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1. Introduction 

The significant advantages of parallel robots over serial manipulators are now well known. 
However, they still pose a serious challenge when considering their kinematics. This paper 
covers the state-of-the-art on modeling issues and certified solving of kinematics problems. 
Parallel manipulator architectures can be divided into two categories: planar and spatial. 
Firstly, the typical planar parallel manipulator contains three kinematics chains lying on one 
plane where the resulting end-effector displacements are restricted. The majority of these 
mechanisms fall into the category of the 3-RPR generic planar manipulator, [Gosselin 1994, 
Rolland 2006]. Secondly, the typical spatial parallel manipulator is an hexapod constituted 
by six kinematics chains and a sensor number corresponding to the actuator number, 
namely the 6-6 general manipulator, fig. 1. 
 

 

 

Fig. 1. The general 6-6 hexapod manipulators 

Solving the FKP of general parallel manipulators was identified as finding the real roots of a 
system of non-linear equations with a finite number of complex roots. For the 3-RPR, 8 
assembly modes were first counted, [Primerose and Freudenstein 1969]. Hunt geometrically 
demonstrated that the 3-RPR could yield 6 assembly modes, [Hunt 1983]. The numeric 

Source: Parallel Manipulators, Towards New Applications, Book edited by: Huapeng Wu, ISBN 978-3-902613-40-0, pp. 506, April 2008, 
I-Tech Education and Publishing, Vienna, Austria
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iteration methods such as the very popular Newton one were first implemented, 
[Dieudonne 1972, Merlet 1987, Sugimoto 1987]. They only converge on one real root and the 
method can even fail to compute it. To compute all the solutions, polynomial equations 
were justified, [Gosselin and Angeles 1988]. Ronga, Lazard and Mourrain have established 
that the general 6-6 hexapod FKP has 40 complex solutions using respectively Gröbner 
bases, Chern classes of vector bundles and explicit elimination techniques, [Ronga and Vust 
1992, Lazard 1993, Mourrain 1993a]. The continuation method was then applied to find the 
solutions, [Raghavan 1993], however, it will be explained why they are prone to miss some 
solutions, [Rolland 2003]. Computer algebra was then selected in order to manipulate exact 
intermediate results and solve the issue of numeric instabilities related to round-off errors so 
common with purely numerical methods. Using variable elimination, for the 3-RPR, 6 
complex solutions were calculated [Gosselin 1994] and, for the 6-6, Husty and Wampler 
applied resultants to solve the FKP with success, [Husty 1996, Wampler 96]. However, 
resultant or dialytic elimination can add spurious solutions, [Rolland 2003] and it will be 
demonstrated how these can be hidden in the polynomial leading coefficients. Inasmuch, a 
sole univariate polynomial cannot be proven equivalent to a complete system of several 
polynomials. Intervals analyses were also implemented with the Newton method to certify 
results, [Didrit et al. 1998, Merlet 2004]. However, these methods are often plagued by the 
usual Jacobian inversion problems and thus cannot guarantee to find solutions in all non-
singular instances. The geometric iterative method has shown promises, [Petuya et al. 2005], 
but, as for any other iterative methods, it needs a proper initial guess. 
Hence, this justified the implementation of an exact method based on proven variable 
elimination leading to an equivalent system preserving original system properties. The 
proposed method uses Gröbner bases and the rational univariate representation, [Faugère 
1999, Rouillier 1999, Rouillier and Zimmermann 2001], implementing specific techniques in 
the specific context of the FKP, [Rolland 2005]. Three journal articles have been covering this 
question for the general planar and spatial manipulators [Rolland 2005, Rolland 2006, 
Rolland 2007]. This algebraic method will be fully detailed in this chapter. 
This document is divided into 3 main topics distributed into five sections. The first part 
describes the kinematics fundamentals and definitions upon which the exact models are 
built. The second section details the two models for the inverse kinematics problem, 
addresses the issue of the kinematics modeling aimed at its adequate algebraic resolution. 
The third section describes the ten formulations for the forward kinematics problem. They 
are classified into two families: the displacement based models and position based ones. The 
fourth section gives a brief description of the theoretical information about the selected exact 
algebraic method. The method implements proven variable elimination and the algorithms 
compute two important mathematical objects which shall be described: a Gröbner Basis and 
the Rational Univariate Representation including a univariate equation. In the fifth section, 
one FKP typical example shall be solved implementing the ten identified kinematics models. 
Comparing the results, three kinematics models shall be retained. The selected manipulator 
is a generic 6-6 in a realistic configuration, measured on a real parallel robot prototype 
constructed from a theoretically singularity-free design. Further computation trials shall be 
performed on the effective 6-6 and theoretical one to improve response times and result files 
sizes. Consequently, the effective configuration does not feature the geometric properties 
specified on the theoretical design. Hence, the FKP of theoretical designs shall be studied 
and their kinematics results compared and analyzed. Moreover, the posture analysis or 
assembly mode issue shall be covered. 
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2. Kinematics of parallel manipulator 

2.1 Kinematics notations and hypotheses 

 
 

 

Fig. 2. Typical kinematics chains  

The parallel Gough platform, namely 6-6, is constituted by six kinematics chains, fig. 2. It is 
characterized by its mechanical configuration parameters and the joint variables. The 
configuration parameters are thus OARf as the base geometry and CBRm as the mobile 
platform geometry. The joint variables are described as ρ the joint actuator positions 
(angular or linear). Lets assume rigid kinematics chains, a rigid mobile platform, a rigid base 
and frictionless ball joints between platforms and kinematics chains. 

2.2 Hexapod exact modeling 

Stringent applications such as milling or surgery require kinematics models as close as 

possible to exactness. Realistically, any effective configuration always comprises small but 

significant manufacturing errors, [Vischer 1996, Patel & Ehmann 1997]. Hence, any 

constructed parallel manipulator never corresponds to the theoretical one where specific 

geometric properties may have been chosen, for example, to alleviate singularities or to 

simplify kinematics solving. Two prismatic actuator axes may be neither collinear nor 

parallel and may not even intersect. Whilst knowing joints prone to many imperfections, 

then rotation axes are not intersecting and the angles between them are never 

perpendicular. Moreover, real ball joints differ from a perfectly circular shape and friction 

induces unforeseeable joint shape modification, which results into unknown axis changes. 

However, the joint axis angles stay almost perpendicular and any rotation combination shall 

be feasible. In a similar fashion, the Cardan joint axes are not perpendicular and may be 

separated by a small offset. Finally, the articulation center is not crossed by any axis.  

Identified the hexapode 138, the exact geometric model is then characterized by 138 
configuration parameters. Each kinematics chain is described by 23 parameters, as shown on 
fig. 2 and defined hereafter:  

• the 3 parameters of each base joint Ai with their error vector δAi , • the 3 joint Ai inter-axis distances є1a , є2a and є3a   
• each prismatic joint measured position li with its error coordinate δLi ,  

• the 3 parameters of the minimum distance between the two prismatic actuator axes: rd
G

,  

• the angular deviation between the two prismatic actuator axes: φ,  

• the 3 parameters of the platform joint Bi with their error vector δBi,  • the 3 joint Bi inter-axis distances and є1b, є2b and є3b 

www.intechopen.com



 Parallel Manipulators, Towards New Applications 

 

178 

To solve this model includes the determination of parameters which cannot be measured 
neither determined. Moreover, the model includes more variables than equations and 
therefore, its resolution would then only be possible through optimization methods. Relying 
on a calibration procedure would only determine configuration parameters by specifying an 
error margin consisting of a radius around joint positions and would not indicate the 
direction of the error vector. Hence, only an error ball becomes applicable to the model. In 
practice, the δAi and δBi joint error vectors shall reposition the respective kinematics chains 
by adding an offset to the joint centers. Thus, a random function shall compute the δAi and 
δBi vectors with the maximum being the error ball radius. Finally, the selected model, 
namely the hexapod 84, is effectively based on the hexapod 42 model with errors added to the 
configuration data and joint variables. 

2.3 Kinematics problems  

Definition 2.1 The kinematics model is an implicit relation between the configuration parameters 

and the posture variables, F( X
G

, Γ, OA|Rf,CB|Rm)=0 where Γ = {ρ1,ρ2,…, ρ6}. 
 

 
 

Fig. 3. Kinematics model 

Three problems can be derived from the above relation: the forward kinematics problem 

(FKP), the inverse kinematics problem (IKP) and the kinematics calibration problem, fig. 3. 

The two first problems shall be covered in this article. The inverse kinematics problem (IKP) 

is defined as: 
Definition 2.2 Given the generalized coordinates of the manipulator end-effector, find the joint 
positions.  

The 6-6 IKP yields explicit solutions from vector Γ = G( X
G

, OA|R f, CB|Rm ) and is used to 
prepare the FKP  which is defined as: 

Definition 2.3 Given the joint positions Γ, find the generalized coordinates X
G

 of the manipulator 
end-effector. 
The 6-6 FKP is a difficult problem, [Merlet 1994, Raghavan and Roth 1995] and explicit 

solutions X
G

 = G(Γ, OA|R f , CB|Rm) have not  yet been established. The difficulties in solving 
the FKP have hampered the application of parallel robot in the milling industry. 
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2.4 Vectorial formulation of the basic kinematics model 

 

 

Fig 4. The vectorial formulation  

The vectorial formulation produces an equation system which contains the same number of 
equations as the number of variables, fig. (4), [Dieudonne et al. 1972]. A closed vector cycle 
is constituted between the manipulator characteristic points: Ai and Bi, kinematics chain 
attachment points, O the fixed base reference frame and C the mobile platform reference 
frame. For each kinematics chain, a function between points Ai and Bi expresses the 

generalized coordinates X, such as 
i i
AB
JJJJG

 = U1(X). Inasmuch, vector 
i i
AB
JJJJG

is determined with 

the joint coordinates Γ and X giving a function U2(X, Γ). Finally, the following equality has 
to be solved: U1(X) = U2(X, Γ). 

3. The inverse kinematics problem 

For each kinematics chain, i = 1, ..., 6, each platform point |i RfOB
JJJG

can be expressed in terms of 

the distance constraint, [Merlet 1997]:  

 6...1,
22 == iBAl iii

  (1) 

Using the vectorial formulation, two equation families can be derived: displacement-based 
and position-based equations. 

3.1 Displacement based equations  

Any mobile platform position |OB  Rf

JJJG
which meets constraints 1 has a rotation matrix ℜ such 

that:  

 | | | , 1 6
f f mi R i R i ROB OC CB i= +ℜ⋅ =JJJG JJJG JJJG

…   (2) 
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Substituting 2 in 1, we obtain:  

 
2

2
| | | , 1 6

f m fR i R i Ril OC CB OA i= +ℜ ⋅ − =JJJG JJJG JJJG
…   (3) 

This last equation system can be developed and simplified, leading to the IKP : 

 ( ) ( )2 2
2

| | | | |f f f f mR i R R i R i R iil OC OA OC OA CB CB= − + − ℜ⋅ +JJJG JJJG JJJG JJJG JJJG JJJG
  (4) 

3.2 Position based equations 

In 3D space, any rigid body can be positioned by 3 of its distinct non-colinear points, 

[Fischer and Daniel 1992, Lazard 1992b]. The 3 mobile platform distinct points are usually 

selected as the 3 joint centers B1, B2, B3, fig. 5. The 6 variables are set as: |i RfOB
JJJG

= [xi, yi, zi] for i 

= 1 . . . 3. The |i RfOB
JJJG

parameters define the reference frame Rb1 relative to the mobile 

platform and B1 is chosen as its center. The frame axes u1, u2 and u3 are determined by the 3 

platform points:  

 
1 1 32

1 2 3 1 2

1 2 1 3

, ,
B B B B

u u u u u
B B B B

= = = ∧
JJJG JJJJJG
JJJJJG JJJJJG  (5) 

Any platform point M can be expressed by 
1
BM
JJJJG

= aMu1 + bMu2 + cMu3 where aM, bM, cM are 

constants in terms of these three points. Hence, in the case of the IKP, the constants are 

noted aBi, bBi, cBi, i = i . . . 6 and can explicitly be deduced from CB|Rm by solving the 

following linear system of equations:  

 
1

1 1 2 3| , 1 6
i i ib B B Bi RB B a u b u c u i= + + =JJJG

…   (6) 

 

 
 

Fig. 5. The platform three point coordinate system 
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Substituting relations 6 in the distance equations li2 = ║
i i
AB
JJJJG

 |Rf║, i = 1 . . . 6, the system can 

be expressed with respect to the variables xi, yi, zi , i = 1, 2, 3. Thus, for i = 1 . . . 6, the IKP is 
obtained by isolating the ρi or li linear actuator variables in the six following equations:  

 ( ) ( )222 , 1...3i i ix iyi
iyl x OA OA= − + − =JJJG JJJG   (7) 

 
1

2
2

| | , 4 6b fk R k Ril B O A i= − =JG JJJG
…   (8) 

4. The forward kinematics problem 

4.1 Displacement based equations 
There exist various formulations of the displacement based equation models. 

4.1.1 AFD1 - formulation with the position and the trigonometry identity  

The AFD1 formulation is obtained by replacing each trigonometric function of the IKP 
rotation matrix, 2, by one distinct variable, [Merlet 1987], for j = 1, 2, 3, then cj = cos(Θj), sj = 
sin(Θj). The end-effector position variables are retained. The 9 unknowns are then: {xc, yc, zc, 
c1, c2, c3, s1, s2, s3}. The orientation variables can either be any Euler angles or the navigation 
ones (pitch, yaw and roll). The orientation variables are linked by the 3 trigonometric 
identities, for j = 1 . . . 3, then c2j + s2j = 1 which complete the equation system:  

 ( ) ( )2
2

| | | | | , 1, ,6f f f f mR i R R i R i Ri iF OC OA OC OA CB L i= − + − ℜ⋅ − =JJJG JJJG JJJG JJJG JJJG
…   (9) 

 2 2 1, 1,2, 3j j jF c s j= + − =   (10)  

The system is constituted of 9 equations with 6 polynomials of degree 6 and 3 quadratics. 
The model is simply build by variable substitution without any computation. Thus, the 
coefficients remain unchanged. The number of variables is not minimal.  

4.1.2 AFD2 - formulation with the position and the trigonometric function change  

The end-effector position variables are retained. Rotation variable changes can apply the 
following trigonometric relations, [Griffis & Duffy 1989, Parenti-Castelli & C. Innocenti 1990, 
Lazard 1993]. For i = 1, 2, 3:  

 ( ) ( ) ( ) ( )( )2

2

2 1

1
cos,

1

2
sin,

2
tan

i

i
i

i

i
i

i
i

t

t

t

t
t +

−=+=⎟⎠
⎞⎜⎝

⎛= θθθ   (11) 

The 6 variables become {xc, yc, zc, t1, t2, t3}. The IKP equations (2) are rewritten to obtain the 6 
following equations:  

 ( ) ( )2
2

| | | | | , 1, ,6f f f f mR i R R i R i Ri iF OC OA OC OA CB L i= − + − ℜ⋅ − =JJJG JJJG JJJG JJJG JJJG
…   (12) 

The final equation system comprises 6 equations of order 8 with the high degree monomial 
being xi2xj2xk2xn2. This model has a minimal variable number. The polynomials coefficients 

www.intechopen.com



 Parallel Manipulators, Towards New Applications 

 

182 

are expanding due to variable change computation. Moreover, this representation is not 
intuitive. 

4.1.3 AFD3 - formulation with the translation and rotation matrix  

The intuitive way to set an algebraic equation system from the IKP equations 2 is to 

straightforwardly use all the rotation matrix parameters and the vector OC
JJJG

|Rf coordinates 

as unknowns, [Lazard 1993, Sreenivasan et al. 1994, Bruyninckx and DeSchutter 1996]. The 
variables are then {Xc, Yc, Zc, rij, j=1...3, i=1...3}. Since ℜ is a rotation matrix, the following 
relations hold: ℜtℜ = Id or det(ℜ) = 1. These relations are redundant since ℜtℜ is 
symmetrical and they generate the 7 following equations:  

 

⎪⎩
⎪⎨
⎧

−++−−=
++=++=++=

++=++=++=

221331231231321321331221322311332211

332332223121331332123111231322122111

2

33

2

32

2

31

2

23

2

22

2

21

2

13

2

12

2

11

1

0,0,0

1,1,1

rrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrr

rrrrrrrrr
   (13)  

Six rotation matrix constraints are then selected and preferably with the lowest degree 
polynomials. This leads to an algebraic system with 12 polynomial equations (13 and 1) in 12 
unknowns.  

 ( ) ( )2
2

| | | | | , 1, ,6f f f f mR i R R i R i Ri iF OC OA OC OA CB L i= − + − ℜ⋅ − =JJJG JJJG JJJG JJJG JJJG
…   (14) 

 12

13

2

12

2

117 −++= rrrF   (15) 

 12

23

2

22

2

218 −++= rrrF   (16) 

 12

33

2

32

2

319 −++= rrrF   (17) 

 
23132212211110 rrrrrrF ++=   (18) 

 
33133212311111 rrrrrrF ++=   (19) 

 
33233222312112 rrrrrrF ++=   (20) 

Finally, the model polynomials are quadratic and minimal. They are obtained by 
substitution and no computations are required. The coefficients are then unchanged. There 
is a very large number of variables. 

4.1.4 AFD4 - formulation with the translation and Gröbner Basis on the rotation matrix 
The rotation matrix constraints are not depending on the end-effector position variables. 
Hence, if one Gröbner Basis is computed from the rotation constraints, the Gröbner Basis is 
also independent of the position variables and thus constant for any FKP pose. Therefore, 
one preliminary Gröbner Basis can be calculated and saved into a file for later reuse. 
Hence, the rotation matrix constraints in the system 20 can be replaced by their Gröbner Basis 
comprising 24 equations where the coefficients are only unity. Thus, the algebraic system 
involves 30 equations and 12 variables. 
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4.1.5 AFD5 - translation and quaternion algebraic model 

Based on equation (2), quaternions can express mobile platform rotation, [Lazard 1993, 
Mourrain 1993b, Egner 1996, Murray et al. 1997]. The quaternion representation includes 4 
variables {q0; q1; q2; q3} where the vector q  = q1 i +q2 j +q3 k defines the platform specific 

rotation axis and q0 = cos(α/2) determines the coordinate expressing the rotation α along 
that axis. Thus, the rotation matrix ℜ used in equations 4 may then be expressed in terms of 
the quaternion coordinates and with Δ2 = q02 + q12 + q22 + q32, we can write: 

 
( ) ( )( ) ( )( ) ( )

2 2 2 2
0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2 2
1 2 0 3 0 1 2 3 2 3 0 1

2 2 2 2
1 3 0 2 2 3 0 1 0 1 2 3

2 2

2 2

2 2

q q q q q q q q q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q

−
⎛ ⎞+ − − − +⎜ ⎟ℜ = + − + − −⎜ ⎟⎜ ⎟− + − − +⎝ ⎠

Δ   (21) 

The end-effector position variables are retained. Moreover, one may implement a unitary 

quaternion: Δ2 = 1. Rewriting the IKP equations 4, we obtain 7 polynomial equations in the 7 
unknowns {Xc; Yc; Zc; q0; q1; q2; q3}: 

 ( ) ( )2
2

| | | | | , 1, ,6f f f f mR i R R i R i Ri iF OC OA OC OA CB L i= − + − ℜ⋅ − =JJJG JJJG JJJG JJJG JJJG
…   (22) 

 2 2 2 2
7 0 1 2 3 1F q q q q= + + + −   (23) 

The system contains 6 polynomials of degree 6 and 1 quadratic. The highest degree 
monomial is xi2 xj2. The quaternion has intrinsic coordinate redundancy which allows 
avoiding typical mathematical singularities seen in other representations. The number of 
variable is almost minimal. The rotation matrix system must be recomputed leading to 
larger resulting polynomial coefficients. 

4.1.6 AFD6 - translation and dual quaternion algebraic model 

Not only orientations can be formulated using quaternions, but also positions, [Husty 1996, 
Wampler 96]. The ℜ rotation matrix is then expressed in terms of the first quaternion Φ = {c0; 

c1; c2; c3}. In a sense, the second Ψ = {g1, g2, g3, g4} represents the end-effector position. 

Moreover, one relation can be written between the two quaternions: Φ =OC Ψ. This relation 

unfolds in the following equations from which two constraint equations, noted FC1 = 0 and 
FC2 = 0, are selected. Lets si = OA|Rf and ti = CB|Rm, then: 

 
1

1

0

0

2 0

t

t

t t

t t
i i

c c

g c

g g l c c

c sc g t c

=
=
− =
+ =

 For i = 2,…,6    (24) 

The dual quaternion system is thus constituted by the 8 following equations, for i = 1 … 6 : 

 ( ) ( )2
2

| | | | |f f f f mR i R R i R i Ri iF OC OA OC OA CB L= − + − ℜ⋅ −JJJG JJJG JJJG JJJG JJJG
  (25) 

 
17 FCF =   (26) 
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28 FCF =   (27) 

The system comprises 6 polynomials of degree 4 and 2 quadratics. The highest degree 
monomials are either xi4; xi3 xj or xi2 xj2. One more variable is added over the former 
quaternion model. The variable choice is not intuitive. 

4.2 Position based equations 

We shall examine four formulations derived from the position based equations. Every 
variable has the same units and their range is equivalent. 

4.2.1 AFP1 - three point model with platform dimensional constraints 

The 3 platform distinct points are usually selected as the three joint centers B1, B2 and B3, fig. 

5. The 6 variables are set as: OB
JJJG

i|Rf = [xi, yi, zi] for i = 1 …3. 

Using the relations 6, the constraint equations Li2 = ║
i i
AB
JJJJG

|Rf║2, i = 1, …, 6 can be expressed 

with respect to the variables xi, yi, zi, i = 1, 2, 3. Together with equations 30, they define an 
algebraic system with 9 equations in 9 unknowns {x1, y1, z1, x2, y2, z2, x3, y3, z3}. The resulting 
kinematics chain system becomes: 

 ( ) ( ) ( ) 3...1,2222 =−−+−+−= iLOAxOAyOAxF iixiiyiixii
  (28) 

 
1

2
2

| | , 4 6b fj R j Rj jF B OA L j= − − =JG JJJG
…   (29) 

The mobile platform geometry yields the following three distance equations: 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) 2

|23

2

23

2

23

2

23

2

|239

2

|13

2

13

2

13

2

13

2

|138

2

|12

2

12

2

12

2

12

2

|127

mf

mf

mf

RR

RR

RR

BBzzyyxxBBF

BBzzyyxxBBF

BBzzyyxxBBF

=−+−+−−=
=−+−+−−=
=−+−+−−=

  (30) 

Together with equations 30, they produce an algebraic system with 9 equations with 9 
unknowns {x1, y1, z1, x2, y2, z2, x3, y3, z3}. In all instances, it can be easily proven that this 6-6 
FKP formulation yields 9 quadratic polynomials. 
The system variable choice is relatively intuitive. Each equation polynomial is always 
quadratic. However, the b1 reference frame and the platform points Bi in the b1 frame require 
computations, which usually result into coefficient size explosion. The variable number is 
not minimal. 

4.2.2 AFP2 - the three point model with platform constraints 

The former system can be slightly modified by replacing the last mobile platform constraint 
with a platform normal vector one. Hence, lets take the two mobile platform vectors 

1 2
B B
JJJJG

and
1 3
B B
JJJJG

, then the last constraint is calculated from these two vector multiplication: 
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( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
mm

mf

mf

RR

RR

RR

BBBBzzzzyyyyxxxxF

BBzzyyxxBBF

BBzzyyxxBBF

|13|231213121312139

2

|13

2

13

2

13

2

13

2

|138

2

|12

2

12

2

12

2

12

2

|127

∧−−∗−+−∗−+−∗−=
=−+−+−−=
=−+−+−−=

 (31) 

The result is still an algebraic system with nine equations in the former nine unknowns 
 {x1, y1, z1, x2, y2, z2, x3, y3, z3}. The 6-6 FKP formulation using this three point model is 
constituted by nine quadratic polynomials. 

4.2.3 AFP3 - the three point model with constraints and function recombination 
By rewriting the IKP as functions, the algebraic system comprises three equations and three 
functions in terms of the nine variables: x1, y1, z1, x2, y2, z2, x3, y3, z3, equation (29). 

 ( ) ( ) 3...1,222 =−−+−= ilOAyOAxF iiyiixii
  (32) 

 
1

2
2

| | , 4 6b fk R k Ri iC B O A l i= − − =JG JJJG
…   (33) 

Hence, three constraints are derived from the following three functions, [Faugère and 
Lazard 1995]. Two functions can be written using two characteristic platform vector norms 
between the B1,B2 distinct points and the B1,B3 ones. The last function comes from these  
vector multiplication. 

 
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
mm

mf

mf

RR

RR

RR

BBBBzzzzyyyyxxxxF

BBzzyyxxBBF

BBzzyyxxBBF

|13|231213121312139

2

|13

2

13

2

13

2

13

2

|138

2

|12

2

12

2

12

2

12

2

|127

∧−−∗−+−∗−+−∗−=
=−+−+−−=
=−+−+−−=

 (34) 

Furthermore, the three last equations (F7, F8, F9) are computed by the following function 
sequential combinations:  

F7 = −C7 + F1 + F2 

 F8 = −C8 + F1 + F3   (35) 

F9 = 2∗C9 + F7 + F8 − 2∗ F1 

The formulation is completed with other function combinations obtained by the following 

algorithm leading to three middle equations (F4, F5, F6). Let d7 = ║
2 1
B B
JJJJG

|Rmj║, d8 = 

║
3 1
B B
JJJJG

|Rm║2 and d9 = ║
3 2
B B
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|Rm║, then for i = 4, 5, 6, we compute: 
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The result is an algebraic system with nine equations with the nine unknowns. The 6-6 FKP 
formulation using this modified three point model includes six quadratic and three quartic 
polynomials. The system includes polynomials of higher degree than for the former two 
position based models. Computations cause to coefficient expansion. 

4.2.4 AFP4 - the six point model 

The six mobile platform Bi joints can be used in defining 18 variables, [Rolland 2003]. Taking 
the IKP equations (8), a position based variation is obtained:  

 ( ) ( ) ( ) 6...1,
2222 =−+−+−= iOAxOAyOAxl ixiiyiixii

  (37) 

The system is completed with 12 distance constraint equations selected among the distinct Bi 
passive platform joints. Here are some examples: 
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The formulation results in 18 polynomials in the 18 unknowns:  
{x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4, x5, y5, z5, x6, y6, z6}. The system is then constituted of 
quadratic polynomials. This variable choice is intuitive and the system yields minimal 
degree. Finally, the number of variables is maximal. 

5. Solving polynomial systems using exact computation  

5.1 Mathematical system solving 

Kinematics problems contain systems of several equations containing non-linear functions 
with various variable numbers. These systems can be difficult to solve, especially in the 
general 6-6 cases and response times actually makes them inappropriate for 
implementations in design, simulation or control. In some instances, the results may appear 
to be faulty bringing doubts to the reliability of the methods. 
If left without any reliable and performing methods, the tendency, in engineering practice, 
would be to convert the difficult models into simpler linearized ones. In material handling, 
this proposal might suffice, however, in high speed milling where the accuracy 
requirements are more severe, any simplification can have a dramatic impact, whereby 
result certification becomes an important issue. 
However, with proper polynomial formulation, algebraic methods can lead to at least 
certified and even exact results, whereas numeric methods, unless they implement proper 
interval analysis, cannot actually obtain certified results since they are prone to numeric 
instabilities or matrix inversion problems. Therefore, although time consuming, algebraic 
methods are preferred since they handle integer, rational and symbolic values as such 
without any truncation or approximation, even when manipulating intermediate results. 
Hence, there will be no loss of information. 
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Solving non-linear equation systems will usually result in several complex solutions, out of 
which a certain subset are real solutions. However, only the real solutions bear practical 
significance, since they correspond to effective manipulator poses. 

5.2 Calculation accuracies 

The calculation accuracies are depending upon the type of arithmetic, the behavior of the 
calculation methods and the quality of the implemented algorithms. 
Definition 5.1 An exact calculation is defined as a calculation which always produces the same exact 
result to the same specific mathematical problem. 
The result does not contain any error. Its representation is also exact. 
Definition 5.2 A reliable computation is defined as one which will always give the same result from 
the same initial input data presented in the same format. 
Definition 5.3 A certified calculation is defined as a reliable computation giving a result distant 
from the true solution by a certain maximum known accuracy. 
Hence, such a calculation may not be exact. However, the result contains some exact digits. 
Hence, we shall try to apply a method that computes certified results and if possible exact 
ones. 

For example, lets take the univariate function f1(x) = x2 − 4/25. Computing f1 = 0, we obtain 
the exact response: {−2/5, 2/5}. The closed-form resolution calculates exact results with 
rational numbers. Therefore, the result is certified without any error. 
Lets consider f2(x) = x2 − 5. Solving f2 = 0, the result will be two irrational numbers which can 
only be represented by truncation. However an interval can be certified to contain the exact 
result: {[2, 5/2], [−5/2, 2]}. Wherefore, exact computations keep intermediate results in 
symbolic format whenever possible and only revert to rational or floating boundary 
numbers for display purposes. 
Therefore, any real number can be coded by an interval which width corresponds to the 
required accuracy. However, the difficulty lies in insuring that the interval contains the 
exact result which is not known a priori. 
 

 

Fig. 6. Bloc Diagram of the Continuation Method 

5.3 Solving a non-linear system 

Two method groups have been advocated to find all solutions of the FKP, namely: 
continuation methods and variable elimination ones, [Raghavan and Roth 1995]. The first 
approach is usually realized in a numeric environment and the later algebraic. 
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5.4 Continuation method with homothopy 

In order to compute several solutions, the continuation method can be implemented with a 

homothopy process. The Continuation approach implements a numerical iterative method 

which is successively repeated in order to progressively transfer from an original equation 

system which solutions are predetermined to another system relatively close to the former, 

Fig. 6. 

Let a system of equation be F(X) = 0 with variables X = {x1,…,xn}; we wish to find the 

solution to this equation system. Let G(X) = 0 be a similar equation system which roots are 

already known, namely the variety Vr (I)G; then, we set the continuation process as H(X, λ) = 

G(X)+ λ (F(X)−G(X)) and commence with λ = 0. It provides for a mechanism to convert an 

original equation system into a final one through several steps. At each step, H(X, λ) is 

successively computed with a new value of λ which is increased by a small arbitrary 

increment δλ such that λ ∈ {0,…, 1}. The homothopy principle assumes connectivity between 

solutions of each system computed with the various λ. More generally, if the system H(X, λ) 

with λ as a variable would be solved, it would result in paths as solutions. 

 
 

 
 

Fig. 7. Examples of path following with the Continuation Method 

The continuation method cannot solve any equation system as such and, at each step, when 

λ is instanciated, the H(X, λ) system roots are computed by a typical iterative method, either 

the Newton one or the new Geometric Iterative Method which is a potentially good alternative, 

[Petuya et al. 2005]. 

This method was first applied to classical robotics kinematics, [Tsai & Morgan 1984] and 

then applied to solve the parallel manipulator FKP, [Kholi et al. 1992, Sreenivasan and P. 

Nanua 1992]. 

Advocating that a little change on parameters of one system shall cause only a small change 

on solutions, the continuation method could be used to find the 40 solutions on some 6-6 

FKP cases, [Raghavan 1993]. 

It is feasible to construct an efficient and reliable method; however, the method is still 

unproven. Moreover, continuation does not alleviate the problems related to the application 

of a numeric iterative method. 
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This method can be somewhat delicate to implement. There exist several scenarios which 

might pose significant problems depending on how the solution paths evolve from λ = 0 to λ 

= 1, see fig. 7, where solutions: 

- go to or come from infinity, 
- merge or split, 
- start complex and become real, 
- start real and become complex. 

Therefore, proper implementation would require a priori continuation process verification 

which is still an open question, since this would require solving a one-dimensional system 

H(X,λ) where λ is left as a variable and this is an even more difficult problem. Inasmuch, in 

many instances, finding a nearby equation system with known roots may not be always be 

feasible. Then, there is also an issue on what constitutes a sufficiently similar system. 

However, it is very difficult to determine precisely what the meaning of sufficiently similar 
is. 

5.5 Variable elimination 
5.5.1 Introduction 

Most algebraic methods which were implemented to solve the parallel manipulator FKP 

apply one form of variable elimination. Let an algebraic system F(X) = 0 be a system of 

polynomial functions fi(X), i = 1,…,m with variables X = {x1,…,xn}, the variable elimination 

approach consists in the transformation of the original system F(X) = 0 into another system 

H(Y) = 0 with functions gj(X), j = 1,…,p with variables Y = {y1,…,yr} where r < n. Ultimately, 

the goal is to find a method which allows to compute an equation system H(Y) in either 

triangular format or preferably in univariate form which would be the easiest to solve. 

Most variable elimination methods are usually divided into four steps: 
- Step 1: Variable elimination. 
- Step 2: Solving the univariate equation. 
- Step 3: Return or extension to original system variables. 

We will examine the variable elimination methods which were successfully applied to solve 

the FKP from which two can be identified: 

- method based on resultant calculation including the so-called dialytic elimination, 
- method based on Gröbner basis calculation. 

5.5.2 Resultant method 

Variable elimination can be implemented through a recursive method based on resultants. 

As input, we give a system of equations with rational coefficients. The output will be one 

univariate polynomial equation in terms of one of the original variables. Each elimination 

step involves two polynomial equations which results in one equation with the number of 

variable reduced by one. 

Definition 5.4 [Cox et al. 1992] Let a system be F(X) = {f1,…,fn} ∈ Q[x1, … , xn]; let P = fi and  

R = fj where fi = apx1p +…+a0 and fj = bqx1q +…+bq with i, j ∈ {1, 2,…,n} and ai, bi ∈ 

Q[x2,…,xn], let p = deg(P) et r = deg(R) knowing that p, r ∈ N* ; suppose that a0 ≠ 0 and b0 ≠ 0 ; 

then Res(f, g, x1) = det(M) which is the resultant of P and R in terms of x1 where M is the identified 

as the Sylvester matrix. 

Then, the Sylvester matrix can be expressed in terms of the polynomial coefficients: 
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  (39) 

Inasmuch, we can write: Res(P, R, x1) = det(Sylv(P, R, x1). If we examine the Sylvester matrix, 
we can observe that part with the ai parameters contains m columns and the one with bi n 
columns.The following proposition holds and its proof is described in [Cox et al. 1992]: The 
resultant Res(f, g, x) is the first ideal of elimination < f, g > ∩ k[x2,…,xn]; moreover, Res(f, g, x) = 0 
iff f, g have a common factor in k[x1,…,xn] which has a positive degree in x. The nature of this 
factor has to be determined and we wish to establish if it is only one root of functions f and 
g. To answer that question, the following corollary will be employed: If f, g ∈ C[X] then Res(f, 
g, x) = 0 iff f and g contain a common root in C. This common root is determined by computing 
det(Sylv(P, R, x1) = 0. The nature of this root has to be determined, notably if it is a partial 
one and the answer will come from the following proposition, [Cox et al. 1992] : Knowing 
that f, g ∈ C[X], let a0, b0 ≠ 0 and a0, b0 ∈ C[x2,…, xn], if Res(f, g, x) ∈ C[x2,…,xn] cancels at 
(c2,…,cn), then we obtain that either a0 b0 = 0 at (c2,…,cn) or either ∃ c1 ∈ C such as f and g cancel. 
In certain instances, the head terms of the polynomials can cancel which will result in the 
cancellation of the determinant and the process consequently adds one extraneous root. 
In order to obtain the univariate equation, a recursive algorithm will be applied. Firstly, we 
calculate n − 1 resultants hk = Res(fk+1, f1, x1) on variable x1 for k = 1,…,n − 1. Secondly, we 
compute n − 2 resultants h(2)j = Res(hj+1, h1, x2) on variable x2 for j = 1,…,n − 2 and we 
continue in the same fashion until the univariate equation is determined. An almost 
triangular equation system is constructed. 
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  (40) 

The last H(xn) is the targeted univariate equation. However, this equation cannot be 
considered equivalent to the initial algebraic system because the head terms can cancel. 
The return step to original variables is performed by substituting back through the 
triangular system. The equation is solved H(xn) = 0 and we obtain a series of w roots {xn}. We 
take the w roots, one by one, which is introduced in one of the equations h1(n−2) (xn−1) = 0 or 

h2(n−2) (xn−1) = 0 and obtain the w roots {xn−1}. We continue until x1 is isolated. 
The 6-6 FKP has been solved applying resultants, [Husty 1996], in a computer algebra 
environment to avoid intermediate result truncation, since, in a sense, parameter truncation 
can be envisioned as changing the manipulator configuration. 
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A variation to the resultant method is called the dialytic elimination. Let the variable set be 
X = {x1,…,xn} of the algebraic system F(X) = 0; then select any variable xi and set it as the 
hidden variable, then a monomial vector is constructed around xi for the system F(X) which 

is expressed as W = (1, xi, xi2,…). The FKP is rewritten as a linear system in terms of W : 

 0=WA   (41) 

where : W ≠ 0 

Being a generalization of Res(P, Q, x1) = det(Sylv(P, Q, x1), it is subjected to the same risks of 
root addition through the head term cancellation. Dialytic elimination has been 
implemented to solve the FKP of the 3-RS or MSSM parallel manipulators, [Griffis and 
Duffy 1989, Dedieu and Norton 1990, Innocenti and Parenti-Castelli 1990]. Satisfactory 
results were produced on simple parallel manipulators, [Raghavan and Roth 1995]. 

5.6 Gröbner Bases 

Lets denote by Q[x1,…,xn] the ring of polynomials with rational coefficients. For any n-uple 
μ = (μ1,…, μn) ∈ Nn, lets denote by Xμ the monomial X1

μ1 ·...· Xn
μn . If < is an admissible 

monomial ordering and ( )∑ == r

i i

i

XaP
0

μ any polynomial in Q[X1,...,Xn], the following 

polynomial notations are necessary : 
- LM(P,<) = maxi=0…r , <Xμ(i) is the leading monomial of P for the order <, 

- LC(P,<) = ai with i such that LT(P) = Xμ(i) is the leading coefficient of P for <, 
- LT(P,<) = LC(P,<)· LM(P,<) is the leading term of P for <. 

Lets denote by x1,…,xn the unknowns and S = {P1 =,…,Ps} any polynomial system as a subset 
of Q[x1,…,xn]. A point α ∈ Cn is a zero of S if Pi(α) = 0 ∀i = 1…s. Actually, any large 
polynomial equation system cannot be directly or explicitly solved. Thus, it is necessary to 
revert to mathematical objects containing sufficient information for resolution. Any 
polynomial system is then described by an ideal: 
Definition 5.5 [Cox et al. 1992] An ideal I is defined as the set of all polynomial P(X) that can be 
constructed by multiplying and adding all polynomials in the ring of polynomials with the original 
polynomials in the set S. 
A Gröbner Basis G is then as a computable polynomial generator set of a selected polynomial 
set S = {P1,…,Ps} with good algorithmic properties and defined with respect to a monomial 
ordering. This basis is a mathematical object including the ideal I information. The 
lexicographic and degree reverse lexicographic (DRL) orders are usually implemented, [Cox et 
al. 1992, Geddes et al. 1994]. Given any admissible monomial ordering, the classical 
Euclidean division can be extended to reduce a polynomial by another one in Q[X1,…,Xn]. 
This polynomial reduction can be generalized to the reduction by a polynomial list. The 
reduction output depends on the monomial ordering < and the polynomial order. 
Definition 5.6 Given any admissible monomial ordering, <, a Gröbner Basis G with respect to < of 

an ideal I ⊂ Q[X1,…,Xn] is a finite subset of I such that: ∀f ∈ I , ∃g ∈ G such that LM(g,<) divides 
LM(f,<). 
Some useful Gröbner Basis properties are described in the following theorem: 
Theorem 5.1 Let G be a Gröbner Basis G of an ideal I ⊂ Q[X1,…,Xn] for any < monomial ordering, 

then a polynomial p ∈ Q[X1,…,Xn] belongs to I if and only if the reduction algorithm Reduce (p, G,< 
) = 0; the reduction does not depend on the order of the polynomials in the list of G; it can be used as a 
simplification function. 
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