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1. Introduction

Based on its analogical link with nature, ant colony optimisation (ACO) aims to determine
the least cost solution to an optimisation problem via the process of stigmergy
(Dorigo et al. 2000). That is, the colony of artificial ants repeatedly stochastically constructs
solutions and utilises the information gained from these solutions to guide the construction
of future solutions. This process occurs in an attempt to increase the likelihood of the colony
constructing the optimal solution. Each individual ant operates essentially randomly, but
through alteration of its environment, a colony learns and assimilates information as a
collective.

A conceptualised characteristic of this process is that the colony’s searching behaviour
changes with time. That is, it undergoes a highly variable, and broad reaching, initial search
as the colony learns about the solution space, followed by a subsequent intensified searching
in smaller regions of the solution space that the colony has learned as being promising. As
such, ACO can be visualised as an initially widely spread colony converging to a point, or
region, within the solution space.

Typically algorithms, such as ACO, are assessed only based on their performance in terms
of the quality of the solutions found, and the computational effort required to find them. In
addition to these performance based indicators, much can be learned about the different
algorithms by considering the behaviour of their searching and converging process.
Algorithm developers qualitatively discuss mechanisms as being exploration encouraging
or exploitation encouraging (Colorni et al. 1996). The question arises as to the actual
manifestation of these mechanisms in an algorithm’s searching behaviour in terms of
measurable quantities.

Within this chapter, two simple statistics for achieving this are implemented. A statistic is
formulated that describes the topological nature of the spread of solutions through the
solution space, termed the mean colony distance. Combining this statistic with a measure of
the quality of the solutions being found, it is shown to give significant insight into the
behaviour of selected ACO algorithms as the colonies converge. This chapter presents a
purely computational analysis. For a theoretical treatment of ACO, the reader is referred to
other work (e.g. Gutjahr, 2002).

Source: Swarm Intelligence: Focus on Ant and Particle Swarm Optimization, Book edited by: Felix T. S. Chan and Manoj
Kumar Tiwari, ISBN 978-3-902613-09-7, pp. 532, December 2007, Itech Education and Publishing, Vienna, Austria
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In this chapter, a case study based analysis of the convergence behaviour of four ACO
algorithms applied to the water distribution system problem (WDSP) is presented. Water
distribution systems are one of the largest and most costly infrastructure in all developed
societies. As such, the problem of the optimal design of such systems has been a large area
of active research within the Civil Engineering field since the late 1960s. The WDSP
represents a difficult, highly constrained combinatorial optimisation problem.

The four ACO algorithms studied are: ant system (AS), the first and most basic form of ACO
(Dorigo et al. 1996); the elitist AS (ASeii), a version of AS utilising an elitism strategy
(Dorigo et al. 1996); the elitist-rank AS (ASrank), similar to ASee but with a rank based
prioritisation of information about the solution space obtained by the ants (Bullnheimer et al.
1999); the max-min AS (MMAS), an ACO algorithm that bounds the evolution of the
artificial pheromone trails (Stiitzle & Hoos 2000). On a macro level, these algorithms differ
in their assimilation of new information with previously learned information. By
considering the comparative convergence behaviour of these algorithms, insight into the
practical outworking of their different formulations is gained.

The chapter is structured as follows. Firstly, in section 2 ACO is briefly presented and the
pheromone updating mechanisms of the four algorithms are outlined. In section 3, the
WDSP is explained and defined. Section 4 presents the application of ACO to the WDSP,
where the issues of unconstrained problem transformation and problem graph structure are
discussed. In section 5, a topology of the solution space is defined and the topological
measure used to quantify the spread of the colony’s solutions through the solution space is
presented. In section 6, a detailed case study based analysis of the convergence behaviour of
the algorithms is undertaken. Finally, the conclusions are given in section 7.

2. Ant Colony Optimisation Algorithms

This section is intended to provide a brief overview of ACO for the purpose of representing
it in a multi-graph framework, so that its application to the WDSP in section 4 is easier to
understand. For a detailed discussion of the traditional formulation, the reader is referred to
Dorigo et al. (1999).

ACO is an evolutionary algorithmic optimisation process based on the analogy of a colony
of foraging ants determining the shortest path between a food source and its nest (see
Dorigo et al. (1996) for examples). The colony is able to optimise the excursions of its ants
through the process of stigmergy (Dorigo et al. 2000), where stigmergy refers to the indirect
form of communication between the ants that arises from their deposition of pheromone
trails. These trails act as sign posts encouraging ants to follow them. Gradually, over time
increasingly shorter pheromone trails will be reinforced with greater amounts of
pheromone. This in turn will encourage more ants to follow them, potentially finding small
improvements, leaving the pheromone on the less frequently used, and longer, paths to
evaporate into non-existence.

ACO deals with a combinatorial optimisation problem organised as a graph G(N, L), where N
is the set of nodes and L is the set of edges linking the nodes (the structure of the graph is
unique for each problem type). A candidate solution S to the problem is constructed by an
ant selecting a feasible path through G(N, L). The feasibility of the path is ensured by a
special constraint function ®, which lists the edges that are available for selection based on
the previously constructed path of the ant. That is, given an ant has constructed a path §,
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then ©(S’) describes the set of edges available for selection. An ant’s tour is complete when
O(S) = ©, at which point, S’ € S, the set of all feasible tours through the graph.

A probabilistic decision policy is implemented at each sequential node in an ant’s path for
the selection of a new edge from the set ® to add to their partially constructed path S’. This
policy is dependent on the pheromone intensity on a particular edge (representative of the
colony’s learned information) and the desirability of the edge (a measure of the local effect
that the selection of a particular edge will have on the value of the objective function
(Dorigo et al. 1996)). More precisely, the probability p;s(7) that edge j € ©(S") will be selected
in iteration 7 given an ant’s partially constructed tour S’ is

[ 0F ) (1)
P =S O T

1€0(S")

where z(f) is the pheromone concentration associated with edge j at iteration #, 7; is the
desirability factor and, « and S are the parameters controlling the relative importance of
pheromone and desirability, respectively, in the decision process. If o >> f the algorithm
will make decisions based mainly on the learned information, as represented by the
pheromone, and if §>> « the algorithm will act as a greedy heuristic selecting mainly the
lowest cost options, disregarding the impact of these decisions on the final solution quality.
At the end of an iteration, all ants from the colony have constructed feasible paths through
G(N, l). The edge pheromone values 7, j€L are updated to include the new information
gained by the colony from the set of the new paths created by the colony
2(t) = {Si(0), ..., S,(1)}, where Si(r) € S is the path chosen by ant &, and m is the number of ants
in the colony. The pheromone is updated from one iteration to the next by the transitional
relationship

'rj(t+l): p';/.(t)+ Arj(Z(t),t) @

where p €(0, 1) is the pheromone persistence factor that mimics the natural operation of
pheromone decay, and governs the influence of previously learned information on future
decisions, and A7(X(?),?) is the pheromone addition for edge j, which governs the influence
of the newly acquired information from iteration 7, on future decisions. The function
AT(X(?),f) can be viewed as the value placed on edge j based on the information contained in
%(#), where value can be interpreted to mean the likelihood that edge j is contained in S, the
optimal solution to the problem. Practically, this means that edge j € S is considered to have
more value than j'€ S” if f(S) <f(S’). The information in this set is essentially the resulting
sample of relationships between the edges of the solutions in X(7) and the corresponding
function values of these solutions. The premise of ACO is that by repeated iteration of this
process the colony of ants will collectively guide itself to find the optimal path through
GN, 1),

The main differentiating factor between ACO variants is the formulation of Azi(X(),?), as this
describes the manner in which new information is assimilated with existing learned
information. In the following subsections, the pheromone updating procedures of the four
ACO variants studied in this chapter are described. All of these algorithms use the decision
policy from (1).
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2.1 Ant System (AS)

Ant System (AS) (Dorigo et al. 1996) is the original and simplest ACO algorithm. For AS, all
of the ants within the colony add pheromone to their paths, and as such Az(f) is a function
of all the solutions found at iteration ¢ and is given by

AT;(’):Z%IW){]}’ ®3)

where m is the number of ants in the colony (i.e. the number of solutions generated at each
iteration), Q is the pheromone addition factor, f( ) is the objective function to be minimised
and Iaf{a} is the indicator function (equal to one if 1€ A and zero otherwise). From (3), it is
clear that better solutions (i.e. solutions with lower objective f values) are rewarded with
greater pheromone addition.

2.2 Elitist Ant System (ASeiite)

To exploit information about the current global-best solution, Dorigo et al. (1996) proposed
the use of an algorithm known as Elitist Ant System (ASeiie). This algorithm uses elitist ants,
which only reinforce the path of the current global-best solution after every iteration
(analogous to elitism strategies used in genetic algorithms). Thus, the pheromone addition is
given by

400 S 7w U 7o) X

where the first part of (4) corresponds to the pheromone addition from the colony, as
defined for AS in (3), and the second part corresponds to the pheromone addition from the
elitist ants, where ois the number of elitist ants and S, (f) is the set of edges comprising the
global best solution found up until iteration ¢ (i.e. this is equivalent to the addition of
pheromone from o ants). The updating rule for ASe. allows for exploration, as each of the
m solutions found by the colony receives a pheromone addition, but also encourages
exploitation, as the global-best path is reinforced with the greatest amount of pheromone.
As oincreases, so does the emphasis on exploitation.

2.3 Elitist-Rank Ant System (AS;ank)

Proposed by Bullnheimer et al. (1999), the Elitist-Rank Ant System (ASiank) further develops
the idea of elitism used in ASjit to involve a rank-based updating scheme. In AS;.nk, o elitist
ants reinforce the current global-best path, as in ASji, and the ants that found the top o -1
solutions within the iteration add pheromone to their paths with a scaling factor related to
the rank of their solution. The pheromone update formula for AS;.ux is given by

Q RS 0 . ()
Az(t)=0 Is o1+ Y (e -k) I, ol
J f Sgb(t) th(’){ ; fiS(k)(t)i S(k)(’){
where the first part of (5) corresponds to the addition from the elitist ants, and the second
part from the ranked ants, where Sy (?) is the set of edges selected by the kth ranking ant in
iteration . The edges that are selected by the kth ranking ant receive pheromone equivalent
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to the addition from (o —k) ants. The potential advantages of this formulation, compared
with AS and ASeiite, are (i) only the top o— 1 ranked ants are used to lay pheromone (and not
all m ants), which allows for the retention of only good information, and (ii) greater
importance is given to the higher ranking ants (i.e. the top ranked solution receives o —1
times the normal amount of pheromone and the (o — 1)th ranked solution receives only the
normal pheromone amount), so that better edges receive more pheromone.

2.4 Max-Min Ant System (MMAS)

To overcome the problem of premature convergence whilst still allowing for exploitation,
Stiitzle and Hoos (2000) developed the Max-Min Ant System (MMAS). The basis of MMAS
is the provision of dynamically evolving bounds on the pheromone trail intensities such that
the pheromone intensity on all paths is always within a specified lower bound znin(f) of a
theoretically asymptotic upper limit zmax(f), that is zmin(f) £ 7j(f) < Tmax(?) for all edges j. As a
result of stopping the pheromone trails from decaying to zero, all paths always have a non-
trivial probability of being selected, and thus wider exploration of the search space is
encouraged. The pheromone bounds at iteration ¢ are given by (Stiitzle & Hoos 2000)

o Ol-3PL), 10 ©)
0o, e, 0 170)

where Py is the (user selected) probability that the current global-best path, Sg,(7), will be
selected, given that all non-global best edges have a pheromone level of 7,,(f) and all global-
best edges have a pheromone level of zmax(f), and NO,yy is the average number of edges at
each decision point. It should be noted that lower values of P, indicate tighter bounds.

As the bounds serve to encourage exploration, MMAS adds pheromone only to the
iteration-best ant’s path S;y(f) at the end of an iteration in order to ensure the exploitation of
good solutions. To further exploit good information, the global-best solution Sg(?) is
updated every Ty, iterations. The MMAS pheromone update is given by

Ar,(t):ﬂ%z&,m{mﬂﬁysy,,(,>{j}-zN{r/Tgh}' @)

where the first part of (7) corresponds to the addition from the iteration best ant, and the
second part from the global best ant, where N is the set of natural numbers.

MMAS also utilises another mechanism known as pheromone trail smoothing (PTS). This
reduces the relative difference between the pheromone intensities, and further encourages
exploration. The PTS operation is given by

Tj(t)(_rj(t)+5(Tmax(t)_rj(t))’ ®)

where 0<6<1 is the PTS coefficient. If § = 0, PTS has no effect, whereas if 6 = 1, all
pheromone paths are scaled up to 7,,(¢). The pheromone updating process of MMAS can be
summarised as the three step process of: (i) decay and addition by (2) and (7), (ii) bounding
by (6), and (iii) smoothing by (8).
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3. The Water Distribution System Optimisation Problem

Water distribution systems (WDSs) consist of the system of pipes, pumps, valves efc. that
delivers water from sources to consumers. From an optimisation perspective, the water
distribution system problem (WDSP) is defined as the selection of the lowest cost
combination of appropriate component sizes (e.g. pipes) and settings (e.g. valve settings)
such that the criteria of water demands and other design constraints (e.g. minimum
pressures) are satisfied. A simple example of this is as follows. Consider two networks, the
first comprising pipes with small diameters and the second comprising pipes with large
diameters. The first network has a low cost, but as the pipe diameters are small, the
frictional pressure loss through the network will be greater, which is likely to result in
insufficient pressure at the demand points (nodes). The second system is likely to provide
more than adequate pressure, as the pipe diameters are large, but is also more expensive.
The optimal design is the least cost combination of pipe sizes that are able to provide
adequate pressure at each of the nodes. Within the WDSP, the decision variables are
associated with the pipes within the system where, more specifically, the design options are
the following, (i) a diameter for a new pipe, (ii) the cleaning of an existing pipe to reduce the
hydraulic resistance, and (iii) no action.

As outlined in Zecchin et al. (2005), for the WDSP, a design involves the selection of a series
of design options for all or some of the pipes within the network. A WDS design
Q={Q, .., Q,} is defined as a set of n decisions where # is the number of pipes to be sized
and/or rehabilitated, and €; is the selected option for pipe i, and is defined as
QieAi={m,1, ..., @50}, where A; is the set of all NO; options available for pipe i. For each
option there is an associated cost, ¢(Q;), of implementing that option, and one of three
actions as listed above.

The constraints on a solution are categorized as design constraints and hydraulic
constraints. A design constraint is an inequality constraint that defines the minimum
acceptable performance of a design, whereas hydraulic constraints are equality constraints
that describe the distribution of the flow of water through the WDS (based on the
fundamental equations for fluid flow within a closed conduit and the governing equations
for fluid flow within a looped network). The design constraint for the WDSP specifies the
minimum allowable pressure at each node, and is given as

Vi=1L.,N ., )

node pattern

H, >H,, Yi=l.,N

where H;; is the actual head at node 7 for demand pattern j, H;; is the minimum allowable
head at node i for demand pattern j, Ny is the total number of nodes and Ny is the
number of demand patterns.

The hydraulic equations for fluid flow within a WDS are the conservation of mass and the
pipe headloss equations. As the fluid is assumed to be incompressible, the conservation of
mass equations dictate that the flow rate into a node is equal to the flow rate out of a node.
This can be expressed as

. . , 10
0 +30,-Y0,=0 Vi=l.N,. %=L.N,,, (10)

ke®, ; ke®,
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where (Q;; is the demand for node i and demand pattern j (by definition, a positive demand
is one that draws water from the node), 0y, is the flow in pipe k for demand pattern j, ®,; is
the set of all pipes for which node i is the upstream node, and @, is the set of pipes for
which node i is the downstream node (note that the sign convention is that positive pipe
flow occurs from upstream to downstream).

The headloss equation is written as (Streeter & Wylie 1997)

Lo N pern 7 (11)

ot pattern

H, ,—H, =T,

0.0, i=1,..,N

pipe? J =

where rgq, is a hydraulic resistance term associated with decision Q;, a is the flow exponent,
and Ny is the number of pipes, including new pipes. The headloss equation used within
most WDSPs is the Hazen-Williams equation, for which rq_is expressed as

ro, = ACy'Dy'L,  Vi=1..,N (12)

pipe

Vi =1 N e
where L; is the length of pipe i, D is the diameter of pipe 7 for design Q, Cq, is the Hazen-
Williams coefficient for pipe i for design Q, A is a constant that is dependent on the units
used, and a and b are regression coefficients. The adopted values of A, a, and b are those
used in the hydraulic solver software EPANET2 (Rossman 2000).

The objective is the minimization of the material and installation costs, and so the WDSP can
be expressed as

min C(Q)=¢(Q, ), Subject to (9) - (11) (13)

i=1

where C(Q) is the cost of design Q and ¢(Q;) is the cost of decision ;. As is seen from (13),
despite the simplicity of the objective function, the complexity of the optimisation problem
arises from the nonlinear nature of the constraints dependency on the design options Q;.

4. Application of Ant Colony Optimisation to Water Distribution System
Optimisation

4.1 Transformation of constrained problem

The WDSP is a constrained optimisation problem. ACO is unable to deal directly with
constrained optimisation problems as, within its solution generation, it cannot adhere to
constraints that separate feasible regions of a search space from infeasible regions (here
feasibility refers to constraints (9)-(11) and not the ® function). The standard technique to
convert constrained problems to unconstrained problems is to use a penalty function (Coello
Coello 2002). ACO algorithms direct their search solely based on information provided by
the objective function. To guide the search away from the infeasible region and towards the
feasible region, a penalty function increases the cost of infeasible solutions such that they are
considered to be poor quality solutions. The unconstrained optimisation problem for the
WDSP takes the form of minimising the sum of the real cost plus the penalty cost, that is

min  NC(Q) = C(Q)+ PC(Q) (14)
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where NC(Q) is the network cost for design Q, C(Q) is the material and installation cost
given by (13) and PC(Q) is the penalty cost incurred by Q. When evaluating a potential
design, the set of heads {H;;: i=1, ..., Nuote, j =1, ..., Npastern} is calculated by a hydraulic
solver. Therefore (10)-(11) are automatically satisfied, and hence, only (9) is required to be
considered in the penalty cost. Within this study, PC(Q) was taken to be proportional to the
maximum nodal pressure deficit induced by Q as in Maier et al. (2003). That is
el 0 i H 2 H, i=1u Ny =L N s 15)
(__ max {ﬂ i —HM.})PEN otherwise
)N e PN ]
where PEN is the penalty factor (user defined) with units of dollars per meter of pressure
violation.

4.2 Modification of ACO elements
As in used in previous studies (Maier et al. 2003; Zecchin et. al. 2005; Zecchin et. al. 2006;

Zecchin et. al. 2007), but formalised here, the graph G(N, L) of the WDSP can be represented
as a multi-graph, with the set of nodes N={1,2, ..., n+1}. Each node i < n is connected to the
next via a set of directed edges &= {(i, i+1);:j=1,2, ..., NO;}, where (i, i+1); is the jth edge
connecting node i to node i + 1, NO; is the number of edges connecting node i to node i + 1
and the set of all edges is L= {s:s€ 6, U ... U 6,}. The edge set & is associated with the set of
design options A;, and the edge (i, i+1); is associated with option @;;. A solution S, associated
with design ©, is a feasible tour through the graph and is an element of the solution space
S={S:8={s1,...,8,),5€0,i=1,...,n}, where the constraint function ® is given by
O({s1, ..., s;}) =6 fori<n.

As the objective is to minimise cost, lower cost options are more desirable. Therefore the

desirability of an option is taken as the inverse of the cost of implementing that option
(Maier et al. 2003). In other words

Misny, = l/c(wi,j) : (16)

As lower cost diameter options are more desirable, a bias in the probability towards the
selection of lower cost diameters results. For options with zero cost (i.e. the null option), a
virtual-zero-cost was selected.

4.3 Parameter Settings

One of the limitations of ACO is that an extensive calibration phase is required to determine
appropriate parameter settings. From an extensive analysis of ACO applied to the WDSP,
Zecchin et al. (2005) determined a series of parameter guidelines relating the five
fundamental ACO parameters (o, B, p, O, o, and m) to WDSP characteristics (such as the
number of decision points #, the average number of options per decision NO,,,, and the cost
of key design configurations such as Q™, the maximum cost design, and Q’, the optimum,
or near optimum, design). These are summarised in Table 1.

Contrary to other problem types (Dorigo & Gambardella 1997), Zecchin et al. (2005) found
that, for the WDSP, better performance was achieved when the ants gave greater emphasis
to the learned pheromone values 7 as opposed to the visibility values 7, as manifested
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through a > f. Better performance was achieved when the pheromone persistence factor
was relatively high, facilitating slow convergence and long memory times for learned
information. Zecchin ef al. (2005) showed that the ratio of O to 7 is important (not the actual
values of each) and empirical guidelines were determined accordingly. The best number of
ants m was also found to be dependent on the number of options per decision, not just the
number of decisions, as for other problem types (Dorigo et al. 1996).

Parameter Heuristic
a 1.0
i 05
o 0.98
Q @)

o o JnNo, /NC(@')

M n, lNOm,g

Table 1. Parameter guidelines for ACO parameters from Zecchin et al. (2005)

In addition to the guidelines derived for the ACO parameters, the following semi-
deterministic expression for PEN was derived in Zecchin et al. (2005)

PEN =|C(@Q™)-C(Q™)

/AH (17)

where Qmin is the minimum cost network design, and AH is a user selected pressure deficit,
based on the maximum acceptable pressure deficit for a feasible solution as defined by (9).
The value of PEN ensures that all networks with a pressure violation greater than or equal
to AH (an extremely small value) are made more expensive than the maximum feasible
network cost C(Qmin).

5. Analysis of Algorithm Convergence Behaviour

The standard approach to the analysis of optimisation algorithms is to assess their
performance on a particular problem from statistics based on the lowest cost achieved by
the algorithm (termed best-cost) and the computational time required for the algorithm to
find the associated solution (termed search-time). A richer understanding of the performance
of an algorithm can be achieved by considering statistics from the solutions generated by the
algorithms during their run-time. A typical approach used by many authors (Simpson et al.,
1994; Cunha & Ribeiro, 2004; Afshar & Marino, 2007) is to track the minimum cost generated
in each iteration as a means of assessing the algorithm’s convergence behaviour. This
statistic is important, as it indicates the effectiveness of the search, but acts only as a
surrogate measure of the actual convergence behaviour of the algorithm.

This work aims to extend this qualitative performance assessment to include a topologically
based statistic to describe an algorithm’s convergence behaviour. From the perspective of
ACO, convergence is defined as the point in time at which all ants select the same path
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through the problem graph (i.e. the colony’s population of solutions is fixed at a certain
point in the solution space §) from that point onward. Thus, convergence behaviour is the
nature of the colony’s solution generation up until the point of convergence. Topologically,
convergence means that the distance between all solutions generated by the colony is zero.
Conversely, a non-converged search will have some spread of the solutions throughout the
solution space. It is the quantification and tracking of this spread that is of interest in
describing an algorithm’s convergence behaviour.

The motive behind convergence analysis is to gain a greater understanding of how the
different explorative and exploitative mechanisms in the ACO algorithms considered
actually impact the algorithm’s search. Below, the topology of the solution space is first
defined, and then the adopted convergence metric, the mean colony distance, is presented.

It is important to note that the use of metrics is widely used in evolutionary algorithm based
multi-objective optimisation (Deb 2001). However, this is fundamentally different to what is
considered here. In multi-objective optimisation, the distribution of solutions throughout
the multi-dimensional objective space is of primary interest, and thus the metrics operate in
this space. Conversely, this chapter is concerned with the distribution of solutions within the
solution space, and, as such, the mean colony distance is defined on this space.

5.1 Topology of the Solution Space

Fundamental to any topologically based statistic is the notion of distance between points
(solutions) in the solution space. A measure of distance for all elements within the set § is
equivalent to defining a metric d: S x § — R, associated with § that defines the distance

between two elements S, S’€$ (Cohen 2003). For sets whose elements have no specific
numerical relation, the Hamming distance is a natural metric. This has been used by Bose et
al. (1994) and Stiitzle & Hoos (2000) for the travelling salesperson problem. A generalisation
that applies to sets whose elements are equal length lists of objects is

d(s,s")= zd (s,vs,') (18)

where S={sy, ..., s,}, S={s{, ..., 8/}, s;, s/ € 6;and d;: 6; x 6, — Ry is itself a metric for the set
of all possible ith elements in the list. For the Hamming distance, dj(-,") is either zero or one,
depending whether s; and s, are equal or not. However, if the elements in the set have some
other attribute that can be exploited, such as a meaningful ordering based on some property,
then the metric can be defined so as to include this information.

Considering (12), it is seen that the selection of an option € is essentially equivalent to
selecting a resistance parameter rq . Therefore, it is meaningful to say that an option is closer
to one option than another based purely on the relative differences between their associated
resistance parameter values. The list of options A; for pipe i can therefore be meaningfully
ordered by the magnitude of their associated resistance parameter. That is, consider the
following ordering of A; based on the resistance parameter A;={@, ..., @, o}, Where

w,S...Srg,,  and the distance d; between any two of these options @,j and @y, is given by

di(@i,ja@i,k):‘j—k‘ Where . Qi,k EAi . (19)

Wij»
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In this context, the distance between two options is the number of positions in the ordered
list A; that separates the two options.

5.2 Mean colony distance

By ascribing a topology to the search space, the colony of solutions generated within an
iteration can be considered to be spread, in some manner, over the topology. This spread of
solutions gives an indication of how widely, or tightly, an algorithm is searching. To use the
terminology of Colorni et al. (1996), whether the algorithm is exploring broadly through the
search space or exploiting smaller regions of the search space. In order to quantify this
spread, the mean of the distances between each of the ants’ solutions has been used in this
chapter, which is henceforth referred to as the mean colony distance ds. Mathematically this
is given as the summation of the distances of each unique pair of solutions divided by the
total number of pairs, and is expressed as the map d : §” —R:where

dy (1) #f Zm:d(Sk (0),8,(2)) (20)

- m(m—1) = /55

where m(m — 1)/2 is the number of unique pairs that exist in a colony of m ants. The
usefulness of dx as a behavioural analysis measure is fully realised when considering its
variation with time. For example: periods of high exploration when solutions are spread
broadly throughout the search space correspond to large values of ds; periods during which
the algorithm converges correspond to a series of decreasing ds values; the point at which
the algorithm converges is given by ds = 0, as this indicates that all solutions in X(f) are
equal. As such, ds provides a direct measure of an algorithm’s convergence behaviour.

6. Case Studies

Experiments were performed on four different case studies, the Two Reservoir Problem
(TRP), the New York Tunnels Problem (NYTP), the Hanoi Problem (HP) and the Doubled
New York Tunnels Problem (2-NYTP). The ACO algorithms were coded in FORTRAN 90
with EPANET2 (Rossman 2000) as the hydraulic solver. Parameter settings from Zecchin et
al. (2005), summarised in Table 1, were used for parameters «, 5 p, w, m, and Q for all
algorithms with the adjustment that 7 was scaled by o for ASciie and AS;ank (in accordance
with the logic of the derivation of Q in Zecchin et al. (2005)) and for MMAS, % was set to an
arbitrarily high number, as proposed by Stiitzle & Hoos (2000). For ASgiite and ASrank, ©
required calibration for each case study. For MMAS, foom Was set to 10, as in Stiitzle & Hoos
(2000) and Pyt and 6 were calibrated for each case study. The best-cost and search-time
statistics for AS, ASjite, and AS;ank and MMAS are as presented in Zecchin et al. (2007).

6.1 Case Study 1: Two-Reservoirs Problem

6.1.1 Preliminaries

The TRP was initially studied by Gessler (1985), and Simpson et al. (1994) introduced the
metric version. The TRP is a 14-pipe network with two reservoirs (Figure 1). The TRP
involves three demand cases: a peak hour demand case and two fire loading demand cases.
There are nine existing pipes, of which three are considered for rehabilitation, duplication
with one of eight pipe sizes, or to be left alone. There are five new pipes that must be sized
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with one of eight diameters. The reader is referred to Simpson et al. (1994) for case study
details. The problem, consists of 32,768,000 possible combinations.

6.1.2 Results

Based on the heuristics given in Table 1, {w, m} = {27, 25} and preliminary testing showed
that a maximum number of iterations of I,..x = 400 was sufficient for the algorithms to not
significantly improve on their solution quality after this point. For each algorithm, a single
run for the TRP consisted of 10,000 function evaluations. The range of parameters tested
was: o €[2, 20] for ASeie; o €[2, 20] for ASwnk; {Pres, 0} € [1X 107, 0.99]1X [0, 0.99] for
MMAS. ASgiie achieved a mean performance within 1% of the known optimum for most of
the tested values of o, with better performances observed using 3 < ¢<5. Similarly, ASank
achieved a mean performance within 1% of the known optimum for all tested values of
o> 2 with lower mean best-cost values occurring for 10 < ¢ < 14. AS;uk tended to be less
sensitive to variations in o than ASgie, as it was able to find the optimum in each run for a
broader range of values for this parameter. MMAS achieved a mean performance within 1%
of the optimum for values of Puy = 0.001 and 5<0.001, with the solution quality
deteriorating for parameter values outside these ranges. The optimal parameter values were
as follows: for ASeiite, 0= 4; for ASiank, o= 10; for MMAS, {Ppest, 6} = {0.5, 10-6}.

2 3 4
A J
(1] [2] 3] [4]
[5] [6]
7
6 8
[7] [8]
[9] [10] [11
[12] [13] [14]
9O " U
10 11 12

Figure 1. Network layout for the Two-Reservoir Problem

Table 2 gives a comparison of the results obtained using the ACO algorithms considered
and those obtained from a selection of other best performing algorithms that have been
applied to the discrete version of the TRP previously. A detailed statistical analysis of these
algorithms was given in Zecchin et al. (2007), but it is clear that all algorithms performed
extremely well (finding the optimum for all 20 runs) and were, comparatively,
computationally efficient.
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Plots of the iteration best-costs f,,;(f) and the mean colony distance ds(f), averaged over 20
runs, are given in Figure 2 (a) and (b). In addition to this, other run-time properties (to be
discussed) are given in Figure 2 (c). With regard to f,,;(?), three distinct phases are observed.
The first part of the search, phase-l, is a relatively short phase in which all algorithms find
relatively poor quality solutions, which is followed by the second phase, phase-II, in which a
dramatic increase in solution quality (reduction in the minimum cost) takes place, which
leads into the third phase, phase-III, in which the rate of increase of the solution quality
plateaus and the algorithms seem to not find any better solutions (or in some cases, the
optimum is found repeatedly).

. Best-cost ($M) (% deviation from optimuin) Mean search-time
Algorithm luati
Minimum Mean Maximum (evaluation no.)
AS 1.750 (0.00) 1.750 (0.00) 1.750 | (0.00) 2,084
ASeiite 1.750 (0.00) 1.750 (0.00) 1.750 | (0.00) 1,842
ASrank 1.750 (0.00) 1.750 (0.00) 1.750 | (0.00) 1,523
MMAS 1.750 (0.00) 1.750 (0.00) 1.750 | (0.00) 2,993
PE- 1.834 (4.80) - - 900
GAprop? 1.750 (0.00) 1.759 (0.51) 1.812 | (3.54) 23,625
GAout 1.750 (0.00) 1.750 (0.00) 1.750 | (0.00) 8,700
SAd 1.750 (0.00) NA NA NA
ACOAe- 1.750 (0.00) 1.769 (1.09) 1.813 (3.60) 12,455
TSt 1.728t - NA NA ~10,000
ACOA; pest8 1.750 (0.00) 1.750 (0.00) 1.750 | (0.00) 8,509
ACSh 1.750 (0.00) 1.770 (1.13) 1.904 | (8.81) 5,014
a Partial enumeration (Gessler 1985). ® GA based on a proportionate selection rule (Simpson et al. 1994).
¢ Tournament selection GA (Simpson & Goldberg 1994). 4 Simulated Annealing (Sousa & Cunha 1999).
¢ An AS variant that subtracts pheromone (Maier et al. 2003). f Tabu Search (Cunha & Ribeiro 2004).
gIteration-best updating version of ACOA (Maier ef al. 2003). " Ant Colony System (Zecchin et. al 2007).
' Not feasible by complete enumeration results (Simpson ef al. 1994).

Table 2. Comparison of performance of AS, ASclite, ASranks MMAS, and other algorithms
from the literature applied to the Two-Reservoir Problem. Results for AS, ASeiite, ASrank, and
MMAS are based on 20 runs. NA means that the information is not available

These three phases can also be seen clearly when considering the behaviour of ds in Figure
2 (b). To make the distinction between the phases clearer, the bar chart in Figure 2 (c) indicates
when the algorithms are in each of the phases (dark grey for phase-l, light grey for phase-II
and the remaining white space for phase-III). For ds, phase-I corresponds to a brief period of
extremely broad searching where almost no convergence behaviour is displayed, followed by
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phase-1II, in which relatively rapid convergence is observed, and phase-III, in which the rate of
convergence either plateaus or decreases gradually to dx(f) = 0, the point of convergence.
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Figure 2. Plots of (a) the minimum cost ($M) found in each iteration fuix(t), (b) the mean
colony distance ds(t), and (c) run-time statistics for AS, ASiite, ASrank, and MMAS applied to
the Two Reservoir Problem. Plots (a) and (b) are averaged from 20 runs. Plot (c) depicts the
three convergence phases: phase-I (dark grey); phase-II (light grey); phase-III (remaining
white space). The line graphs overlaying the bar charts in (c) indicate the search-time
statistics (based on 20 runs) with the dot indicating the mean search-time, and the left and
right arrows indicating the mean minus and plus a standard deviation, respectively

The nature and time spent in each of these three phases is different for each algorithm. As
seen in Figure 2, AS, AScit, and AS.nk have a relatively short broad searching phase-I,
followed by a rapid convergence in phase-IL. In contrast, MMAS has a relatively long broad
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searching phase-I, followed eventually by rapid phase-II convergence. The relatively long
phase-I for MMAS may be attributed to the exploration encouraging mechanisms of
pheromone bounding and pheromone smoothing. AScjie and ASr..x have faster phase-II
convergence than AS, which can possibly be attributed to the elitist exploitation
mechanisms in these algorithms driving the search to converge faster. In phase-III, AS and
AS.jie experience a gradually reducing, but steady, convergence, albeit ASeje in a much
tighter region after phase-Il. In contrast to this, ASqnc and MMAS plateau in their
convergence, as seen by ds(f) tending to a constant value in phase-III.

This difference in phase-III behaviour can be explained by a consideration of the pheromone
adjustment operations of each algorithm. For ACO, convergence cannot only be defined in
the context of the distribution of solutions throughout the solution space (i.e. the point at
which ds(7) =0), but also in a pheromone value context. That is, an ACO algorithm has
converged when the pheromone value on all paths, except for a single path S€S, is
effectively zero (i.e. zero for all computational purposes). At such a point, ants will only
select edges from path S. For both AS and ASgi, as pheromone values of paths become
more dominant, the natural positive feedback process of the colony’s path selection will
dictate that the pheromone value on all edges, other than that of the increasingly dominant
path, will decay to zero. Thus, these algorithms will converge to the point where ds(f) = 0.
However, both AS;nx and MMAS contain mechanisms that moderate this positive feedback
process. Firstly, in the update process for AS.nk, in addition to the elitist ants, there are o-1
unique paths that receive a weighted pheromone addition within each iteration. What this
means for AS;.nk is that there are always multiple paths for which the pheromone value does
not decay to zero. Within MMAS, the pheromone bounding ensures that the pheromone
values on all paths do not go below 7,,;,(?).

The search-time statistics in Figure 2(c) (the triangle and dot lines plots superimposed over
the bar charts) indicate the range of iteration numbers in which each algorithm found S,
the global best solution for the run. Interestingly, all four algorithms tended to find their
global best solutions towards the end of phase-I and the beginning of phase-II, albeit MMAS
at a later stage than the other three algorithms. ASejie and AS had a greater variation in their
search-times than AS;.n, with MMAS having the greatest variation in its search-times.

6.2 Case Study 2: New York Tunnels Problem

6.2.1 Preliminaries

The New York Tunnels Problem (NYTP) was first considered by Schaake and Lai (1969)
while Dandy ef al. (1996) was the first to apply an evolutionary algorithm to this problem.
The network is a gravity system fed from a single reservoir, and consists of 20 nodes
connected via 21 tunnels (Figure 3). There is a single demand case for the problem. Each
tunnel has a null option, or the option to provide a duplicate tunnel with one of 15 different
diameter sizes. The reader is referred to Dandy et al. (1996) for the case study details. This
case study is the second smallest considered in this chapter, and has a search space of
approximately 1.934 x 1025 possible combinations.

6.2.2 Results
Based on the heuristics given in Table 1 {z, m} = {140, 90} and based on preliminary analyses
Inax = 500 was found to be sufficient. A single run of the NYTP consisted of 45,000 function
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evaluations. The range of parameters tested was: o € [2, 80] for ASeiite; o € [2, 80] for ASrani;
{Ppess, 0y € [1X10-5,0.99] X [0, 0.99] for MMAS. For 2 < o < 20 the performance of ASgiite
varied less than 1%, but for o> 20 the solution quality was increasingly worse. For AS;ank,
the performance varied less than 1% for the entire parameter range, with the better values
being 8 < o< 12. For MMAS, the performance varied less than 1% for 0.005 < Py < 0.99 and
0<0.0005, with the solution quality degrading for lower values of Py and higher values of
0. The optimal parameter settings were as follows: o=8 for ASee; 0=8 for ASiank
{Prest, 0} = {0.05, 5x10-5} for MMAS.

[18]

Figure 3. Network layout for New York Tunnels Problem

Table 3 gives a comparison of the performance of the ACO algorithms considered in this
paper with that of the current best performing algorithms from the literature for the NYTP.
A detailed statistical analysis of these algorithms was given in Zecchin et al. (2007), but all
algorithms performed well, with ASiite, ASrank and MMAS, on average, finding solutions
within a 1% cost of the known-optimum.
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Best-cost ($M) (% deviation from optimumn)
Algorithm Mean sea.rch-time
(evaluation no.)
Minimum Mean Maximum
AS 39.204 | (1.47) | 39.910 (3.29) | 40.922 | (5.91) 34,877
ASciite 38.638 | (0.00) | 38.988 (0.91) | 39.511 | (2.26) 21,945
ASiank 38.638 | (0.00) | 38.777 (0.36) | 39.221 | (1.51) 19,319
MMAS 38.638 | (0.00) | 38.836 (0.51) | 39.415 | (2.01) 30,711
PEa 41.800 | (8.18) - - NA
GAimp? 38.796 | (0.41) NA NA 96,750
GAc 37.13 - NA NA ~1,000,000
ACOA;pestd | 38.638 | (0.00) NA NA 13,928
TSe 37.13 - NA NA ~10,000
ASipestf 38.638 | (0.00) | 38.849 (0.55) | 39.492 | (2.21) 22,052
ACSg 38.638 | (0.00) | 39.629 (2.57) | 41.992 | (8.68) 23,972
GAadapth 38.638 | (0.00) | 38.770 (0.34) 39.07 | (1.12) 15,680

2 Partial enumeration (Gessler, 1982). * Improved GA that used a variable exponent in fitness scaling, an
adjacency mutation operator, and Gray code representation (Dandy et al. 1996). < Genetic algorithm|
(Savic & Walters, 1997). ¢ Iteration-best updating version of ACO (Maier, et al. 2002). ¢ Tabu search
(Cunha & Ribeiro, 2004). f An improved iteration-best version of AS (Zecchin et al. 2005). & Ant colony]|
system (Zecchin et al. 2007). h Parameter free, self-adapting, boundary searching genetic algorithm
(Afshar & Marino, 2007). i Not assessed as feasible by EPANET2 (Maier et al., 2002).

Table 3. Comparison of performance of AS, ACS, ASciite, ASrank, MMAS, and other
algorithms from the literature applied to the New York Tunnels Problem. Results for AS,
ASeiite; ASrank, and MMAS are based on 20 runs. NA means that the information was not
available

Plots of the iteration best-costs f,,,(f), the mean-colony-distance ds(f), and the searching
phases and search-time statistics for the algorithms applied to the NYTP are given in Figure
4(a)-(c). Again, the three distinct searching phases observed for the TRP are observed in the
behaviour of f,,;, and ds. The relative behaviours of the algorithms applied to the NYTP are
similar to that for the TRP, except for the faster convergence of AS in phase-I than that of
both AScjie and ASpnk. The effectiveness of the additional pheromone adjustment
mechanisms in AScjite, ASrank and MMAS is made clear in Figure 4(a). This is seen by the fact
that, for the majority of the phase-III searching, these algorithms have confined the search to
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