
Advances in Robotics,  
Automation and Control 





 

Advances in Robotics,  
Automation and Control 

Edited by 

Jesús Arámburo  
and Antonio Ramírez Treviño 

I-Tech  



IV        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Published by In-Teh 
 
 
In-Teh is Croatian branch of I-Tech Education and Publishing KG, Vienna, Austria. 
 
Abstracting and non-profit use of the material is permitted with credit to the source. Statements and 
opinions expressed in the chapters are these of the individual contributors and not necessarily those of 
the editors or publisher. No responsibility is accepted for the accuracy of information contained in the 
published articles. Publisher assumes no responsibility liability for any damage or injury to persons or 
property arising out of the use of any materials, instructions, methods or ideas contained inside. After 
this work has been published by the In-Teh, authors have the right to republish it, in whole or part, in 
any publication of which they are an author or editor, and the make other personal use of the work.  
 
© 2008 In-teh 
www.in-teh.org 
Additional copies can be obtained from:  
publication@ars-journal.com 
 
First published October 2008 
Printed in Croatia 
 
 
 
A catalogue record for this book is available from the University Library Rijeka under no. 120101003 
Advances in Robotics, Automation and Control, Edited by Jesús Arámburo and Antonio Ramírez Treviño  
               p.  cm. 
       ISBN 78-953-7619-16-9  
       1. Advances in Robotics, Automation and Control, Jesús Arámburo and Antonio Ramírez Treviño 



 

 

 

Preface 
 

Nowadays, production systems have become more complex since they require adapting 
to the market challenges, to introduce more flexible mechanisms and control strategies in 
their structure to ensure the efficient use of system resources and to allow system layout 
reconfiguration. 

The book presents an excellent overview of the recent developments in the different 
areas of Robotics, Automation and Control.  Through its 24 chapters, this book presents 
topics related to control and robot design; it also introduces new mathematical tools and 
techniques devoted to improve the system modeling and control.   An important point is the 
use of rational agents and heuristic techniques to cope with the computational complexity 
required for controlling complex systems.  Through this book, we also find navigation and 
vision algorithms, automatic handwritten comprehension and speech recognition systems 
that will be included in the next generation of productive systems developed by man.  

We would like to thank all the authors for their excellent contributions in the different 
areas of the control, robotics and automation. It is their knowledge and enthusiastic 
collaboration that lead to the creation of this book, which we are sure that will be very 
valuable to the readers. 

 
October 2008 

Editors 

Jesús Arámburo  
Antonio Ramírez Treviño 
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Adaptive Control Optimization of Cutting 
Parameters for High Quality Machining 

Operations based on Neural Networks and 
Search Algorithms 

J. V. Abellan, F. Romero, H. R. Siller, A. Estruch and C. Vila 
Department of Industrial Systems Engineering and Design 

Castellon, 12071, Spain 

1. Introduction     
In traditional Computer Numerical Control (CNC) systems, machining parameters are 
usually selected prior to machining according to handbooks or user’s experience. These 
practices tend to select conservative parameters in order to avoid machining failure and 
assure product quality specifications. Less conservative practices try to find optimal 
machining parameters off-line to increase process productivity after conducting 
experimentation (Chien & Chou, 2001). However, variations during the machining process 
due to tool wear, temperature changes, vibrations and other disturbances make inefficient 
any off-line optimization methodology, especially in high quality machining operations 
where product quality specifications are very restrictive. Therefore, to assure the quality of 
machining products, reduce costs and increase machining efficiency, cutting parameters 
must be optimised in real-time according to the actual state of the process. This optimization 
process in real-time is conducted through an adaptive control of the machining process.  
The adaptive control applied in machining systems is classified as (Liang et al., 2004; Ulsoy 
& Koren, 1989): Adaptive Control with Constraints (ACC), Geometric Adaptive Control 
(GAC), and Adaptive Control with Optimization (ACO). In the ACC systems, process 
parameters are manipulated in real time to maintain a specific process variable, such as 
force or power, at a constraint value. Typically, ACC systems are utilized in roughing 
operations where material removal rate is maximized by maintaining the cutting forces at 
the highest possible cutting force such that the tool is not in danger of breaking (Zuperl et 
al., 2005). In the GAC systems, the economic process optimization problem is dominated by 
the need to maintain product quality such as dimensional accuracy and/or surface finish 
(Coker & Shin, 1996). GAC systems are typically used in finishing operations with the 
objective of maintaining a specific part quality despite structural deflections and tool wear. 
Sensor feedback is often employed to measure surface roughness and dimensional quality 
between parts and adjustments, so tool offsets and feed overrides can be adjusted for the 
next part. In the ACO systems, machine settings are selected to optimize a performance 
index such as production time, unit cost, etc. Traditionally, ACO systems have dealt with 
adjusting cutting parameters (feed-rate, spindle speed and depth of cut) to maximise 
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material removal rate subject to constraints such as surface roughness, power consumption, 
cutting forces, etc (Venu Gopal & Venkateswara Rao, 2003). Other ACO systems optimise a 
multi-objective function which are more practical in industrial applications (Zuperl & Cus, 
2005). For example, it is quite often to search the optimal cutting parameters to minimize the 
cost of the operation, maximize the production rate and maximize the part quality. ACO 
systems are basically composed of several units which integrate the machine-tool system 
and the equipment required for acquiring real-time process measurements and adjusting the 
cutting parameters. Fig. (1) shows a simplified scheme of a basic ACO system presented in 
(Koren, 1983). Basically, the ACO system requires a sensor system which provides real-time 
data for tool wear diagnosis and part quality prediction. The real-time data are used by 
process models previously obtained from experimental data. Tool wear and part quality 
models are used in the multi-objective function together with cutting parameters. An 
optimizer unit is then applied for searching optimal cutting parameters, and the selected 
parameters are sent to the CNC system. 
 

 
Fig. 1. Adaptive Control Optimization (ACO) scheme adapted from (Koren, 1983). 

Interesting works related to ACO systems can be found in (Liu & Wang, 1999; Liu et al., 
1999; Chiang et al., 1995). Liu (Liu & Wang, 1999) proposed an adaptive control system 
based on two neural network models, a Back-Propagation Neural Network (BP NN) and an 
Augmented Lagrange Multiplier Neural Network (ALM NN). The BP NN was used for 
modeling the state of the milling system, using as a single input the feed parameter and 
sensing the cutting forces on-line. The ALM NN was used for maximising the material 
removal rate which it was carried out adjusting the feed rate. Chiang (Chiang et al., 1995) 
presented a similar work for end-milling operations, but surface roughness was also 
considered as constraint. Both research works were based on theoretical formulas for 
training the neural networks, and both applied an ALM NN for optimization, which it is 
claimed to be an approach that can greatly reduce processing time in comparison to 
conventional optimal algorithms and make real-time control possible. Liu (Liu et al., 1999) 
also extended his previous work with a new optimization procedure based on a Genetic 
Algorithm (GA). 
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In spite of the potential application of ACO systems, their use in industry is limited due to 
the non-existence of reliable on-line monitoring systems for tool wear diagnosis and quality 
prediction (Azouzi & Guillot, 1997; Liang et al., 2004). Therefore, the optimal selection of 
cutting parameters is usually done off-line for the cutting-tool life-cycle (Ghani et al., 2004; 
Chien & Chou, 2001). The off-line parameters optimization is usually carried out through 
short cutting experiments which are later used to obtain an empirical model which could be 
optimized subjected to some constraints. Ghani (Ghani et al., 2004) optimized cutting 
parameters using a Taguchi's Design of Experiments in end milling operations. With a 
minimum number of trials compared with other approaches such as a full factorial design, 
the methodology presented reveals the most significant factors and interactions during 
cutting process which leads to choose optimal conditions. A similar methodology is 
described in (Zhang et al., 2007). However, both methodologies do not permit to evaluate 
quadratic or non-linear relations between factors, and the analysis is restricted to the levels 
analysed in each factor. A more generic approach although more costly in experiments is 
based on Response Surface Model (RSM) and Response Surface Model Optimization 
(RSMO). Suresh (Suresh et al., 2002) used RSM for modeling the surface roughness as a first 
and second-order mathematical model and the surface roughness optimization was carried 
out through GA. Cus (Cus & Balic, 2003) also applied GA for optimising a multi-objective 
function based on minimum time necessary for manufacturing, minimum unit cost and 
minimum surface roughness. All the process models applied in his research were empirical 
formulas from machining handbooks which were fitted through regressions. More complex 
models have also been applied for surface roughness and tool wear modeling to optimise 
off-line cutting parameters. Zuperl (Zuperl & Cus, 2003) also applied and compared feed-
forward and radial basis neural networks for learning a multi-objective function similar to 
the one presented in (Cus & Balic, 2003). Choosing the radial basis networks due to their fast 
learning ability and reliability, he applied a large-scale optimization algorithm to obtain the 
optimal cutting parameters. Chien (Chien & Chou, 2001) applied neural networks for 
modeling surface roughness, cutting forces and cutting-tool life and applied a GA to find 
optimum cutting conditions for maximising the material removal rate under the constraints 
of the expected surface roughness and tool life.  
These previous works are off-line optimization methodologies which can be efficient 
enough if tool wear effects have a minimal impact to surface roughness and/or a high 
surface roughness quality is not required. Otherwise, an on-line optimization methodology 
should be applied since optimal cutting conditions may vary during the cutting-tool life-
cycle due to tool wear effects on surface roughness. In this chapter, an ACO system is 
presented for optimising a multi-objective function based on material removal rate, quality 
loss function related to surface roughness, and cutting-tool life subjected to surface 
roughness specifications constraint. The proposed system adjusts the cutting parameters 
during the cutting-tool life-cycle in order to maximise in real-time the multi-objective 
function. The core of the system is composed of three process models: a cutting-tool wear 
model for diagnosing the state of the cutting tool, a surface roughness deviation model for 
predicting the quality loss function and a cutting-tool life model. All models are developed 
using artificial neural networks to model the non-linear relationships in machining 
processes. Since the process models are black-box models, optimal cutting parameters are 
obtained applying genetic algorithms and mesh adaptive direct search algorithms. The 
proposed system is compared with 2 traditional methods for off-line cutting parameters 
selection: (1) selection based on suggested cutting parameters from handbooks, and (2) 
selection based on RSMO. 



 Advances in Robotics, Automation and Control 

 

4 

2. Experimental system 
2.1 Machining process description 
Machining hardened steels (hardness from 30 to 62 HRC) for moulds and dies with surface 
roughness specifications less than 0.3 microns are commonly applied in industry, and 
require costly and time-consuming traditional operations such as electro-discharge 
machining or grinding. Recently, some research studies have reported the use of high 
performance machining operations for these applications with important benefits as 
reducing lead times and costs (Siller et al., 2008). However, tool wear process impacts 
directly to surface roughness so optimal cutting parameters are difficult to obtain since they 
vary according to cutting-tool state. Therefore, although high performance machining can 
technically substitute grinding or electro-discharge machining, additional efforts should be 
conducted in order to tune cutting parameters for an optimal machining. For these 
applications, ACO techniques can improve the process significantly with respect to other 
non-adaptive optimization techniques. 
The machining process studied in this paper is presented in Fig. 2, and it consists of a face-
milling operation on workpieces of hardened AISI D3 steel (60 HRc) with dimensions 
250x250 mm. The experiments were conducted on a CNC machining center suited for 
mould and die manufacturing, and the cutting tool used was a face milling tool with Cubic 
Boron Nitride (CBN) inserts. In order to generate a good surface finish and avoid run-out 
problems, a single insert was mounted on a tool body with an effective diameter of 6.35 mm.  
 

 
Fig. 2. Machining process analysed 

2.2 Monitoring system description 
A monitoring system to estimate on-line tool wear and surface roughness is required to 
select the optimal cutting parameters according to the actual state of the machining process. 
In this chapter, the monitoring system implemented is a multi-component sensor system 
composed of a piezoelectric dynamometer, accelerometers and signal conditioners (Fig. 3). 
Two acquisition boards were used for data acquisition. The first board, an Iotech DaqBook 
112, was used for acquiring cutting forces from the dynamometer and it was configured for 
a sample frequency of 3 kHz. A second board, an Iotech DaqBoard 3000, was used for 
vibration signal acquisition from accelerometers and it was configured for a sample 
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frequency of 100 kHz. Cutting forces were amplified and filtered by a Kistler 5405 amplifier 
configured with a low-pass filter of 300 Hz cut-off frequency. Vibration signals were 
amplified by a PCB 482A22 amplifier. Root-mean-square of forces and vibrations were 
calculated for each cutting pass at the cutting-location x = 175 mm for a 2 seconds data 
acquisition. Surface roughness (Ra) was measured by a Mitutoyo Surftest 301 profilometer 
at the cutting-tool locations x = 40 mm, x = 110 mm, x = 175 mm every cutting pass 
(sampling length λ = c/l = 0.8 mm and number of spans n = 5). Cutting tool wear (Vb) was 
measured by a stereo-microscope Nikon MZ12 after each face-milling pass every 250 mm 
length of cut. Fig. 4 describes the machining process with the Ra and Vb sampling 
procedure.  
 

 
Fig. 3. Multi-component sensor system  
 

 
Fig. 4. Machining process and surface roughness and tool-wear sampling.  

3. Design of experiments 
In order to compare cutting parameters optimization by RSMO and AI approaches, it is 
necessary to carry out a Design of Experiments (DoE) to be useful for both. RSMO requires 
classical designs of experiments such as Box-Wilson Central Composites Designs (CCD) or 
Box-Behnken designs (Nist, 2006), in case that it is only considered linear and quadratic 
effects. On the other hand, AI approaches require enough data for training and testing, 
varying the factors in all its domain, but it does not require any specific DoE design.  
The factors considered in the experimentation were the feed per tooth (fz) and the cutting 
speed (Vc). The radial depth of cut (ae) was considered constant, with a value of 31.25 mm to 
maximize the material removal rate. The axial depth of cut (ap) was defined as a constant 
(0.4 mm) since the machining operation studied was a finishing operation. The minimal 
experimentation required to apply RSMO with two factors is a face centered CCD with one 
center point which is equivalent to a 23 full factorial design. For each experiment, the face-
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milling operation was carried out until the cutting tool edge was worn (Vb higher than 0.3 
mm, usual value for finishing operations (ISO 8688-1, 1989)) or the surface roughness was 
outside specifications. Fig 5 shows the cutting conditions analysed and the order of the 
cutting experiments. 
 

 
Fig. 5. Design of Experiments and run order. Face Centered Central Composite Design.  

4. Definition of the optimization problem 
The machining economics problem consists in determining the optimal cutting parameters 
in order to maximize/minimize an objective function. Typical objective functions to 
optimize cutting parameters are “minimize unit production cost”, “maximize production 
rate”, “maximize profit rate”, etc. On the other hand, several cutting constraints have to be 
considered in machining economics, such as tool-life constraint, cutting force constraint, 
power, stable cutting region constraint, chip-tool interface temperature constraint and 
surface finish constraint (Cus & Balic, 2003). 

4.1 Objective functions 
Typically, three objective functions are considered in a cutting parameters optimization 
problem: (1) Material Removal Rate (MRR), (2) surface roughness and (3) cutting-tool life. 
MRR is a measurement of productivity, and it can be expressed by analytical derivation as 
the product of the width of cut (w), the feed velocity of the milling cutter (F) and the depth 
of cut (ap) (Eq. (1)). Surface roughness is the most important criterion for the assessment of 
the surface quality, and it is usually calculated empirically through experiments. Some 
research works directly use the empirical relationship presented in Eq. (2), where Vc and f 
are the cutting speed and feed rate respectively and k, x1, x2, x3 are empirical coefficients. 
Cutting-tool life is the other important criterion for cutting parameters selection, since 
several costs such as cutting-tool replacement cost and cutting-tool cost are directly related 
with tool life. The relation between the tool life and the parameters is usually expressed by 
the well-known Taylor's formula presented in Eq. (3), where KT, α1, α2, α3 are empirical 
coefficients. 

 (1) 

 (2) 

 
(3) 
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However, for high quality machining operations using CBN cutting tools, both traditional 
surface roughness and tool life equations may not provide a good estimation. Machining a 
very low feed speeds produce that additional mechanisms influence the surface roughness 
generation such as vibrations, engagement of the cutting tool, built up edge, etc. (Siller et al., 
2008). On the other hand, CBN tools have a different wear process than traditional cutting-
tools such as high speed steels, so Taylor's formula may not be directly applied (Trent & 
Wright, 2000). For both reasons, other empirical models based on experimental data must be 
applied instead of Eqs. (2,3). 
For the case study presented in this chapter which is a high quality face milling operation 
based on CBN tools, two alternative objective functions were applied. Instead of Ra model, 
it is applied the quality loss function described by Eq. (4). Considering a desired Ra value, 
the quality loss function is usually applied to estimate the cost of manufacturing with a 
quality variation. The loss function is defined as: 

 
(4) 

where Δ = Ramax - Ratarget  with Ramax the maximum Ra defined by specifications and Ratarget 
the Ra desired; V2  is the mean squared deviation as V2 = ((Ratarget - y1)2 + … + (Ratarget - 
yn)2)/n , with n the number of samples; and Arework is the part cost if the part is outside 
specifications. On the other hand, instead of the traditional Taylor’s formula, it is applied an 
empirical model learnt from the experimentation which is defined by the Eq. (5), where f is 
the function learnt. 

 (5) 

4.2 Multi-objective function 
The optimization problem for the case study is defined as the optimization of a multi-
objective function which is composed of the objective functions defined by Eqs (1,4,5). Since 
these objective functions are conflicting and incomparable, the multi-objective function is 
defined using the desirability function approach. This function is based on the idea that the 
optimal performance of a process that has multiple performance characteristics is reached 
when the process operates under the most desirable performance values (Nist, 2006). For 
each objective function Yi(x), a desirability function di(Yi) assigns numbers between 0 and 1 
to the possible values of Yi, with di(Yi) = 0 representing a completely undesirable value of Yi 
and di(Yi) = 1 representing a completely desirable or ideal objective value. Depending on 
whether a particular objective function Yi is to be maximized or minimized, different 
desirability functions di(Yi) can be used. A useful class of desirability functions was 
proposed by (Derringer & Suich, 1980). Let Li and Ui be the lower and upper values of the 
objective function respectively, with Li < Ui, and let Ti be the desired value for the objective 
function. Then, if an objective function Yi(x) is to be maximized, the individual desirability 
function is defined as 

 

(6) 
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with the exponent w is a weighting factor which determines how important it is to hit the 
target value. For w = 1, the desirability function increases linearly towards Ti; for w < 1, the 
function is convex and there is less emphasis on the target; and for w > 1, the function is 
concave and there is more emphasis on the target. If one wants to minimize an objective 
function instead, the individual desirability function is defined as 

 

(7) 

Fig. (6) shows the individual desirability functions according to different w values. The 
individual desirability functions are combined to define the multi-objective function, called 
the overall desirability of the multi-objective function. This measure of composite 
desirability is the weighted geometric mean of the individual desirability for the objective 
functions. The optimal solution (optimal operating conditions) can then be determined by 
maximizing the composite desirability. The individual desirability is weighted by 
importance factors Ii. Therefore, the multi-objective function or the overall desirability 
function to optimize is defined as: 

 
(8) 

with k denoting the number of objective functions and Ii is the importance for the objective 
function I, where i = 1,2,…,k. 
 

 
Fig. 6. Desirability functions according to the type of objective function 

4.3 Constraints 
Due to the limitations on the cutting process, manufacturers limit the range of the cutting 
parameters to avoid premature cutting-tool failures. Therefore, selected cutting parameters 
according to manufacturer specifications are constrained to: 

 Vmin ≤ Vc ≤ Vmax (9) 

 fmin ≤ fz ≤ fmax (10) 

 ap ≤ amax (11) 



Adaptive Control Optimization of Cutting Parameters for High Quality Machining Operations  
based on Neural Networks and Search Algorithms 

 

9 

Surface roughness specification is also considered a constraint that can be expressed as  

 Ra ≤ Rspec  V2 ≤ (Ratarget - Raspec)2 (12) 

In addition, cutting power and force limitations are usual constraints, but they are 
commonly applied only for roughing operations. 

4.4 Summary of optimization problem and numerical coefficients 
The weights and the individual desirability coefficients for each objective function were 
chosen according to each objective function in the machining process. First the weights were 
defined considering how the objective function increases/decreases as the ideal value is not 
matched. Secondly, a comparison among individual desirability coefficients was done to 
define how much more important is each objective function than the other one. For the case 
study presented, the objective functions were considered linear (w=1) and the coefficient of 
importance were chosen to prevail productivity and surface roughness quality than cutting-
tool cost and cutting-tool cost replacements. Therefore, importance factors I1 and I2 which 
are related to material removal rate and surface quality loss function were chosen as 1, 
whereas importance factor I3 which is related to cutting-tool life was chosen as 0.5. 
Considering the maximum and minimum values of each objective function obtained 
analytically, the desirability functions were defined as follows. 
- MRR desirability function 

 
(13)

MRRtarget = 2387 mm3/min. MRRminimum = 398 mm3/min. Importance factor I1=1. 
- Desirability function of Ra deviation objective function 

 
(14)

V2target = 0.0001 µm2. V2maximum = 0.012 µm2. Importance factor I2=1. Note that the desirability 
function of quality loss W for surface roughness can be defined by the surface roughness 
deviation V2 since Eq. (4) relates W with V2 by a constant coefficient of Arework/Δ2. 
- Cutting-tool life desirability function 

 
(15)

Ttarget = 46.7 min. Tminimum = 7.43 min. Importance factor I3=0.5. 
The multi-objective function or the overall desirability function to be optimized is: 

 (16)

constrained to: 

 100 m/min ≤ Vc ≤ 200 m/min  (17) 

 0.04 mm/rev ≤ fz ≤ 0.12 mm/rev (18) 
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