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Chapter 1

Preface1

This book develops the ideas behind and properties of wavelets and shows how they can be used as analytical
tools for signal processing, numerical analysis, and mathematical modeling. We try to present this in a way
that is accessible to the engineer, scientist, and applied mathematician both as a theoretical approach and
as a potentially practical method to solve problems. Although the roots of this subject go back some time,
the modern interest and development have a history of only a few years.

The early work was in the 1980's by Morlet, Grossmann, Meyer, Mallat, and others, but it was the paper
by Ingrid Daubechies [82] in 1988 that caught the attention of the larger applied mathematics communities
in signal processing, statistics, and numerical analysis. Much of the early work took place in France [3], [6]
and the USA [82], [7], [93], [357]. As in many new disciplines, the �rst work was closely tied to a particular
application or traditional theoretical framework. Now we are seeing the theory abstracted from application
and developed on its own and seeing it related to other parallel ideas. Our own background and interests in
signal processing certainly in�uence the presentation of this book.

The goal of most modern wavelet research is to create a set of basis functions (or general expansion
functions) and transforms that will give an informative, e�cient, and useful description of a function or
signal. If the signal is represented as a function of time, wavelets provide e�cient localization in both time
and frequency or scale. Another central idea is that of multiresolution where the decomposition of a signal
is in terms of the resolution of detail.

For the Fourier series, sinusoids are chosen as basis functions, then the properties of the resulting expan-
sion are examined. For wavelet analysis, one poses the desired properties and then derives the resulting basis
functions. An important property of the wavelet basis is providing a multiresolution analysis. For several
reasons, it is often desired to have the basis functions orthonormal. Given these goals, you will see aspects
of correlation techniques, Fourier transforms, short-time Fourier transforms, discrete Fourier transforms,
Wigner distributions, �lter banks, subband coding, and other signal expansion and processing methods in
the results.

Wavelet-based analysis is an exciting new problem-solving tool for the mathematician, scientist, and
engineer. It �ts naturally with the digital computer with its basis functions de�ned by summations not
integrals or derivatives. Unlike most traditional expansion systems, the basis functions of the wavelet analysis
are not solutions of di�erential equations. In some areas, it is the �rst truly new tool we have had in many
years. Indeed, use of wavelets and wavelet transforms requires a new point of view and a new method of
interpreting representations that we are still learning how to exploit.

More recently, work by Donoho, Johnstone, Coifman, and others have added theoretical reasons for why
wavelet analysis is so versatile and powerful, and have given generalizations that are still being worked on.
They have shown that wavelet systems have some inherent generic advantages and are near optimal for a
wide class of problems [116]. They also show that adaptive means can create special wavelet systems for
particular signals and classes of signals.

1This content is available online at <http://cnx.org/content/m45097/1.3/>.
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2 CHAPTER 1. PREFACE

The multiresolution decomposition seems to separate components of a signal in a way that is superior to
most other methods for analysis, processing, or compression. Because of the ability of the discrete wavelet
transform to decompose a signal at di�erent independent scales and to do it in a very �exible way, Burke calls
wavelets �The Mathematical Microscope" [44], [221]. Because of this powerful and �exible decomposition,
linear and nonlinear processing of signals in the wavelet transform domain o�ers new methods for signal
detection, �ltering, and compression [116], [123], [114], [366], [453], [189]. It also can be used as the basis for
robust numerical algorithms.

You will also see an interesting connection and equivalence to �lter bank theory from digital signal
processing [422], [15]. Indeed, some of the results obtained with �lter banks are the same as with discrete-
time wavelets, and this has been developed in the signal processing community by Vetterli, Vaidyanathan,
Smith and Barnwell, and others. Filter banks, as well as most algorithms for calculating wavelet transforms,
are part of a still more general area of multirate and time-varying systems.

The presentation here will be as a tutorial or primer for people who know little or nothing about wavelets
but do have a technical background. It assumes a knowledge of Fourier series and transforms and of linear
algebra and matrix theory. It also assumes a background equivalent to a B.S. degree in engineering, science,
or applied mathematics. Some knowledge of signal processing is helpful but not essential. We develop the
ideas in terms of one-dimensional signals [357] modeled as real or perhaps complex functions of time, but
the ideas and methods have also proven e�ective in image representation and processing [379], [268] dealing
with two, three, or even four dimensions. Vector spaces have proved to be a natural setting for developing
both the theory and applications of wavelets. Some background in that area is helpful but can be picked
up as needed. The study and understanding of wavelets is greatly assisted by using some sort of wavelet
software system to work out examples and run experiments. Matlab

TM programs are included at the end
of this book and on our web site (noted at the end of the preface). Several other systems are mentioned in
Chapter: Wavelet-Based Signal Processing and Applications (Chapter 11).

There are several di�erent approaches that one could take in presenting wavelet theory. We have chosen
to start with the representation of a signal or function of continuous time in a series expansion, much as a
Fourier series is used in a Fourier analysis. From this series representation, we can move to the expansion of a
function of a discrete variable (e.g., samples of a signal) and the theory of �lter banks to e�ciently calculate
and interpret the expansion coe�cients. This would be analogous to the discrete Fourier transform (DFT)
and its e�cient implementation, the fast Fourier transform (FFT). We can also go from the series expansion
to an integral transform called the continuous wavelet transform, which is analogous to the Fourier transform
or Fourier integral. We feel starting with the series expansion gives the greatest insight and provides ease in
seeing both the similarities and di�erences with Fourier analysis.

This book is organized into sections and chapters, each somewhat self-contained. The earlier chapters
give a fairly complete development of the discrete wavelet transform (DWT) as a series expansion of signals
in terms of wavelets and scaling functions. The later chapters are short descriptions of generalizations of the
DWT and of applications. They give references to other works, and serve as a sort of annotated bibliography.
Because we intend this book as an introduction to wavelets which already have an extensive literature, we
have included a rather long bibliography. However, it will soon be incomplete because of the large number
of papers that are currently being published. Nevertheless, a guide to the other literature is essential to our
goal of an introduction.

A good sketch of the philosophy of wavelet analysis and the history of its development can be found in
a recent book published by the National Academy of Science in the chapter by Barbara Burke [44]. She
has written an excellent expanded version in [221], which should be read by anyone interested in wavelets.
Daubechies gives a brief history of the early research in [103].

Many of the results and relationships presented in this book are in the form of theorems and proofs or
derivations. A real e�ort has been made to ensure the correctness of the statements of theorems but the
proofs are often only outlines of derivations intended to give insight into the result rather than to be a formal
proof. Indeed, many of the derivations are put in the Appendix in order not to clutter the presentation.
We hope this style will help the reader gain insight into this very interesting but sometimes obscure new
mathematical signal processing tool.

Available for free at Connexions <http://cnx.org/content/col11454/1.5>
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We use a notation that is a mixture of that used in the signal processing literature and that in the
mathematical literature. We hope this will make the ideas and results more accessible, but some uniformity
and cleanness is lost.

The authors acknowledge AFOSR, ARPA, NSF, Nortel, Inc., Texas Instruments, Inc. and Aware, Inc.
for their support of this work. We speci�cally thank H. L. Resniko�, who �rst introduced us to wavelets
and who proved remarkably accurate in predicting their power and success. We also thank W. M. Lawton,
R. O. Wells, Jr., R. G. Baraniuk, J. E. Odegard, I. W. Selesnick, M. Lang, J. Tian, and members of the
Rice Computational Mathematics Laboratory for many of the ideas and results presented in this book. The
�rst named author would like to thank the Max�eld and Oshman families for their generous support. The
students in EE-531 and EE-696 at Rice University provided valuable feedback as did Bruce Francis, Strela
Vasily, Hans Schüssler, Peter Ste�en, Gary Sitton, Jim Lewis, Yves Angel, Curt Michel, J. H. Husoy, Kjersti
Engan, Ken Castleman, Je� Trinkle, Katherine Jones, and other colleagues at Rice and elsewhere.

We also particularly want to thank Tom Robbins and his colleagues at Prentice Hall for their support
and help. Their reviewers added signi�cantly to the book.

We would appreciate learning of any errors or misleading statements that any readers discover. Indeed,
any suggestions for improvement of the book would be most welcome. Send suggestions or comments via
email to csb@rice.edu. Software, articles, errata for this book, and other information on the wavelet research
at Rice can be found on the world-wide-web URL: http://www-dsp.rice.edu/ with links to other sites where
wavelet research is being done.

C. Sidney Burrus, Ramesh A. Gopinath, and Haitao Guo
Houston, Texas, Yorktown Heights, New York, and Sunnyvale, California

1.1 Instructions to the Reader

Although this book in arranged in a somewhat progressive order, starting with basic ideas and de�nitions,
moving to a rather complete discussion of the basic wavelet system, and then on to generalizations, one should
skip around when reading or studying from it. Depending on the background of the reader, he or she should
skim over most of the book �rst, then go back and study parts in detail. The Introduction at the beginning
and the Summary at the end should be continually consulted to gain or keep a perspective; similarly for
the Table of Contents and Index. The Matlab programs in the Appendix or the Wavelet Toolbox from
Mathworks or other wavelet software should be used for continual experimentation. The list of references
should be used to �nd proofs or detail not included here or to pursue research topics or applications. The
theory and application of wavelets are still developing and in a state of rapid growth. We hope this book
will help open the door to this fascinating new subject.

Available for free at Connexions <http://cnx.org/content/col11454/1.5>
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Chapter 2

Introduction to Wavelets1

This chapter will provide an overview of the topics to be developed in the book. Its purpose is to present
the ideas, goals, and outline of properties for an understanding of and ability to use wavelets and wavelet
transforms. The details and more careful de�nitions are given later in the book.

A wave is usually de�ned as an oscillating function of time or space, such as a sinusoid. Fourier analysis is
wave analysis. It expands signals or functions in terms of sinusoids (or, equivalently, complex exponentials)
which has proven to be extremely valuable in mathematics, science, and engineering, especially for periodic,
time-invariant, or stationary phenomena. A wavelet is a �small wave", which has its energy concentrated in
time to give a tool for the analysis of transient, nonstationary, or time-varying phenomena. It still has the
oscillating wave-like characteristic but also has the ability to allow simultaneous time and frequency analysis
with a �exible mathematical foundation. This is illustrated in Figure 2.1 with the wave (sinusoid) oscillating
with equal amplitude over −∞ ≤ t ≤ ∞ and, therefore, having in�nite energy and with the wavelet having
its �nite energy concentrated around a point.

Figure 2.1: A Wave and a Wavelet: A Sine Wave

1This content is available online at <http://cnx.org/content/m45096/1.3/>.
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6 CHAPTER 2. INTRODUCTION TO WAVELETS

Figure 2.2: A Wave and a Wavelet: Daubechies' Wavelet ψD20

We will take wavelets and use them in a series expansion of signals or functions much the same way a
Fourier series uses the wave or sinusoid to represent a signal or function. The signals are functions of a
continuous variable, which often represents time or distance. From this series expansion, we will develop
a discrete-time version similar to the discrete Fourier transform where the signal is represented by a string
of numbers where the numbers may be samples of a signal, samples of another string of numbers, or inner
products of a signal with some expansion set. Finally, we will brie�y describe the continuous wavelet
transform where both the signal and the transform are functions of continuous variables. This is analogous
to the Fourier transform.

2.1 Wavelets and Wavelet Expansion Systems

Before delving into the details of wavelets and their properties, we need to get some idea of their general
characteristics and what we are going to do with them [405].

2.1.1 What is a Wavelet Expansion or a Wavelet Transform?

A signal or function f (t) can often be better analyzed, described, or processed if expressed as a linear
decomposition by

f (t) =
∑
`

a` ψ` (t) (2.1)

where ` is an integer index for the �nite or in�nite sum, a` are the real-valued expansion coe�cients, and
ψ` (t) are a set of real-valued functions of t called the expansion set. If the expansion (2.1) is unique, the set
is called a basis for the class of functions that can be so expressed. If the basis is orthogonal, meaning

< ψk (t) , ψ` (t) > =
∫
ψk (t) ψ` (t) dt = 0 k 6= `, (2.2)

then the coe�cients can be calculated by the inner product

ak = < f (t) , ψk (t) > =
∫
f (t) ψk (t) dt. (2.3)

One can see that substituting (2.1) into (2.3) and using (2.2) gives the single ak coe�cient. If the basis
set is not orthogonal, then a dual basis set ψ̃k (t) exists such that using (2.3) with the dual basis gives the
desired coe�cients. This will be developed in Chapter: A multiresolution formulation of Wavelet Systems
(Chapter 3).

Available for free at Connexions <http://cnx.org/content/col11454/1.5>
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For a Fourier series, the orthogonal basis functions ψk (t) are sin (kω0t) and cos (kω0t) with frequencies
of kω0. For a Taylor's series, the nonorthogonal basis functions are simple monomials tk, and for many other
expansions they are various polynomials. There are expansions that use splines and even fractals.

For the wavelet expansion, a two-parameter system is constructed such that (2.1) becomes

f (t) =
∑
k

∑
j

aj,k ψj,k (t) (2.4)

where both j and k are integer indices and the ψj,k (t) are the wavelet expansion functions that usually
form an orthogonal basis.

The set of expansion coe�cients aj,k are called the discrete wavelet transform (DWT) of f (t) and (2.4)
is the inverse transform.

2.1.2 What is a Wavelet System?

The wavelet expansion set is not unique. There are many di�erent wavelets systems that can be used
e�ectively, but all seem to have the following three general characteristics [405].

1. A wavelet system is a set of building blocks to construct or represent a signal or function. It is a
two-dimensional expansion set (usually a basis) for some class of one- (or higher) dimensional signals.
In other words, if the wavelet set is given by ψj,k (t) for indices of j, k = 1, 2, · · ·, a linear expansion
would be f (t) =

∑
k

∑
j aj,k ψj,k (t) for some set of coe�cients aj,k.

2. The wavelet expansion gives a time-frequency localization of the signal. This means most of the energy
of the signal is well represented by a few expansion coe�cients, aj,k.

3. The calculation of the coe�cients from the signal can be done e�ciently. It turns out that many wavelet
transforms (the set of expansion coe�cients) can calculated with O (N) operations. This means the
number of �oating-point multiplications and additions increase linearly with the length of the signal.
More general wavelet transforms require O (Nlog (N)) operations, the same as for the fast Fourier
transform (FFT) [47].

Virtually all wavelet systems have these very general characteristics. Where the Fourier series maps a one-
dimensional function of a continuous variable into a one-dimensional sequence of coe�cients, the wavelet
expansion maps it into a two-dimensional array of coe�cients. We will see that it is this two-dimensional
representation that allows localizing the signal in both time and frequency. A Fourier series expansion
localizes in frequency in that if a Fourier series expansion of a signal has only one large coe�cient, then the
signal is essentially a single sinusoid at the frequency determined by the index of the coe�cient. The simple
time-domain representation of the signal itself gives the localization in time. If the signal is a simple pulse,
the location of that pulse is the localization in time. A wavelet representation will give the location in both
time and frequency simultaneously. Indeed, a wavelet representation is much like a musical score where the
location of the notes tells when the tones occur and what their frequencies are.

2.1.3 More Speci�c Characteristics of Wavelet Systems

There are three additional characteristics [405], [94] that are more speci�c to wavelet expansions.

1. All so-called �rst-generation wavelet systems are generated from a single scaling function or wavelet by
simple scaling and translation. The two-dimensional parameterization is achieved from the function
(sometimes called the generating wavelet or mother wavelet) ψ (t) by

ψj,k (t) = 2j/2 ψ
(
2jt− k

)
j, k ∈ Z (2.5)

where Z is the set of all integers and the factor 2j/2 maintains a constant norm independent of scale
j. This parameterization of the time or space location by k and the frequency or scale (actually the
logarithm of scale) by j turns out to be extraordinarily e�ective.

Available for free at Connexions <http://cnx.org/content/col11454/1.5>



8 CHAPTER 2. INTRODUCTION TO WAVELETS

2. Almost all useful wavelet systems also satisfy the multiresolution conditions. This means that if a set
of signals can be represented by a weighted sum of ϕ (t− k), then a larger set (including the original)
can be represented by a weighted sum of ϕ (2t− k). In other words, if the basic expansion signals are
made half as wide and translated in steps half as wide, they will represent a larger class of signals
exactly or give a better approximation of any signal.

3. The lower resolution coe�cients can be calculated from the higher resolution coe�cients by a tree-
structured algorithm called a �lter bank. This allows a very e�cient calculation of the expansion
coe�cients (also known as the discrete wavelet transform) and relates wavelet transforms to an older
area in digital signal processing.

The operations of translation and scaling seem to be basic to many practical signals and signal-generating
processes, and their use is one of the reasons that wavelets are e�cient expansion functions. Figure 2.3 is a
pictorial representation of the translation and scaling of a single mother wavelet described in (2.5). As the
index k changes, the location of the wavelet moves along the horizontal axis. This allows the expansion to
explicitly represent the location of events in time or space. As the index j changes, the shape of the wavelet
changes in scale. This allows a representation of detail or resolution. Note that as the scale becomes �ner (j
larger), the steps in time become smaller. It is both the narrower wavelet and the smaller steps that allow
representation of greater detail or higher resolution. For clarity, only every fourth term in the translation
(k = 1, 5, 9, 13, · · ·) is shown, otherwise, the �gure is a clutter. What is not illustrated here but is important
is that the shape of the basic mother wavelet can also be changed. That is done during the design of the
wavelet system and allows one set to well-represent a class of signals.

For the Fourier series and transform and for most signal expansion systems, the expansion functions
(bases) are chosen, then the properties of the resulting transform are derived and

Figure 2.3: Translation (every fourth k) and Scaling of a Wavelet ψD4

analyzed. For the wavelet system, these properties or characteristics are mathematically required, then
the resulting basis functions are derived. Because these constraints do not use all the degrees of freedom,

Available for free at Connexions <http://cnx.org/content/col11454/1.5>
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other properties can be required to customize the wavelet system for a particular application. Once you
decide on a Fourier series, the sinusoidal basis functions are completely set. That is not true for the wavelet.
There are an in�nity of very di�erent wavelets that all satisfy the above properties. Indeed, the understanding
and design of the wavelets is an important topic of this book.

Wavelet analysis is well-suited to transient signals. Fourier analysis is appropriate for periodic signals or
for signals whose statistical characteristics do not change with time. It is the localizing property of wavelets
that allow a wavelet expansion of a transient event to be modeled with a small number of coe�cients. This
turns out to be very useful in applications.

2.1.4 Haar Scaling Functions and Wavelets

The multiresolution formulation needs two closely related basic functions. In addition to the wavelet ψ (t)
that has been discussed (but not actually de�ned yet), we will need another basic function called the scaling
functionϕ (t). The reasons for needing this function and the details of the relations will be developed in the
next chapter, but here we will simply use it in the wavelet expansion.

The simplest possible orthogonal wavelet system is generated from the Haar scaling function and wavelet.
These are shown in Figure 2.4. Using a combination of these scaling functions and wavelets allows a large
class of signals to be represented by

f (t) =
∞∑

k=−∞

ck φ (t− k) +
∞∑

k=−∞

∞∑
j=0

dj,k ψ
(
2jt− k

)
. (2.6)

Haar [198] showed this result in 1910, and we now know that wavelets are a generalization of his work. An
example of a Haar system and expansion is given at the end of Chapter: A multiresolution formulation of
Wavelet Systems (Chapter 3).

2.1.5 What do Wavelets Look Like?

All Fourier basis functions look alike. A high-frequency sine wave looks like a compressed low-frequency sine
wave. A cosine wave is a sine wave translated by 90o or π/2 radians. It takes a

Figure 2.4: Haar Scaling Function and Wavelet

large number of Fourier components to represent a discontinuity or a sharp corner. In contrast, there are
many di�erent wavelets and some have sharp corners themselves.

To appreciate the special character of wavelets you should recognize that it was not until the late 1980's
that some of the most useful basic wavelets were ever seen. Figure 2.5 illustrates four di�erent scaling

Available for free at Connexions <http://cnx.org/content/col11454/1.5>



10 CHAPTER 2. INTRODUCTION TO WAVELETS

functions, each being zero outside of 0 < t < 6 and each generating an orthogonal wavelet basis for all square
integrable functions. This �gure is also shown on the cover to this book.

Several more scaling functions and their associated wavelets are illustrated in later chapters, and the
Haar wavelet is shown in Figure 2.4 and in detail at the end of Chapter: A multiresolution formulation of
Wavelet Systems (Chapter 3).

Figure 2.5: Example Scaling Functions (See Section: Further Properties of the Scaling Function and
Wavelet (Section 6.8: Further Properties of the Scaling Function and Wavelet) for the meaning of α and
β)

2.1.6 Why is Wavelet Analysis E�ective?

Wavelet expansions and wavelet transforms have proven to be very e�cient and e�ective in analyzing a very
wide class of signals and phenomena. Why is this true? What are the properties that give this e�ectiveness?

1. The size of the wavelet expansion coe�cients aj,k in (2.4) or dj,k in (2.6) drop o� rapidly with j and k
for a large class of signals. This property is called being an unconditional basis and it is why wavelets
are so e�ective in signal and image compression, denoising, and detection. Donoho [117], [131] showed
that wavelets are near optimal for a wide class of signals for compression, denoising, and detection.

2. The wavelet expansion allows a more accurate local description and separation of signal characteristics.
A Fourier coe�cient represents a component that lasts for all time and, therefore, temporary events
must be described by a phase characteristic that allows cancellation or reinforcement over large time
periods. A wavelet expansion coe�cient represents a component that is itself local and is easier to
interpret. The wavelet expansion may allow a separation of components of a signal that overlap in
both time and frequency.

3. Wavelets are adjustable and adaptable. Because there is not just one wavelet, they can be designed
to �t individual applications. They are ideal for adaptive systems that adjust themselves to suit the
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signal.
4. The generation of wavelets and the calculation of the discrete wavelet transform is well matched to the

digital computer. We will later see that the de�ning equation for a wavelet uses no calculus. There are
no derivatives or integrals, just multiplications and additions�operations that are basic to a digital
computer.

While some of these details may not be clear at this point, they should point to the issues that are important
to both theory and application and give reasons for the detailed development that follows in this and other
books.

2.2 The Discrete Wavelet Transform

This two-variable set of basis functions is used in a way similar to the short-time Fourier transform, the Gabor
transform, or the Wigner distribution for time-frequency analysis [65], [68], [217]. Our goal is to generate a
set of expansion functions such that any signal in L2 (R) (the space of square integrable functions) can be
represented by the series

f (t) =
∑
j,k

aj,k 2j/2 ψ
(
2jt− k

)
(2.7)

or, using (2.5), as

f (t) =
∑
j,k

aj,k ψj,k (t) (2.8)

where the two-dimensional set of coe�cients aj,k is called the discrete wavelet transform (DWT) of f (t).
A more speci�c form indicating how the aj,k's are calculated can be written using inner products as

f (t) =
∑
j,k

< ψj,k (t) , f (t) > ψj,k (t) (2.9)

if the ψj,k (t) form an orthonormal basis2 for the space of signals of interest [94]. The inner product is
usually de�ned as

< x (t) , y (t) > =
∫
x∗ (t) y (t) dt. (2.10)

The goal of most expansions of a function or signal is to have the coe�cients of the expansion aj,k give
more useful information about the signal than is directly obvious from the signal itself. A second goal is
to have most of the coe�cients be zero or very small. This is what is called a sparse representation and
is extremely important in applications for statistical estimation and detection, data compression, nonlinear
noise reduction, and fast algorithms.

Although this expansion is called the discrete wavelet transform (DWT), it probably should be called a
wavelet series since it is a series expansion which maps a function of a continuous variable into a sequence
of coe�cients much the same way the Fourier series does. However, that is not the convention.

This wavelet series expansion is in terms of two indices, the time translation k and the scaling index j.
For the Fourier series, there are only two possible values of k, zero and π/2, which give the sine terms and
the cosine terms. The values j give the frequency harmonics. In other words, the Fourier series is also a
two-dimensional expansion, but that is not seen in the exponential form and generally not noticed in the
trigonometric form.

2Bases and tight frames are de�ned in Chapter: Bases, Orthogonal Bases, Biorthogonal Bases, Frames, Right Frames, and
unconditional Bases. (Chapter 5)
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