to solve the path planning problem for many manipulator robots
evolving in a dynamic environment using a real-time local method. This ap-
proach is based on the constraints method coupled with a procedure to avoid
local minima by bypassing obstacles using a boundary following strategy.

5.1 Local Method

In this method, we use a local planner based on an optimization under con-
straints process (Faverjon & Touranssoud, 1987). It is an iterative process that
minimizes, at each step, the difference between the current configuration of the
robot and the goal configuration. When there are no obstacles in the way of the
robot, we consider that it evolves towards its goal following a straight line in
the CSpace. The displacement of the robot is written as follows:

364 Industrial Robotics: Theory, Modelling and Control

maxmax if qqqq
qq

qq
q goal

goal

goal

goal Δ>−Δ
−

−
=Δ (10)

max if qqqqqq goalgoalgoal Δ≤−−=Δ (11)

where goalq is the goal configuration of the robot, q is the current configura-

tion of the robot and maxqΔ is the maximum variation of each articulation of the

robot. If there are obstacles in the environment, we add constraints (defined in
paragraph 3) to the motion of the robot in order to avoid collisions. Path plan-
ning becomes a minimization under constraints problem formulated as:

sconstraintcollision -non Under Minimize goalqq Δ−Δ (12)

where qΔ is the change of the robot joints at each step. We can formulate then

the planning problem as follows:

is

iT
goal

dd

dd
qqq

−

−
≤ΔΔ−Δ ξ sconstraintlinear Under Minimize Jn (13)

The local planner can be represented by an optimization problem of a nonlin-
ear function of several parameters, subject to a system of linear constraint
equations. In order to solve this problem, we use Rosen's gradient projection
method described in (Rao, 1984). When the solution of the optimization prob-
lem qΔ corresponds to the null vector, the robot cannot continue to move us-

ing the local method. This situation corresponds to a deadlock. In this case, the
boundary following method is applied for the robot to escape the deadlock
situation.
In the next section, we define the direction and the subspace used by the
boundary following method.

5.2 Boundary following method

Before explaining the method in the general case of an n-DoF robot, we present
it for the 2D case. The proposed approach to escape from the deadlock situa-
tion is based on an obstacle boundary following strategy.

The 2D case
This method was first used in path planning of mobile robots (Skewis & Lu-
melsky, 1992; Ramirez & Zeghloul, 2000).
When the local planner gets trapped in a local minimum (see Fig. 13), it be-
comes unable to drive the robot farther. At this point the boundary following

Collision free Path Planning for Multi-DoF Manipulators 365

method takes over and the robot is driven along the boundary of the obstacle
until it gets around it. The robot in this case has the choice between two direc-
tions on the line tangent to the obstacle boundary or on the line orthogonal to
the vector to the goal (Fig. 13). It can go right or left of the obstacle. Since the
environment is dynamic and unknown in advance, we have no idea whether
going left or going right is better. The choice of the direction is made ran-
domly. Once the obstacle is avoided the robot resumes the local method and
goes ahead towards the goal configuration.

Goal position

Dead lock position

Direction 1

Direction 2 C Obstacle

Solution 2

Solution 1

Figure 13. Two possible directions to bypass the obstacle in the case of a 2DoF robot

Goal position

C Obstacle

Dead lock position

Chosen direction

Figure 14. The case where there is no feasible path to the goal

Thank You for previewing this eBook
You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can
access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

