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1. Introduction 
 

Standard laboratory methods for measurement of soil nitrate (NO3–N) use various 
procedures and instruments to analyze soil samples taken from the field and transported to 
the laboratory. Concerns with these procedures range from delays in measurement time, the 
high cost of soil sampling and analysis, high labour requirements, and the need to aggregate 
samples. With recent advances in using the ion-selective electrode, as presented in this 
chapter, soil NO3–N can now be measured directly, rapidly, accurately, at low cost, at a fine 
scale, and in real-time right in the field. This chapter describes the methodologies and 
procedures for how this can be done and provides experimental data and results from data 
analyses that validate measurements of soil NO3–N obtained with a prototype soil nitrate 
mapping system (SNMS) developed at the Nova Scotia Agricultural College, Truro, Nova 
Scotia, Canada. These advances in the in-field use of the nitrate ion-selective electrode 
(NO3¯–ISE) provide the ability for (i) assessing soil nitrate variation, (ii) linking soil nitrate 
variation to crop growth, (iii) developing site-specific crop management practices, and (iv) 
environmental monitoring of soil nitrate. 
This chapter will begin with a discussion of the concerns with nitrate in the soil and 
environment, precision agriculture and site-specific crop management, variation in soil 
nitrate and its links to crop growth and yield, and issues with assessing soil nitrate variation 
in a field. Next will be a discussion of ion-selective electrode theory and application for 
measuring soil nitrate, followed by a presentation and discussion of early experiments 
conducted for determining electrode operating parameters to enable the electrode to be 
used in a soil slurry. The development and testing of the mechanical system used for soil 
nitrate extraction and measurement along with a description of the control sub-unit, 
measurement methodology, and operation of the nitrate extraction and measurement sub-
unit (NEMS) for using the NO3¯–ISE in the field will be presented. And the results of 
experiments used to validate in-field measurements of soil NO3–N obtained with the ion-
selective electrode will be presented and discussed. There will be a discussion of what is 
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significant about the new measurement advances presented along with some results of 
experiments conducted using the SNMS in wheat and carrot production systems. Finally, 
conclusions and recommendations for future research in this area will be made.  

 
1.1 Soil nitrate is an environmental issue 
In addition to the fertility needs of farmers, it is important to deal with environmental issues 
associated with the use of nitrogen fertilizers. As agriculture continues its best efforts to 
provide the world’s rising population with high-quality, safe, and nutritious food, water 
sources contamination and associated socio-economic costs indicate a great need for precise 
soil fertility management practices—using the right form of fertilizer, applied at the right 
time and place, in the right amount, and in the right way (Power & Schepers, 1989; Dinnes 
et al., 2002). 
The seriousness and extent of NO3¯ contamination of water sources and its effect on 
drinking water quality has been documented and discussed by many researchers in 
Canada, the United States, and the European Community (USEPA, 1990; Reynolds et al., 
1995; Oenema et al., 1998; Henkens & Van Keulen, 2001). As a result, policy makers are 
revising laws to ensure the safety of public water supplies. These include amendments to 
the Water Pollution Control Acts in Canada and the United States, the European 
Community Nitrate Directive, and the Mineral Policy in the Netherlands. 
Nitrate leaching from soil into groundwater has been attributed to poor soil nitrogen 
management practices involving inorganic and manure fertilizer inputs (Geron et al., 1993; 
Campbell et al., 1994; Patni et al., 1998; Koroluk et al., 2000; Astatkie et al., 2001; Randall & 
Mulla, 2001; Dinnes et al., 2002). As such, better soil nitrogen management practices, 
including more accurate fertilizer recommendations and placement, could help minimize 
the contribution by agriculture to the NO3¯ pollution problem.  
 
1.2 Precision agriculture and site-specific crop management 
The profitability of farmed crops can be severely affected if poor nitrogen management 
practices are used. Precision agriculture technology offers farmers the potential to more 
intensely and precisely analyze variations in numerous field conditions throughout the 
growing season, in association with environmental and crop response data in order to make 
the most sound, and site- and time- specific, management decisions possible. At the same 
time the public can be assured those practices are being conducted in the most 
environmentally friendly way (Adamchuk et al., 2004a; Bongiovanni & Lowenberg-DeBoer, 
2004; Bourenanne et al., 2004). 
The inability to assess soil and plant data rapidly and inexpensively in the field, however, 
remains one of the biggest limitations of precision agriculture (Adamchuk et al., 2004b). In 
particular, the lack of a soil NO3–N measurement system is a major roadblock (Ehsani et al., 
1999). If this roadblock could be overcome, a positive contribution toward improving 
precision agriculture technology would be made. 
 
1.3 Variation in soil nitrate and its links to crop growth and yield 
Soil NO3–N levels in agricultural fields, as well as other chemical and soil physical properties, 
exhibit high variation spatially and temporally and at different measurement scales and levels 
of aggregation (Heuvelink & Pebesma, 1999). Much research has been dedicated to assessing 
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and characterizing this variation to improve our understanding of the effects of soil NO3–N on 
crop growth and yield within agro-ecosystems (Almekinders et al., 1995).  
Growing plants utilize varying amounts of soil NO3–N during different phenological 
(growth) stages and its availability should ideally be in response to the plant’s need. In 
wheat, for example, the level of available soil NO3–N during early plant growth determines 
yield for the most part by influencing population density and the degree of stimulation of 
tiller fertility, spikelet initiation, and floret fertility. Soil NO3–N uptake is greatly reduced 
shortly after anthesis, and nitrogen is re-translocated from leaves primarily, and other 
vegetative organs secondarily, to the ears to meet the need of the filling grains (Simpson et 
al., 1983). The reduction in soil NO3–N uptake during grain filling varies with weather 
conditions, disease pressures, and subsequent management practices (i.e. irrigation or 
chemical applications) which put stress on the plants. Physiologically, soil NO3–N and crop 
yields are linked via nitrate uptake and its conversion into proteins and chlorophylls during 
plant growth (Engel et al., 1999; Schröder et al., 2000) and photosynthesis buffering against 
soil nitrogen deficits by an abundance of RuBP carboxylase that serves as a reserve of 
protein in the leaves during unfavourable weather conditions (Hay & Walker, 1989). 
The availability and distribution of NO3–N in the soil depends on many soil forming, 
chemical, microbial, plant growth, environmental, and management factors that influence 
soil crop dynamics (Addiscott, 1983; Wagenet & Rao, 1983; Trangmar et al., 1985). Because 
the effects of these factors and their interactions are highly variable (Almekinders et al., 
1995), they also lead to the characteristic behavior of NO3–N being highly variable within 
the soil.  
Studying the levels of nitrogen in various plant tissues and organs at the various phenological 
stages simultaneously with the availability of soil NO3–N, and on a fine-scale, could provide 
information to researchers and farmers useful for developing better site-specific nitrogen 
management (SSCM) practices. Collecting this information at the required sampling intensity, 
however, has been found to be very tedious and generally cost and time prohibitive using 
current methods (Engel et al., 1999; Ehsani et al., 2001; Adamchuk et al., 2004a).  
 
1.4 Assessing soil nitrate variation 
Geostatistical techniques have been developed to provide practical mathematical tools for 
assessing spatial and temporal variation, and spatial structure of soil properties including 
soil NO3–N (Burgess & Webster, 1980; Webster & Burgess, 1984; Webster & McBratney, 
1989; McBratney & Pringle, 1999).  
Research applying these tools on a field-scale, such as through SSCM-experimentation 
(Pringle et al., 2004), has led to the development of a multitude of methods for determining 
minimum soil sample spacing, sampling grid layout and cell size (Russo, 1984; Han et al., 
1994; Van Meirvenne, 2003; Lauzon et al., 2005), optimum number of samples (Webster & 
Burgess, 1984), sampling schemes and protocols for pre-planning experimental designs 
(Trangmar et al., 1985; Chang et al., 1999; Ruffo et al., 2005) and sample bulking strategies 
(Webster & Burgess, 1984).  
However, when using these methods for implementing precision agriculture practices 
related to soil nitrogen management, the “most serious obstacles” are still the need to know 
the spatial structure in advance and the cost of obtaining this information even though the 
sampling effort required is much less than for full-scale sampling (Lark, 1997; McBratney & 
Pringle, 1999; Jung et al., 2006). 
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1.5 Concept of a soil nitrate mapping system 
Development of an SNMS could contribute to the advancement of precision agriculture by 
providing a way to quickly, accurately, and affordably collect the data necessary to analyze 
small-scale variation in soil nitrate in time and space while crops are being grown, thus 
enabling this variation to be linked to crop growth and yield. Ideally, an SNMS would 
automatically collect a soil sample in the field and directly measure nitrate concentration in 
real-time. Moreover, global positioning system (GPS) geo-referenced data could be 
simultaneously recorded at each sampling location to enable a nitrate map to be created for 
the field. An SNMS, thus, would overcome many of the impediments, roadblocks, and 
serious obstacles of measuring and assessing soil NO3–N variation using conventional 
methods in terms of sample analysis lag time, high labour requirements, and high costs as 
discussed above. The overall objective of the experimental work described in this chapter was 
to develop and validate such an advanced soil NO3–N measurement and mapping system. 

 
2. Attempts by others to develop methods for in-field measurement  
of soil nitrate 
 

Over the last 20 years or so, attempts to develop a real time soil NO3–N measurement 
system by other researchers have been based on three types of sensors: (i) ion-selective field 
effect transistor (ISFET), (ii) ISE, and (iii) spectrophotometer. The majority of this research 
work has not progressed past laboratory feasibility studies and testing in soil-bins. A brief 
review of these works is presented below. Details can be obtained by reviewing the cited 
papers directly, or the summaries contained in the comprehensive review paper recently 
published by Adamchuk et al. (2004a) who concluded that “sensor prototypes capable of 
accomplishing this task are relatively complex and still under development.”  

 
2.1 Ion-selective field effect transistor sensor based systems 
Loreto & Morgan (1996) developed a prototype real time soil NO3–N measurement system 
that consisted of a soil core sampling wheel, indexing and processing table, and a data 
acquisition and control system. This system was quite similar to that of Adsett & Zoerb 
(1991); however it used a specially developed prototype ISFET as the NO3¯ analysis 
instrument. In soil bin tests, correlations between ISFET measurements with a NO3¯–ISE and 
laboratory colorimetric analysis measurements had an R2 between 0.65 and 0.43, 
respectively. The system worked reasonably well as a first attempt, but issues with the 
ISFET’s response characteristics and calibration drift were apparent. Work has continued 
focusing on the development of ISFET technology and its use in combination with novel soil 
extraction and flow injection analysis (FIA) systems as a potential method of real-time 
measurement of NO3¯ in filtered soil extracts (Birrell & Hummel, 1997, 2000, 2001; Price et 
al., 2003). This work has resulted in the development of a promising combination 
ISFET/FIA system that gives reasonable results compared to a cadmium reduction method 
using a Lachat FIA (Slope 1:1, R2 = 0.78) with a measurement time ranging between 3–5 s 
(Price et al., 2003), but it is still at the laboratory level. 
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2.2 Ion-selective electrode sensor based systems 
A  prototype nitrate monitoring system (NMS), was developed by Adsett (1990) and Adsett 
& Zoerb (1991). It used a specially designed unit for NO3¯ extraction wherein the soil was 
mixed with de-ionized water and then the liquid fraction was clarified before being 
presented to the electrode for NO3¯ measurement. Although the system functioned 
reasonably well as a first attempt, it had major difficulties with collecting a soil sample and 
obtaining a clear extractant for NO3¯ measurement on a consistent basis. This early work 
was the starting point from which improvements have been steadily made by Thottan et al. 
(1994), Thottan (1995), Adsett et al. (1999), Khanna & Adsett (2001), and Sibley (2008) that 
have advanced the system to the form described below in sections 5 and 6 into a fully 
functioning and field-validated prototype SNMS.   
As part of an investigation into the feasibility of a real time soil K and NO3−N mapping 
system, Adamchuk et al. (2002a) performed laboratory tests on four commercially available 
NO3¯–ISEs to simulate the direct soil measurement technique used in an automated soil pH 
measurement system developed by Adamchuk et al. (1999, 2002b). In the laboratory, 
manually remoistened previously air dried soil samples were pressed into contact with the 
sensing membrane of each NO3¯–ISE to determine NO3¯ concentration (liquid basis of mg L–

1 reported as ppm). These results were compared to a standard cadmium reduction 
laboratory analysis technique to give an indication of the accuracy of the NO3¯–ISEs. For 
individual soil samples, R2 values ranging 0.38–0.63 were obtained, depending on the ISE, 
while averaging of three repeated measurements yielded R2 values ranging 0.57–0.86. It was 
concluded that it is feasible to use a NO3¯–ISE for measuring soluble nitrate concentration of 
naturally moist soil samples, but one of the main limitations of the proposed method 
reported was difficulty in maintaining high quality contact between soil and electrode. It 
should also be noted that use of the proposed method in the field in combination with the 
pH measurement system’s soil sampling mechanism would not enable the NO3−N content 
(mg kg–1) of the sample to be directly computed since the ‘weight’ (mass) of the soil sample 
would not be known. 

 
2.3 Spectrophotometer sensor based systems 
Laboratory testing and field-based experimentation of a near-infrared (NIR) 
spectrophotometer conducted by Ehsani et al. (1999) using soils samples spiked with 
ammonium sulfate, ammonium nitrate, and calcium nitrate (10–100 ppm) revealed that soil 
NO3–N could be detected with R2 ranging 0.76–0.99 using partial least squares regression 
with each data point being an average of 10 sub-samples. However, the calibration equation 
must be derived from samples taken from the same location, otherwise the analysis 
procedure fails. Further laboratory-based research work (Ehsani et al., 2001) using soil 
samples spiked with ammonium nitrate and calcium nitrate (400–3000 ppm) and a 
spectrophotometer equipped with a deuterated triglycine sulfate (DTGS) sensor showed 
that the ratio of area under the nitrate peak to area under the water peak in the mid-infrared 
(MIR) spectra is proportional to NO3¯ concentration (R2 = 0.81), and that the analysis 
technique is not dependent on the time of measurement, soil type, or nitrate source. 
However, as the authors themselves note, the range of NO3¯ concentration in agricultural 
soils is usually less than 100 ppm so the practicality of this sensing method is questionable 
unless a more sensitive mercury cadmium telluride (MCT) type sensor can be used. 
Use of a real-time portable spectrophotometer using a multi-spectral approach has been 
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investigated by Shibusawa et al. (1999, 2003). They reported that NIR reflectance could be 
used to detect soil NO3–N with an R2 of 0.50.  
Christy et al. (2003) have conducted preliminary field testing of a prototype soil reflectance 
mapping unit utilizing a NIR spectrophotometer for simultaneously measuring total N, 
total carbon, pH, and moisture content. Results from testing in a single field indicated the 
system could repeatably produce clear definition of patterns in these soil parameters related 
to spectral reflectance with an R2 of 0.86, 0.87, 0.72, and 0.82, respectively. 

 
3. Ion-selective electrode theory and application for measuring soil nitrate 
 

The nitrate ion-selective electrode (NO3¯–ISE) (Fig. 1) provides a rapid and reliable method 
for quantitative analysis of soil nitrate. Nitrate ISEs, which are highly selective to NO3¯ ions 
in solution, were first used around 1967 as quick and reliable alternatives to chemical-based 
laboratory methods for nitrate measurement (Dahnke, 1971). The NO3¯–ISE 
electrochemically generates a voltage across its organophilic membrane that varies with 
ionic strength (molarity) of the solution according to the Nernst equation (Morf, 1981).  
 

E = Eo + S log (A)                                                           (1) 
 
where E is the electrochemical cell potential (mV), E0 is the standard potential (mV) in a 1M 
solution, ideally a constant, S is the electrode slope (–mV per decade of concentration), and 
A is the nitrate activity (effective concentration moles L–1) in the solution. 
Through calibration with known standards, the logarithm of solution molarity is related to 
electrode output voltage to determine a linear calibration curve for determining nitrate 
concentration (mg L–1 or ppm) of subsequent soil samples. 
Typically in the laboratory, measurement of nitrate concentration of a soil sample then 
proceeds by mixing together a known ‘weight’ (mass) of soil with a known volume of 
deionized or distilled water (e.g. soil:extractant ratio). After an appropriate extraction time, the 
extractant in the mixture is decanted from the soil particles and clarified by filtration. Then the 
molarity of the clarified extractant is measured with the NO3¯–ISE. The resulting electrode 
voltage output is mathematically converted to concentration via the calibration curve, and 
subsequently to content (mg kg–1) via the soil:extractant ratio. 
Many researchers over the years have studied various aspects of NO3¯–ISE performance 
(accuracy, repeatability, stability, reliability), the potential for measurement interference by 
other ions, solution ionic strength, and use of deionized or distilled water as an extractant, for a 
multitude of use conditions, and in comparison with other chemical-based laboratory methods 
of soil nitrate determination (Myers & Paul, 1968; Mahendrappa, 1969; Milham et al., 1970; 
Onken & Sunderman, 1970; Dahnke, 1971; Mack & Sanderson, 1971; Yu, 1985; Sah, 1994). 
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(a) (b)  
Fig. 1. The Orion 97-07 ionplus nitrate ion-selective electrode. (a) Pictorial diagram, (b) 
cross-section diagram of the electrode’s nitrate sensing module (Orion, 2005). 
 
As a result, NO3¯–ISEs have enjoyed wide acceptability because the results obtained are 
comparable to other chemical-based methods’ results, and they are quick and simple to use. 
Today, several types of NO3¯–ISEs are manufactured commercially, and they are widely 
used in laboratories around the world for water quality monitoring and plant tissue sap 
nitrate measurement in addition to soil nitrate measurement. It is because of their well-
defined operating characteristics, reliability, and commercial availability that a NO3¯–ISE 
was chosen as the analysis instrument for the SNMS to perform direct in-field measurement 
of NO3¯ in a soil slurry. 

 
4. Experiments conducted for determining electrode operating  
variable parameters 
 

Laboratory work conducted by Thottan et al. (1994) and Thottan (1995) determined that a 
NO3¯–ISE could be used in a soil slurry whilst investigating operating variables of 
soil:extractant ratio, slurry clarity, and electrode response time, repeatability and output 
signal stability.  
Soil samples of sandy loam, silty clay loam, and clay loam were taken from the surface layer 
(15 cm) of fields in Cumberland and Colchester counties of Nova Scotia, Canada (450 N, 630 
W). The results reported in this chapter relate to Chaswood clay loam, since of the three 
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soils tested it is considered to be more difficult to analyze because of the higher clay content 
than the coarser textured soils. The Chaswood soil is of the gleysolic order, of the subgroup 
RegoGleysol. Particle size analysis revealed a composition of 34.0% sand, 37.9% silt, and 
28.1% clay. The sampled A horizon was a fine textured alluvial formation which had been 
deposited above loamy sand. 
Testing of the soil:extractant ratio revealed that there was no significant difference (α = 0.05) 
between final NO3¯ concentrations for the three ratios tested. The mean NO3¯ concentrations 
determined at soil:extractant ratios of 1:15, 1:5 and 1:3 were 18.6, 18.6, and 19.3 ppm, 
respectively. In terms of mechanical extractor design, these results indicated that any of the 
three ratios may be used in the field when extracting NO3¯ from soil with equal 
effectiveness.  
Tests to determine the effect of clarity on electrode performance showed that there was no 
significant difference (α = 0.05) between mean final NO3¯ concentration measured in either 
slurry (34.1 ppm), decanted (32.0 ppm), or filtered (33.8 ppm) soil samples. This result 
confirmed the hypothesis that the NO3¯–ISE could be used in a soil slurry during in-field 
use—obviating the need for time consuming filtering of soil extracts required by other 
nitrate determination methods that would complicate mechanical system design and slow 
down operation. Using a NO3¯–ISE, Paul & Carlson (1968), Myers & Paul (1968), Dahnke 
(1971) and Yu (1985) also found that there was no significant difference between nitrate 
determinations made in a slurry or filtrate.  
Fig. 2. shows a typical response curve of the NO3¯–ISE in a soil slurry. The electrode 
potential drops sharply indicating a rapid release of nitrate into solution. It was found that 
the electrode detects a large percentage of the nitrate concentration in less than 20 s, but it 
takes up to two minutes to detect the total nitrate concentration as the electrode signal 
stabilizes. Electrode signal stability was considered to be achieved when a signal drift of less 
than 1 mV min−1 was obtained. It was also found that the electrode had very consistent 
response time curves. Therefore, it was hypothesized that it was not necessary to wait until 
100% of the NO3¯ in a soil sample is extracted before taking a measurement. This 
characteristic was utilized to create normalized response curves (Adsett et al., 1999) to 
speed up the measurement cycle. Accurate and reliable estimates of the sample’s total NO3¯ 
concentration could be made in six seconds, which is within the time required for rapid in-
field measurements. A successful mechanical system, however, would depend not only on a 
properly functioning and calibrated electrode, but also on properly functioning mechanical 
components, electronics, and controls to enable it to be reliably used in the field. 
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Fig. 2. Typical electrode response in soil slurry during nitrate extraction and measurement 
(Thottan et al., 2004).   

 
5. Systems developed for in-field measurement and mapping of soil nitrate 
 

In this section, a description of the mechanical systems and their operation for soil nitrate 
extraction and measurement are presented and discussed. First will be a description of the 
SNMS, followed by a description of the nitrate extraction and measurement sub-unit (NEMS). 

 
5.1 Soil nitrate mapping system 
Sibley (2008) and others (e.g.,Thottan, 1995; Adsett et al., 1999; Khanna & Adsett, 2001) have 
developed a SNMS (Fig. 3) that uses a nitrate ion-selective electrode (NO3¯–ISE) (Orion 
Model 9707 ionplus, Thermo Electron Corp., Massachusetts, USA) as the measurement 
instrument. It is an electro-mechanical machine that automatically collects a soil sample (0–
15-cm depth), mixes it with water, and directly analyzes it electrochemically for nitrate 
concentration in real-time (6 s). Additionally, global positioning system (GPS) geo-
referenced position data are simultaneously recorded at each sampling location to enable a 
nitrate map to be created for the field being sampled. 
The SNMS consists of six sub-units: (1) soil sampler, (2) soil metering and conveying, (3) 
nitrate extraction and measurement, (4) auto-calibration, (5) control, and (6) GPS as 
indicated in Fig 3.  
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Fig. 3. Soil nitrate mapping system with six sub-units:  (1) soil sampler, (2) soil metering and 
conveying,(3)  nitrate extraction and measurement, (4) auto-calibration, (5) control and (6) 
global positioning system, with (7) inset showing Orion 97-07 ionplus NO3¯-ISE used for 
measuring soil nitrate (adapted from Sibley, 2008). 
 
Prior to use, the NO3¯–ISE is calibrated using pre-prepared reagent-grade NO3¯ standards 
placed into the calibration cups of the auto-calibration sub-unit. As well, a field (soil 
condition) calibration is completed to enable rapid measurements of NO3¯ concentration to 
be taken during system operation. As the tractor moves forward, the SNMS collects a soil 
sample via the combination of soil sampler and soil metering and conveying sub-units. 
During sampling, the hydraulic-powered wood-saw blade is lowered into the soil by the 
carrying frame. Over a travel distance of approximately 0.5 m, the blade cuts a 15-cm deep 
slot and throws a spray of finely chopped soil onto the head-end area of an automatically 
positioned flat-belt transfer conveyer. This action creates a sample of uniform bulk density 
and finely-granulated particles to facilitate the subsequent nitrate extraction process (Sibley 
et al., 2008). The conveyor belt has an oblong fixed-volume pocket milled into its surface to 
collect a sample from the soil landing on the conveyor. A specially designed scraper placed 
above the belt levels the soil sample in the pocket without compaction and removes excess 
soil from the belt as the belt moves to deliver the soil sample to the NEMS. During delivery, 
the pocket stretches lengthwise as it passes around the conveyor’s tail-end roller to facilitate 
complete emptying of the pocket. 
Just prior to soil sample delivery, water for NO3¯ extraction is pumped into a nitrate 
extractor to completely submerge the sensing module of the NO3¯–ISE and the stirrer is 
activated. The soil sample is received into the extractor where vigorous mixing takes place 
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creating a soil slurry. Nitrate in the soil sample is rapidly extracted into the slurry. The NO3¯ 
concentration of the mixture is measured by the NO3¯–ISE and stored in the control system’s 
computer memory. Geo-referenced position data are simultaneously recorded by the GPS 
sub-unit at each sampling location to enable a nitrate map to be subsequently created for the 
field. All data collected are downloaded to a computer for post-sampling processing via the 
computer-interface facility built into the control system.   
The SNMS can be used to analyze soil samples automatically in real time, or manually while 
stationary by hand-placing samples into the NEMS. It is envisioned that two configurations 
of the system will eventually be used in practice—a tractor-mounted version (Fig. 3.) and a 
‘suitcase’ (portable) version. Initial research on developing a ‘suitcase version’ was 
completed by Brothers et al., (1997). The prototype developed was capable of measuring 
NO3¯ and pH with the same mechanical system and control hardware.  
 
5.2 Nitrate extraction and measurement sub-unit  
The heart of the SNMS is the NEMS (Fig.4). It consists of an extractor, an impeller and drive 
motor, a spray nozzle, a gate valve and drive actuator, and the NO3¯–ISE. The electrode and 
the sample, plus associated electrode circuitry, comprise an electrochemical cell. The 
extractor was constructed using 9.5 cm ID clear acrylic tubing so that the extraction process 
could be viewed. 
A 7.6 cm ID sliding-knife gate valve was installed to act as the bottom of the extraction 
chamber, forming the extraction chamber outlet. This arrangement gives a nearly full-
diameter chamber pass-through capability for efficient clean-out of each sample and 
prevents potential jamming by small stones or field debris that might enter the chamber 
with the soil sample.  A 12Vdc linear actuator is used to open and close the valve between 
samples. 
In normal position, the extraction chamber outlet is kept closed by the actuator. When the 
actuator is powered, it opens the extraction chamber outlet. The extraction chamber was 
electrically isolated from other components to eliminate any stray voltages that may 
interfere with the NO3¯–ISE signal.  
The added advantage of having the extraction chamber outlet normally closed was that the 
extraction chamber could be used as a storage unit for the electrode in a dilute NO3¯ 
standard solution when not being used. To the lower end of the valve, a 3.5-cm diameter 
polyvinyl chloride (PVC) pipe was connected. The PVC pipe provided structural support 
and electrical isolation for the extraction chamber, as well as being an extension of the 
extraction chamber outlet. 
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