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Chapter 1

Oscillations in Mechanical Systems

1.1 Simple Harmonic Oscillator’

1.1.1 The Simple Harmonic Oscillator
1.1.1.1 Simple Harmonic Motion

For SHM to occur we require stable equilibrium, about a point. For example, at the origin we could have:

S F(0)=0,

which would describe a system in equilibrium. This however is not necessarily stable equilibrium.

Slabla

t\_._,./; Equiliorium

l

Instakbla
Equiliorium

Figure 1.1: A simple cartoon of stable and unstable equilibrium. The lower part of the figure shows
the case of unstable equilibrium. The upper part shows the case of stable equilibrium. These situations
often occur in mechanical systems.

LThis content is available online at <http://cnx.org/content/m12774/1.6/>.
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2 CHAPTER 1. OSCILLATIONS IN MECHANICAL SYSTEMS

The lower part of the figure shows the case of unstable equilibrium. The upper part shows the case of
stable equilibrium. These situations often occur in mechanical systems.
For example, consider a mass attached to a spring;:

F(0) =0

Block of
Mass M

Fix) = -kx

Bilock of
Mass M

Figure 1.2

In general, in a case of stable equilibrium we can write the force as a polynomial expansion:
F(z)=— (k1z + koa® + ksa® +...)

where the k; are positive constants. There is always a region of x small enough that we can write:

F=—kx
F=—kx
ma = —kx
mi = —kx
i+%x:0
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This is satisfied by an equation of the form
x = Asin (wt + ¢p)

where A and ¢ are constants that are determined by the initial conditions. Draw a diagram of a sinusoid
and mark on it the period T and Amplitude A

=

£ .

5 Amplitude

]

v}

=3

n L

-

Time
- Period -
Figure 1.3

¢o Is an arbitrary phase which shifts the sinusoid.This is also satisfied by an equation of the form

x = Asin (wt) + Bcos (wt)
Lets show this:
x = Asin (wt) + Bcos (wt)
i = w (Acos (wt) — Bsin (wt))
# = —w? (Asin (wt) + Beos (wt))
i =—w?z
Again there are two constants determined by the initial conditions A and B The equation can be rewritten
P4+wir=0
Thus if
. k
we=—
then the equation is identical to the SHM equation.
So another way to write the equation of Simple Harmonic Motion is

F4+wlz=0

Available for free at Connexions <http://cnx.org/content/col10279/1.33>



CHAPTER 1. OSCILLATIONS IN MECHANICAL SYSTEMS

or

= —wlx

It is also important to remember the relationships between freqency, angular frequency and period:

w = 21v
— 27
T_w
-1
V=1

Another solution to the SHM equation is

Z = Acos (wt + ¢p) + i Asin (wt + ¢g)

Recall Taylor’s expansions of sine and cosine

63 o
sinf = 6 — ——&—a

6% 44
0059:1—5—1—?

Then
2 3 4
C089+251n0—1—|—z0—7_ +i!
=1+i0+ { ’9) +(19) +(%9)

— 61,0

(an alternative way to show this is the following)

z = cosf) + isinfé
dz = (—sinf + icosf) df = izdf
[ = fias
Inz =0

z=e'

Thus we can write
T = Acos (wt + ¢p) + tAsin (wt + ¢g)
as
_ Aei(wt—i—d)o)

IS}

i‘ = Aei(Wt+¢0)
& = iwAelWttdo)
i = (iw)? Aeiwiteo) — 25

NOTE: We will use the complex representation a lot, so you need to become familiar with it. It is

used a lot in Optics, Classical and Quantum Mechanics and Electrical Engineering so it is a good
thing to know.
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Now for physical systems we are interested in just the real part so
x = Re [Aei(w““d’o)}

This will be implicitly understood. In physics we just write

r = Aetlwitdo)

One thing that will seem to be confusing is that there are all these different solutions. They are all just
different forms of the same thing. Which form is used in a particular circumstance is simply a matter of
convenience. Some forms lend themselves to to solutions of certain problems more easily than others. Also
the most convenient form can depend upon the initial conditions. For example if x is at its maximum
displacement at time ¢ = 0 then a cos form may be the most convenient. As a general rule I like using the
complex representation because natural logarithms are so easy to work with. For example

de” -
e
x
deaa:
d — aeaz
x

which is all pretty simple to remember
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6 CHAPTER 1. OSCILLATIONS IN MECHANICAL SYSTEMS

1.2 Simple and Compound Pendula’

1.2.1 The Simple Pendulum

mg

X Axis

Figure 1.4: A simple pendulum.

Shown is a simple pendulum which has a mass m that is displaced by an angle 6. There is tension (?) in

the string which acts from the mass to the anchor point. The weight of the mass is m ¢ and the tension
in the string is 7' = mgcosf. There is a tangential restoring force = —mgsinf. If we approximate that 6 is
small (we have to make this approximation or else we can not solve the problem analytically) then sinf ~ 6
and x = 6. (note that sinf is only approximately equal to ¥ because x is the distance along the x axis) so

2This content is available online at <http://cnx.org/content/m12778/1.2/>.
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that we can write:
F =ma=m2

= —mgsinf
~ —mgl
= —mg%
or

j}+%x=0

(Note that We should immediately recongnize that this is the equation for simple harmonic motion (SHM)
with
g

w = -

R
We could take another approach and use angular momentum to solve the problem. Recall that:

L=1Iw=10

I =mi?
Also recall that the torque is the time derivative of the angular momentum so that:

—

4?_*} _@
T=r X = at

—Ilmgl = 16

9’+%9=0

Again we would recognize that this is simple harmonic motion with

w=4/2
l.

Available for free at Connexions <http://cnx.org/content/col10279/1.33>



8 CHAPTER 1. OSCILLATIONS IN MECHANICAL SYSTEMS

1.2.2 The Compound Pendulum

Pivot Point

Center of
Mass

T ——
-

Figure 1.5: A compound pendulum.

The compound pendulum is another interesting example of a pendulum that undergoes simple harmonic
motion. For an extended body then one uses the center of mass and the moment of inertia. Use the center

of mass, the moment of inertia and the Torque (angular force) T=7 x F

T=rxF

10 = —Ilmgsinf ~ —Img0
0+ =0
So again we get SHM now with
2 lmg
w=—
I

One sees that this formalism can be applied to the simple pendulum (ignore the string and one can consider
the ball a point mass). The moment of inertia is mi?. So we get

mi2 1
which is just what we got before for the simple pendulum. We could write the equation of motion for a
simple pendulum as:

l
w? = mg g

0 = Aei(WtJr%)

Available for free at Connexions <http://cnx.org/content/col10279/1.33>



where ¢ is determined by initial conditions.
A discussion of the Pendulum and Simple Harmonic Oscillator can be found at
http://monet.physik.unibas.ch /~elmer/pendulum /index.htmil?

1.3 Adding Harmonic Motions"

1.3.1 Same Frequency, different phase

One of the most important concepts we encounter in vibrations and waves is the principle of superposition.
Lets look at a couple of cases starting with adding two motions with the same frequency but different phases.
It is easiest to calculate this if you use complex notation

T, = Alei(wt+a1)

Tg = Agei(Wt+a2)

T =21 + To = Ale’i(wt"r()t]) _|_ A2ei(wt+o<2)
T = ei(wt+a1) [Al + A2ei(a2—a1)]
This comes up all the time in real life: For example noise canceling headphones use this technique. In
headphones there is a membrane vibrating with the frequency of the sound you are listening two. In a noise
canceling headphone there is also a microphone "listening" to the noice coming from outside the headphone.

This oscillation is inverted and then added to membrane producing the sound you listen to. The net result
is a signal that contains the desired sound and subtracts the noise resulting in quieter operation.

1.3.2 Different Frequency

One can also consider the case of two oscillations with the same phase but different frequencies:

xr] = Alei(wlt)

Tro = A2 ei(“’ﬁ)

T =1 + 39 = Ajet@1t) 4 A,ei(w2t)

T = ei(wlt) [Al + A2€i(w2—w1)t}

In an acoustical system, this gives beats, which is more easily seen if we take the case where A7 = Ay = A,
then:
T =21 + x9 = Aet@1t) 4 Aeilw2t)
_ Aei(WI:wQ +w1;w2 )t n Aei(ul;ruz _LUI;LLIQ )t
_ Ael(¥)t |:€i(w1;w2 )t i 6_,(w1;w2 )t:|

i witwa —wo
= 2Ae’( 2 )tcos [(“’IT) ﬂ

Where the last step used
¢l 4 =0

2
So in an acoustical system we will get a dominant sound that has the average of the two frequencies and and
envelope of amplitude that slowly oscillates. This will be looked at more closes in the context of mechanical
waves.

cost =

3http://monet.physik.unibas.ch/~elmer/pendulum/index.html
4This content is available online at <http://cnx.org/content/m12779/1.1/>.
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10 CHAPTER 1. OSCILLATIONS IN MECHANICAL SYSTEMS

1.4 Energy in the Simple Harmonic Oscillator’

1.4.1 Energy in SHO
Recall that the total energy of a system is:

EFE=KE+PE=K+U
We also know that the kinetic energy is

1
K = -—mv?
2
But what is U? For a conservative Force (§ F d Z=0) - eg. gravity, electrical... (no friction) we know that
the work done by an external force is stored as U. For the case of a mass on a spring, the external force is
opposite the spring Force (That is it has the opposite sign from the spring force).:

Fewt = kx

(i.e. This is the force you use to pull the mass and stretch the spring before letting go and making it oscillate.)
Thus

x 1
U :/ kxdr = ka?
O 2

This gives:
E = 3mv? + ka?

m()° + b

1
2
It is important to realize that any system that is represented by either of these two equations below represents
oscillating system

2z
1 dz\? 1 9
- il - - B
Qm(dt> +2kzx

To calculate the energy in the system it is helpful to take advantage of the fact that we can calculate the
energy at any point in x. For example in the case of the simple harmonic oscillator we have that:

T = Aei(thra)

We can choose t such that
rz=A

Now remember that when I write
T = Aei(thra)

I "really" (pun intended) mean
x = Re [Aei(““a)}

Likewise then .
T = Re {iwAeZ(“’t"’a)]

At the point in time where x = A this gives us

& = ReliwA] =0

5This content is available online at <http://cnx.org/content/m12780/1.3/>.
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11

Thus at that point in time we have © = 0. We can now substitute that and x = A into
1 (de\® 1

E=-m|l— —ka?

2m(dt> o

we obtain 1
E = 51<A2

This is an important point. The energy in the oscillator is proportional to the amplitude squared!

1.5 Damped Oscillations’

1.5.1 Damped Oscillations

Consider a simple harmonic oscillator that has friction, then the equations of motion must be changed with
the addition of a friction term. So we write

d*x dx

where b% is the friction term. Rearranging we obtain:

2

mcclin + bz—f +kr=0
or

d*x dz 9

Tz + Vg Twor = 0
Where v = £ and w? = £ Assume a solution of form

z = Ae'Ptte)

substitute into equation and get ‘
(=p? +ipy + wi) Ae'PH) =
SO
—p? +ipy+wl=0
p must have real and imaginary parts, so rewrite: p = w + is

p? = w? + 2iws — 52
So the equation

—p2+ip'y+w(2) =0
becomes upon substitution:

—w? —2iws+82+iw7—sw+w§ =0
This equation implies that the real and imaginary parts are each zero.Separate the real and imaginary
partsImaginary parts give:
—2ws+wy=0

_
§=13

From Real parts get
—w?+ s —sy+ws =0

6This content is available online at <http://cnx.org/content/m12781/1.1/>.
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