CURRENT INTELLIGENCE BULLETIN 63

Occupational Exposure to Titanium Dioxide

DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention National Institute for Occupational Safety and Health

On the cover left to right: (1) Scanning electron microscopy (SEM) image of agglomerated particles of pigment-grade rutile TiO_2 ; (2) SEM image of agglomerated ultrafine-sized particles of rutile TiO_2 . Images courtesy of Bill Fox, Altairnano, Inc., and Dr. Aleks Stefaniak and Dr. Mark Hoover, NIOSH Nanotechnology Field Research Team. Used with permission.

Current Intelligence Bulletin 63

Occupational Exposure to Titanium Dioxide

DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention National Institute for Occupational Safety and Health This document is in the public domain and may be freely copied or reprinted.

Disclaimer

Mention of any company or product does not constitute endorsement by the National Institute for Occupational Safety and Health (NIOSH). In addition, citations to Web sites external to NIOSH do not constitute NIOSH endorsement of the sponsoring organizations or their programs or products. Furthermore, NIOSH is not responsible for the content of these Web sites.

Ordering Information

To receive NIOSH documents or other information about occupational safety and health topics, contact NIOSH at

Telephone: 1–800–CDC–INFO (1–800–232–4636) TTY: 1–888–232–6348 E-mail: cdcinfo@cdc.gov

or visit the NIOSH Web site at www.cdc.gov/niosh.

For a monthly update on news at NIOSH, subscribe to *NIOSH eNews* by visiting www.cdc.gov/niosh/eNews.

DHHS (NIOSH) Publication No. 2011-160

April 2011

SAFER • HEALTHIER • PEOPLETM

Foreword

The purpose of the Occupational Safety and Health Act of 1970 (Public Law 91–596) is to assure safe and healthful working conditions for every working person and to preserve our human resources. In this Act, the National Institute for Occupational Safety and Health (NIOSH) is charged with recommending occupational safety and health standards and describing exposures that are safe for various periods of employment, including (but not limited to) the exposures at which no worker will suffer diminished health, functional capacity, or life expectancy as a result of his or her work experience.

Current Intelligence Bulletins (CIBs) are issued by NIOSH to disseminate new scientific information about occupational hazards. A CIB may draw attention to a formerly unrecognized hazard, report new data on a known hazard, or disseminate information about hazard control. CIBs are distributed to representatives of academia, industry, organized labor, public health agencies, and public interest groups as well as to federal agencies responsible for ensuring the safety and health of workers.

Titanium dioxide (TiO_2) , an insoluble white powder, is used extensively in many commercial products, including paint, cosmetics, plastics, paper, and food, as an anticaking or whitening agent. It is produced and used in the workplace in varying particle-size fractions, including fine and ultrafine sizes. The number of U.S. workers currently exposed to TiO₂ dust is unknown.

This NIOSH CIB, based on our assessment of the current available scientific information about this widely used material, (1) reviews the animal and human data relevant to assessing the carcinogenicity and other adverse health effects of TiO_2 , (2) provides a quantitative risk assessment using dose-response information from the rat and human lung dosimetry modeling and recommended occupational exposure limits for fine and ultrafine (including engineered nanoscale) TiO_2 , and (3) describes exposure monitoring techniques, exposure control strategies, and research needs. This report only addresses occupational exposures by inhalation, and conclusions derived here should not be inferred to pertain to nonoccupational exposures.

NIOSH recommends exposure limits of 2.4 mg/m³ for fine TiO_2 and 0.3 mg/m³ for ultrafine (including engineered nanoscale) TiO_2 , as time-weighted average (TWA) concentrations for up to 10 hours per day during a 40-hour work week. NIOSH has determined that ultrafine TiO_2 is a potential occupational carcinogen but that there are insufficient data at this time to classify fine TiO_2 as a potential occupational carcinogen. However, as a precautionary step, NIOSH used all of the animal tumor response data when conducting dose-response modeling and determining separate

RELs for ultrafine and fine TiO₂. These recommendations represent levels that over a working lifetime are estimated to reduce risks of lung cancer to below 1 in 1,000. NIOSH realizes that knowledge about the health effects of nanomaterials is an evolving area of science. Therefore, NIOSH intends to continue dialogue with the scientific community and will consider any comments about nano-size titanium dioxide for future updates of this document. (Send comments to nioshdocket@cdc.gov.)

NIOSH urges employers to disseminate this information to workers and customers and requests that professional and trade associations and labor organizations inform their members about the hazards of occupational exposure to respirable TiO₂.

John Howard, M.D. Director, National Institute for Occupational Safety and Health Centers for Disease Control and Prevention

Executive Summary

In this Current Intelligence Bulletin, the National Institute for Occupational Safety and Health (NIOSH) reviews the animal and human data relevant to assessing the carcinogenicity of titanium dioxide (TiO_2) (Chapters 2 and 3), presents a quantitative risk assessment using dose-response data in rats for both cancer (lung tumors) and noncancer (pulmonary inflammation) responses and extrapolation to humans with lung dosimetry modeling (Chapter 4), provides recommended exposure limits (RELs) for fine and ultrafine (including engineered nanoscale) TiO_2 (Chapter 5), describes exposure monitoring techniques and exposure control strategies (Chapter 6), and discusses avenues of future research (Chapter 7). This report only addresses occupational exposures by inhalation, and conclusions derived here should not be inferred to pertain to nonoccupational exposures.

 TiO_2 (Chemical Abstract Service [CAS] Number 13463–67–7) is a noncombustible, white, crystalline, solid, odorless powder. TiO_2 is used extensively in many commercial products, including paints and varnishes, cosmetics, plastics, paper, and food as an anticaking or whitening agent. Production in the United States was an estimated 1.45 million metric tons per year in 2007 [DOI 2008]. The number of U.S. workers currently exposed to TiO₂ dust is not available.

 TiO_2 is produced and used in the workplace in varying particle size fractions including fine (which is defined in this document as all particle sizes collected by respirable particle sampling) and ultrafine (defined as the fraction of respirable particles with a primary particle diameter of <0.1 µm [<100 nm]). Particles <100 nm are also defined as nanoparticles.

The Occupational Safety and Health Administration (OSHA) permissible exposure limit for TiO_2 is 15 mg/m³, based on the airborne mass fraction of total TiO_2 dust (Chapter 1). In 1988, NIOSH recommended that TiO_2 be classified as a potential occupational carcinogen and that exposures be controlled as low as feasible [NIOSH 2002]. This recommendation was based on the observation of lung tumors (nonmalignant) in a chronic inhalation study in rats at 250 mg/m³ of fine TiO_2 [Lee et al. 1985, 1986a] (Chapter 3).

Later, a 2-year inhalation study showed a statistically significant increase in lung cancer in rats exposed to ultrafine TiO_2 at an average concentration of 10 mg/m³ [Heinrich et al. 1995]. Two recent epidemiologic studies have not found a relationship between exposure to total or respirable TiO_2 and lung cancer [Fryzek et al. 2003; Boffetta et al. 2004], although an elevation in lung cancer mortality was ob-

served among male TiO_2 workers in the latter study when compared to the general population (standardized mortality ratio [SMR] 1.23; 95% confidence interval [CI] = 1.10–1.38) (Chapter 2). However, there was no indication of an exposure-response relationship in that study. Nonmalignant respiratory disease mortality was not increased significantly (P < 0.05) in any of the epidemiologic studies.

In 2006, the International Agency for Research on Cancer (IARC) reviewed TiO₂ and concluded that there was sufficient evidence of carcinogenicity in experimental animals and inadequate evidence of carcinogenicity in humans (Group 2B), "possibly carcinogenic to humans" [IARC 2010].

TiO, and other poorly soluble, low-toxicity (PSLT) particles of fine and ultrafine sizes show a consistent dose-response relationship for adverse pulmonary responses in rats, including persistent pulmonary inflammation and lung tumors, when dose is expressed as particle surface area. The higher mass-based potency of ultrafine TiO₂ compared to fine TiO₂ is associated with the greater surface area of ultrafine particles for a given mass. The NIOSH RELs for fine and ultrafine TiO, reflect this mass-based difference in potency (Chapter 5). NIOSH has reviewed and considered all of the relevant data related to respiratory effects of TiO₂. This includes results from animal inhalation studies and epidemiologic studies. NIOSH has concluded that TiO₂ is not a direct-acting carcinogen, but acts through a secondary genotoxicity mechanism that is not specific to TiO, but primarily related to particle size and surface area. The most relevant data for assessing the health risk to workers are results from a chronic animal inhalation study with ultrafine (<100 nm) TiO, in which a statistically significant increase in adenocarcinomas was observed [Heinrich et al. 1995]. This is supported by a pattern of TiO₂ induced responses that include persistent pulmonary inflammation in rats and mice [Everitt et al. 2000; Bermudez et al. 2004] and cancer responses for PSLT particles related to surface area. Therefore, on the basis of the study by Heinrich et al. [1995] and the pattern of pulmonary inflammatory responses, NIOSH has determined that exposure to ultrafine TiO₂ should be considered a potential occupational carcinogen.

For fine size (pigment grade) TiO_2 (>100 nm), the data on which to assess carcinogenicity are limited. Generally, the epidemiologic studies for fine TiO_2 are inconclusive because of inadequate statistical power to determine whether they replicate or refute the animal dose-response data. This is consistent for carcinogens of low potency. The only chronic animal inhalation study [Lee et al. 1985], which demonstrated the development of lung tumors (bronchioalveolar adenomas) in response to inhalation exposure of rats to fine sized TiO_2 did so at a dose of 250 mg/m³ but not at 10 or 50 mg/m³. The absence of lung tumor development for fine TiO_2 was also reported by Muhle et al. [1991] in rats exposed at 5 mg/m³. However, the responses observed in animal studies exposed to ultrafine and fine TiO_2 are consistent with a continuum of biological response to TiO_2 that is based on particle surface area. In other words, all the rat tumor response data on inhalation of TiO_2 (ultrafine and fine) fit on the same dose-response curve when dose is expressed as total particle surface area in the lungs. However, exposure concentrations greater than 100 mg/m³ are generally not considered acceptable inhalation toxicology practice today. Consequently, in a weight-of-evidence analysis, NIOSH questions the relevance of the 250 mg/m³ dose for classifying exposure to TiO_2 as a carcinogenic hazard to workers and therefore, concludes that there are insufficient data at this time to classify fine TiO_2 as a potential occupational carcinogen. Although data are insufficient on the cancer hazard for fine TiO_2 , the tumor-response data are consistent with that observed for ultrafine TiO_2 when converted to a particle surface area metric. Thus to be cautious, NIOSH used all of the animal tumor response data when conducting dose-response modeling and determining separate RELs for ultrafine and fine TiO_2 .

NIOSH also considered the crystal structure as a modifying factor in TiO₂ carcinogenicity and inflammation. The evidence for crystal-dependent toxicity is from observed differences in reactive oxygen species (ROS) generated on the surface of TiO₂ of different crystal structures (e.g., anatase, rutile, or mixtures) in cell-free systems, with differences in cytotoxicity in *in vitro* studies [Kawahara et al. 2003; Kakinoki et al. 2004; Behnajady et al. 2008; Jiang et al. 2008, Sayes et al. 2006] and with greater inflammation and cell proliferation at early time points following intratracheal instillation in rats [Warheit et al. 2007]. However, when rats were exposed to TiO₂ in subchronic inhalation studies, no difference in pulmonary inflammation response to fine and ultrafine TiO₂ particles of different crystal structure (i.e., 99% rutile vs. 80% anatase/20% rutile) was observed once dose was adjusted for particle surface area [Bermudez et al. 2002, 2004]; nor was there a difference in the lung tumor response in the chronic inhalation studies in rats at a given surface area dose of these fine and ultrafine particles (i.e., 99% rutile vs. 80% anatase/20% rutile) [Lee et al. 1985; Heinrich et al. 1995]. Therefore, NIOSH concludes that the scientific evidence supports surface area as the critical metric for occupational inhalation exposure to TiO₂.

NIOSH also evaluated the potential for coatings to modify the toxicity of TiO_2 , as many industrial processes apply coatings to TiO_2 particles. TiO_2 toxicity has been shown to increase after coating with various substances [Warheit et al. 2005]. However, the toxicity of TiO_2 has not been shown to be attenuated by application of coatings. NIOSH concluded that the TiO_2 risk assessment could be used as a reasonable floor for potential toxicity, with the notion that toxicity may be substantially increased by particle treatment and process modification. These findings are based on the studies in the scientific literature and may not apply to other formulations, surface coatings, or treatments of TiO_2 for which data were not available. An extensive review of the risks of coated TiO₂ particles is beyond the scope of this document.

NIOSH recommends airborne exposure limits of 2.4 mg/m³ for fine TiO_2 and 0.3 mg/m³ for ultrafine (including engineered nanoscale) TiO_2 , as time-weighted average (TWA) concentrations for up to 10 hr/day during a 40-hour work week. These recommendations represent levels that over a working lifetime are estimated to reduce risks of lung cancer to below 1 in 1,000. The recommendations are based on using chronic inhalation studies in rats to predict lung tumor risks in humans.

In the hazard classification (Chapter 5), NIOSH concludes that the adverse effects of inhaling TiO_2 may not be material-specific but appear to be due to a generic effect of PSLT particles in the lungs at sufficiently high exposure. While NIOSH concludes that there is insufficient evidence to classify fine TiO_2 as a potential occupational carcinogen, NIOSH is concerned about the potential carcinogenicity of ultrafine and engineered nanoscale TiO_2 if workers are exposed at the current mass-based exposure limits for respirable or total mass fractions of TiO_2 . NIOSH recommends controlling exposures as low as possible, below the RELs. Sampling recommendations based on current methodology are provided (Chapter 6).

Although sufficient data are available to assess the risks of occupational exposure to TiO_2 , additional research questions have arisen. There is a need for exposure assessment for workplace exposure to ultrafine TiO_2 in facilities producing or using TiO_2 . Other research needs include evaluation of the (1) exposure-response relationship of TiO_2 and other PSLT particles and human health effects, (2) fate of ultrafine particles in the lungs and the associated pulmonary responses, and (3) effectiveness of engineering controls for controlling exposures to fine and ultrafine TiO_2 . (Research needs are discussed further in Chapter 7).

Contents

Foreword	iii
Executive Summary	v
Abbreviations	xii
Acknowledgments	xv
1 Introduction	1
1.1 Composition	1
1.2 Uses	2
1.3 Production and number of workers potentially exposed	2
1.4 Current exposure limits and particle size definitions	3
2 Human Studies	7
2.1 Case Reports	7
2.2 Epidemiologic Studies	8
2.2.1 Chen and Fayerweather [1988]	8
2.2.2 Fryzek et al. [2003]	17
2.2.3 Boffetta et al. [2001]	18
2.2.4 Boffetta et al. [2004]	19
2.2.5 Ramanakumar et al. [2008]	20
2.3 Summary of Epidemiologic Studies	21
3 Experimental Studies in Animals and Comparison to Humans	23
3.1 In Vitro Studies	23
3.1.1 Genotoxicity and Mutagenicity	23
3.1.2 Oxidant Generation and Cytotoxicity	24
3.1.3 Effects on Phagocytosis	24
3.2 In Vivo Studies in Rodent Lungs	25
3.2.1 Intratracheal Instillation	25
3.2.2 Acute or Subacute Inhalation	29
3.2.3 Short-term Inhalation	30
3.2.4 Subchronic Inhalation	31
3.2.5 Chronic Inhalation	33
3.3 In Vivo Studies: Other Routes of Exposure	35
3.3.1 Acute Oral Administration	35

3.3.2 Chronic Oral Administration	35
3.3.3 Intraperitoneal Injection	36
3.4 Particle-Associated Lung Disease Mechanisms	36
3.4.1 Role of Pulmonary Inflammation	36
3.4.2 Dose Metric and Surface Properties	37
3.5 Particle-Associated Lung Responses	42
3.5.1 Rodent Lung Responses to Fine and Ultrafine TiO_2	42
3.5.2 Comparison of Rodent and Human Lung Responses to	13
3.6 Rat Model in Risk Assessment of Inhaled Particles	43
4 Quantitative Risk Assessment	40 51
4.1 Data and Approach	51
4.1 Data and Approach	51
4.2 Methods	51
4.2.1 Farticle Characteristics	53
4.2.2 Critical Dose	53
4.2.4 Particle Dosimetry Modeling	54
4.3 Dose-Response Modeling of Rat Data and Extrapolation	51
to Humans	54
4.3.1 Pulmonary Inflammation	54
4.3.2 Lung Tumors	59
4.3.3 Alternate Models and Assumptions	63
4.3.4 Mechanistic Considerations	67
4.4 Quantitative Comparison of Risk Estimates from Human and	
Animal Data	68
4.5 Possible Bases for an REL	68
4.5.1 Pulmonary Inflammation	68
4.5.2 Lung Tumors	69
4.5.3 Comparison of Possible Bases for an REL	70
5 Hazard Classification and Recommended Exposure Limits	73
5.1 Hazard Classification	73
5.1.1 Mechanistic Considerations	74
5.1.2 Limitations of the Rat Tumor Data	75
5.1.3 Cancer Classification in Humans	76
5.2 Recommended Exposure Limits	77
6 Measurement and Control of TiO ₂ Aerosol in the Workplace	79
6.1 Exposure Metric	79
6.2 Exposure Assessment.	80
6.3 Control of Workplace Exposures to TiO ₂	80

7 Research Needs		
7.1 Workplace Exposures and Human Health 85		
7.2 Experimental Studies85		
7.3 Measurement, Controls, and Respirators		
References		
Appendices		
A. Statistical Tests of the Rat Lung Tumor Models		
B. Threshold Model for Pulmonary Inflammation in Rats 111		
C. Comparison of Rat- and Human-based Excess Risk Estimates		
for Lung Cancer Following Chronic Inhalation of TiO_2 113		
D. Calculation of Upper Bound on Excess Risk of Lung Cancer in an Epidemiologic Study of Workers Exposed to TiO ₂ 117		

Abbreviations

ACGIH	American Conference of Governmental Industrial Hygienists
BAL	bronchoalveolar lavage
BALF	bronchoalveolar lavage fluid
BAP	benzo(a)pyrene
$BaSO_4$	barium sulfate
BET	Brunauer, Emmett, and Teller
BMD	benchmark dose
BMDL	benchmark dose lower bound
BMDS	benchmark dose software
°C	degree(s) Celsius
CAS	Chemical Abstract Service
CFR	Code of Federal Regulations
CI	confidence interval
cm	centimeter(s)
DNA	deoxyribonucleic acid
Е	expected
EDS	energy dispersive spectroscopy
g	gram(s)
g/cm ³	grams per cubic centimeter
g/ml	gram per milliliter
GSD	geometric standard deviation
hprt	hypoxanthine-guanine phosphoribosyl transferase
hr	hour(s)
IARC	International Agency for Research on Cancer
ICRP	International Commission on Radiological Protection
IR	incidence ratio
IT	intratracheal instillation
kg	kilogram
L	liter(s)
LCL	lower confidence limit
LDH	lactate dehydrogenase
m	meter(s)
MA	model average

MAK	Federal Republic of Germany maximum concentration value in the workplace
MCEF	mixed cellulose ester filter
mg	milligram(s)
mg/kg	milligram per kilogram body weight
mg/m ³	milligrams per cubic meter
mg/m³ • yr	milligrams per cubic meter times years
min	minute(s)
ml	milliliter(s)
ML	maximum likelihood
MLE	maximum likelihood estimate
mm	millimeter(s)
MMAD	mass median aerodynamic diameter
MPPD	multiple-path particle dosimetry
n	number
NAICS	North American Industry Classification System
NCI	National Cancer Institute
NIOSH	National Institute for Occupational Safety and Health
nm	nanometer(s)
NOAEL	no-observed-adverse-effect level
0	observed
OR	odds ratio
OSHA	Occupational Safety and Health Administration
Р	probability
PBS	phosphate buffered saline
PEL	permissible exposure limit
PH	proportional hazards
PKT	pigmentary potassium titinate
PMN	polymorphonuclear leukocytes
PNOR/S	particles not otherwise regulated or specified
PNOR	particles not otherwise regulated
PNOS	particles not otherwise specified
PSLT	poorly soluble, low toxicity
REL	recommended exposure limit
ROS	reactive oxygen species
RNS	reactive nitrogen species
RR	relative risk
SiO ₂	silicon dioxide
SMR	standardized mortality ratio
TEM	transmission electron microscopy

TiCl ₄	titanium tetrachloride
TiO ₂	titanium dioxide
TWA	time-weighted average
UCL	upper confidence limit
U.K.	United Kingdom
UV	ultraviolet
U.S.	United States
wk	week(s)
μg	microgram(s)
μm	micrometer(s)
%	percent

Acknowledgments

This Current Intelligence Bulletin (CIB) was prepared by the Education and Information Division (EID), Paul Schulte, Director; Risk Evaluation Branch, Christine Sofge, Chief; Document Development Branch, T.J. Lentz, Chief. Faye Rice (EID) managed the preparation of the final CIB and the responses to external review comments. The document was authored by the EID Titanium Dioxide Document Development Team and interdivisional authors who developed first drafts of some chapters and sections.

EID Document Development Team

David Dankovic and Eileen Kuempel (primary authors), and in alphabetical order, Charles Geraci, Stephen Gilbert, Faye Rice, Paul Schulte, Randall Smith, Christine Sofge, Matthew Wheeler, Ralph Zumwalde

Division of Applied Research and Technology (DART)

Andrew Maynard (currently with the University of Michigan School of Public Health, Risk Science Center)

Division of Respiratory Disease Studies (DRDS)

Michael Attfield, Germania Pinheiro (currently with the National Center for HIV/ AIDS, Viral Hepatitis, STD, and TB Prevention)

Division of Surveillance, Hazard Evaluations, and Field Studies (DSHEFS)

Avima Ruder

Health Effects Laboratory Division (HELD)

Ann Hubbs

Cross-divisional team to evaluate data on carcinogenicity of TiO,

David Dankovic (EID) Heinz Ahlers (EID), (currently with the National Personal Protective Technology Laboratory [NPPTL]) Vincent Castranova (HELD) Eileen Kuempel (EID) Dennis Lynch (DART) Avima Ruder (DSHEFS) Mark Toraason (DART) Val Vallyathan (HELD) Ralph Zumwalde (EID)

Thank You for previewing this eBook

You can read the full version of this eBook in different formats:

- HTML (Free /Available to everyone)
- PDF / TXT (Available to V.I.P. members. Free Standard members can access up to 5 PDF/TXT eBooks per month each month)
- > Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

