TRIGONOMETRY

 MICHAEL CORRAL

Trigonometry

Michael Corral

Schoolcraft College

About the author:
Michael Corral is an Adjunct Faculty member of the Department of Mathematics at Schoolcraft College. He received a B.A. in Mathematics from the University of California at Berkeley, and received an M.A. in Mathematics and an M.S. in Industrial \& Operations Engineering from the University of Michigan.

This text was typeset in $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ with the KOMA-Script bundle, using the GNU Emacs text editor on a Fedora Linux system. The graphics were created using TikZ and Gnuplot.

Copyright © 2009 Michael Corral.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License."

Preface

This book covers elementary trigonometry. It is suitable for a one-semester course at the college level, though it could also be used in high schools. The prerequisites are high school algebra and geometry.

This book basically consists of my lecture notes from teaching trigonometry at Schoolcraft College over several years, expanded with some exercises. There are exercises at the end of each section. I have tried to include some more challenging problems, with hints when I felt those were needed. An average student should be able to do most of the exercises. Answers and hints to many of the odd-numbered and some of the even-numbered exercises are provided in Appendix A.

This text probably has a more geometric feel to it than most current trigonometry texts. That was, in fact, one of the reasons I wanted to write this book. I think that approaching the subject with too much of an analytic emphasis is a bit confusing to students. It makes much of the material appear unmotivated. This book starts with the "old-fashioned" right triangle approach to the trigonometric functions, which is more intuitive for students to grasp.

In my experience, presenting the definitions of the trigonometric functions and then immediately jumping into proving identities is too much of a detour from geometry to analysis for most students. So this book presents material in a very different order than most books today. For example, after starting with the right triangle definitions and some applications, general (oblique) triangles are presented. That seems like a more natural progression of topics, instead of leaving general triangles until the end as is usually the case.

The goal of this book is a bit different, too. Instead of taking the (doomed) approach that students have to be shown that trigonometry is "relevant to their everyday lives" (which inevitably comes off as artificial), this book has a different mindset: preparing students to use trigonometry as it is used in other courses. Virtually no students will ever in their "everyday life" figure out the height of a tree with a protractor or determine the angular speed of a Ferris wheel. Students are far more likely to need trigonometry in other courses (e.g. engineering, physics). I think that math instructors have a duty to prepare students for that.

In Chapter 5 students are asked to use the free open-source software Gnuplot to graph some functions. However, any program can be used for those exercises, as long as it produces accurate graphs. Appendix B contains a brief tutorial on Gnuplot.

There are a few exercises that require the student to write his or her own computer program to solve some numerical computation problems. There are a few code samples in Chapter 6, written in the Java and Python programming languages, hopefully sufficiently clear so that the reader can figure out what is being done even without knowing those languages.

Octave and Sage are also mentioned. This book probably discusses numerical issues more than most texts at this level (e.g. the numerical instability of Heron's formula for the area of a triangle, the secant method for solving trigonometric equations). Numerical methods probably should have been emphasized even more in the text, since it is rare when even a moderately complicated trigonometric equation can be solved with elementary methods, and since mathematical software is so readily available.

I wanted to keep this book as brief as possible. Someone once joked that trigonometry is two weeks of material spread out over a full semester, and I think that there is some truth to that. However, some decisions had to be made on what material to leave out. I had planned to include sections on vectors, spherical trigonometry - a subject which has basically vanished from trigonometry texts in the last few decades (why?) - and a few other topics, but decided against it. The hardest decision was to exclude Paul Rider's clever geometric proof of the Law of Tangents without using any sum-to-product identities, though I do give a reference to it.

This book is released under the GNU Free Documentation License (GFDL), which allows others to not only copy and distribute the book but also to modify it. For more details, see the included copy of the GFDL. So that there is no ambiguity on this matter, anyone can make as many copies of this book as desired and distribute it as desired, without needing my permission. The PDF version will always be freely available to the public at no cost (go to http://www.mecmath.net/trig). Feel free to contact me at mcorral@schoolcraft.edu for any questions on this or any other matter involving the book (e.g. comments, suggestions, corrections, etc). I welcome your input.

July 2009
Michael Corral
Livonia, Michigan

Contents

Preface iii
1 Right Triangle Trigonometry 1
1.1 Angles 1
1.2 Trigonometric Functions of an Acute Angle 7
1.3 Applications and Solving Right Triangles 14
1.4 Trigonometric Functions of Any Angle 24
1.5 Rotations and Reflections of Angles 32
2 General Triangles 38
2.1 The Law of Sines 38
2.2 The Law of Cosines 44
2.3 The Law of Tangents 51
2.4 The Area of a Triangle 54
2.5 Circumscribed and Inscribed Circles 59
3 Identities 65
3.1 Basic Trigonometric Identities 65
3.2 Sum and Difference Formulas 71
3.3 Double-Angle and Half-Angle Formulas 78
3.4 Other Identities 82
4 Radian Measure 87
4.1 Radians and Degrees 87
4.2 Arc Length 90
4.3 Area of a Sector 95
4.4 Circular Motion: Linear and Angular Speed 100
5 Graphing and Inverse Functions 103
5.1 Graphing the Trigonometric Functions 103
5.2 Properties of Graphs of Trigonometric Functions 109
5.3 Inverse Trigonometric Functions 120
6 Additional Topics 129
6.1 Solving Trigonometric Equations 129
6.2 Numerical Methods in Trigonometry 133
6.3 Complex Numbers 139
6.4 Polar Coordinates 146
Appendix A: Answers and Hints to Selected Exercises 152
Appendix B: Graphing with Gnuplot 155
GNU Free Documentation License 160
History 168
Index 169

1 Right Triangle Trigonometry

Trigonometry is the study of the relations between the sides and angles of triangles. The word "trigonometry" is derived from the Greek words trigono ($\tau \rho 1{ }^{\gamma} \omega \mathrm{vo}$), meaning "triangle", and metro ($\mu є \tau \rho \omega$), meaning "measure". Though the ancient Greeks, such as Hipparchus and Ptolemy, used trigonometry in their study of astronomy between roughly 150 B.C. - A.D. 200, its history is much older. For example, the Egyptian scribe Ahmes recorded some rudimentary trigonometric calculations (concerning ratios of sides of pyramids) in the famous Rhind Papyrus sometime around 1650 B.c. ${ }^{1}$

Trigonometry is distinguished from elementary geometry in part by its extensive use of certain functions of angles, known as the trigonometric functions. Before discussing those functions, we will review some basic terminology about angles.

1.1 Angles

Recall the following definitions from elementary geometry:
(a) An angle is acute if it is between 0° and 90°.
(b) An angle is a right angle if it equals 90°.
(c) An angle is obtuse if it is between 90° and 180°.
(d) An angle is a straight angle if it equals 180°.

(a) acute angle

(b) right angle

(c) obtuse angle

(d) straight angle

Figure 1.1.1 Types of angles
In elementary geometry, angles are always considered to be positive and not larger than 360°. For now we will only consider such angles. ${ }^{2}$ The following definitions will be used throughout the text:

[^0](a) Two acute angles are complementary if their sum equals 90°. In other words, if $0^{\circ} \leq$ $\angle A, \angle B \leq 90^{\circ}$ then $\angle A$ and $\angle B$ are complementary if $\angle A+\angle B=90^{\circ}$.
(b) Two angles between 0° and 180° are supplementary if their sum equals 180°. In other words, if $0^{\circ} \leq \angle A, \angle B \leq 180^{\circ}$ then $\angle A$ and $\angle B$ are supplementary if $\angle A+\angle B=180^{\circ}$.
(c) Two angles between 0° and 360° are conjugate (or explementary) if their sum equals 360°. In other words, if $0^{\circ} \leq \angle A, \angle B \leq 360^{\circ}$ then $\angle A$ and $\angle B$ are conjugate if $\angle A+\angle B=$ 360°.

(a) complementary

(b) supplementary

(c) conjugate

Figure 1.1.2 Types of pairs of angles
Instead of using the angle notation $\angle A$ to denote an angle, we will sometimes use just a capital letter by itself (e.g. A, B, C) or a lowercase variable name (e.g. x, y, t). It is also common to use letters (either uppercase or lowercase) from the Greek alphabet, shown in the table below, to represent angles:

Table 1.1 The Greek alphabet

Letters	Name	Letters		Name	Letters		Name
A α	alpha	I	ι	iota	P	ρ	rho
B β	beta	K	κ	kappa	Σ	σ	sigma
$\Gamma \quad \gamma$	gamma	Λ	λ	lambda	T	τ	tau
$\Delta \quad \delta$	delta	M	μ	mu	Y	v	upsilon
E ϵ	epsilon	N	v	nu	Ф	ϕ	phi
Z ζ	zeta	Ξ	ξ	xi	X	χ	chi
H η	eta	O	o	omicron	Ψ	ψ	psi
$\Theta \theta$	theta	Π	π	pi		ω	omega

In elementary geometry you learned that the sum of the angles in a triangle equals 180°, and that an isosceles triangle is a triangle with two sides of equal length. Recall that in a right triangle one of the angles is a right angle. Thus, in a right triangle one of the angles is 90° and the other two angles are acute angles whose sum is 90° (i.e. the other two angles are complementary angles).

Example 1.1

For each triangle below, determine the unknown angle(s):

Note: We will sometimes refer to the angles of a triangle by their vertex points. For example, in the first triangle above we will simply refer to the angle $\angle B A C$ as angle A.
Solution: For triangle $\triangle A B C, A=35^{\circ}$ and $C=20^{\circ}$, and we know that $A+B+C=180^{\circ}$, so

$$
35^{\circ}+B+20^{\circ}=180^{\circ} \Rightarrow B=180^{\circ}-35^{\circ}-20^{\circ} \Rightarrow B=125^{\circ} .
$$

For the right triangle $\triangle D E F, E=53^{\circ}$ and $F=90^{\circ}$, and we know that the two acute angles D and E are complementary, so

$$
D+E=90^{\circ} \Rightarrow D=90^{\circ}-53^{\circ} \Rightarrow D=37^{\circ}
$$

For triangle $\triangle X Y Z$, the angles are in terms of an unknown number α, but we do know that $X+Y+$ $Z=180^{\circ}$, which we can use to solve for α and then use that to solve for X, Y, and Z :
$\alpha+3 \alpha+\alpha=180^{\circ} \Rightarrow 5 \alpha=180^{\circ} \Rightarrow \alpha=36^{\circ} \Rightarrow X=36^{\circ}, Y=3 \times 36^{\circ}=108^{\circ}, Z=36^{\circ}$

Example 1.2

 $\overline{A B}$ is a diameter of the circle, then the angle $\angle A C B$ is a right angle (see Figure 1.1.3(a)). In other words, the triangle $\triangle A B C$ is a right triangle.

Figure 1.1.3 Thales' Theorem: $\angle A C B=90^{\circ}$
To prove this, let O be the center of the circle and draw the line segment $\overline{O C}$, as in Figure 1.1.3(b). Let $\alpha=\angle B A C$ and $\beta=\angle A B C$. Since $\overline{A B}$ is a diameter of the circle, $\overline{O A}$ and $\overline{O C}$ have the same length (namely, the circle's radius). This means that $\triangle O A C$ is an isosceles triangle, and so $\angle O C A=$ $\angle O A C=\alpha$. Likewise, $\triangle O B C$ is an isosceles triangle and $\angle O C B=\angle O B C=\beta$. So we see that $\angle A C B=\alpha+\beta$. And since the angles of $\triangle A B C$ must add up to 180°, we see that $180^{\circ}=\alpha+(\alpha+\beta)+\beta=$ $2(\alpha+\beta)$, so $\alpha+\beta=90^{\circ}$. Thus, $\angle A C B=90^{\circ}$. QED

In a right triangle, the side opposite the right angle is called the hypotenuse, and the other two sides are called its legs. For example, in Figure 1.1.4 the right angle is C, the hypotenuse is the line segment $\overline{A B}$, which has length c, and $\overline{B C}$ and $\overline{A C}$ are the legs, with lengths a and b, respectively. The hypotenuse is always the longest side of a right triangle (see Exercise 11).

By knowing the lengths of two sides of a right triangle, the length of

Figure 1.1.4 the third side can be determined by using the Pythagorean Theorem:

Theorem 1.1. Pythagorean Theorem: The square of the length of the hypotenuse of a right triangle is equal to the sum of the squares of the lengths of its legs.

Thus, if a right triangle has a hypotenuse of length c and legs of lengths a and b, as in Figure 1.1.4, then the Pythagorean Theorem says:

$$
\begin{equation*}
a^{2}+b^{2}=c^{2} \tag{1.1}
\end{equation*}
$$

Let us prove this. In the right triangle $\triangle A B C$ in Figure 1.1.5(a) below, if we draw a line segment from the vertex C to the point D on the hypotenuse such that $\overline{C D}$ is perpendicular to $\overline{A B}$ (that is, $\overline{C D}$ forms a right angle with $\overline{A B}$), then this divides $\triangle A B C$ into two smaller triangles $\triangle C B D$ and $\triangle A C D$, which are both similar to $\triangle A B C$.

Figure 1.1.5 Similar triangles $\triangle A B C, \triangle C B D, \triangle A C D$
Recall that triangles are similar if their corresponding angles are equal, and that similarity implies that corresponding sides are proportional. Thus, since $\triangle A B C$ is similar to $\triangle C B D$, by proportionality of corresponding sides we see that

$$
\overline{A B} \text { is to } \overline{C B} \text { (hypotenuses) as } \overline{B C} \text { is to } \overline{B D} \text { (vertical legs) } \Rightarrow \frac{c}{a}=\frac{a}{d} \Rightarrow c d=a^{2} .
$$

Since $\triangle A B C$ is similar to $\triangle A C D$, comparing horizontal legs and hypotenuses gives

$$
\frac{b}{c-d}=\frac{c}{b} \Rightarrow b^{2}=c^{2}-c d=c^{2}-a^{2} \Rightarrow a^{2}+b^{2}=c^{2} . \quad \text { QED }
$$

Note: The symbols \perp and \sim denote perpendicularity and similarity, respectively. For example, in the above proof we had $\overline{C D} \perp \overline{A B}$ and $\triangle A B C \sim \triangle C B D \sim \triangle A C D$.

Example 1.3

For each right triangle below, determine the length of the unknown side:

Solution: For triangle $\triangle A B C$, the Pythagorean Theorem says that

$$
a^{2}+4^{2}=5^{2} \Rightarrow a^{2}=25-16=9 \Rightarrow a=3
$$

For triangle $\triangle D E F$, the Pythagorean Theorem says that

$$
e^{2}+1^{2}=2^{2} \Rightarrow e^{2}=4-1=3 \Rightarrow e=\sqrt{3} .
$$

For triangle $\triangle X Y Z$, the Pythagorean Theorem says that

$$
1^{2}+1^{2}=z^{2} \Rightarrow z^{2}=2 \Rightarrow z=\sqrt{2}
$$

Example 1.4

A 17 ft ladder leaning against a wall has its foot 8 ft from the base of the wall. At what height is the top of the ladder touching the wall?
Solution: Let h be the height at which the ladder touches the wall. We can assume that the ground makes a right angle with the wall, as in the picture on the right. Then we see that the ladder, ground, and wall form a right triangle with a hypotenuse of length 17 ft (the length of the ladder) and legs with lengths 8 ft and $h \mathrm{ft}$. So by the Pythagorean Theorem, we have

$$
h^{2}+8^{2}=17^{2} \Rightarrow h^{2}=289-64=225 \Rightarrow h=15 \mathrm{ft}
$$

Exercises

For Exercises 1-4, find the numeric value of the indicated angle(s) for the triangle $\triangle A B C$.

1. Find B if $A=15^{\circ}$ and $C=50^{\circ}$.
2. Find C if $A=110^{\circ}$ and $B=31^{\circ}$.
3. Find A and B if $C=24^{\circ}, A=\alpha$, and $B=2 \alpha$.
4. Find A, B, and C if $A=\beta$ and $B=C=4 \beta$.

For Exercises 5-8, find the numeric value of the indicated angle(s) for the right triangle $\triangle A B C$, with C being the right angle.
5. Find B if $A=45^{\circ}$.
6. Find A and B if $A=\alpha$ and $B=2 \alpha$.
7. Find A and B if $A=\phi$ and $B=\phi^{2}$.
8. Find A and B if $A=\theta$ and $B=1 / \theta$.
9. A car goes 24 miles due north then 7 miles due east. What is the straight distance between the car's starting point and end point?
10. One end of a rope is attached to the top of a pole 100 ft high. If the rope is 150 ft long, what is the maximum distance along the ground from the base of the pole to where the other end can be attached? You may assume that the pole is perpendicular to the ground.
11. Prove that the hypotenuse is the longest side in every right triangle. (Hint: Is $a^{2}+b^{2}>a^{2}$?)
12. Can a right triangle have sides with lengths 2,5 , and 6 ? Explain your answer.
13. If the lengths a, b, and c of the sides of a right triangle are positive integers, with $a^{2}+b^{2}=c^{2}$, then they form what is called a Pythagorean triple. The triple is normally written as (a, b, c). For example, $(3,4,5)$ and $(5,12,13)$ are well-known Pythagorean triples.
(a) Show that $(6,8,10)$ is a Pythagorean triple.
(b) Show that if (a, b, c) is a Pythagorean triple then so is $(k a, k b, k c$) for any integer $k>0$. How would you interpret this geometrically?
(c) Show that $\left(2 m n, m^{2}-n^{2}, m^{2}+n^{2}\right)$ is a Pythagorean triple for all integers $m>n>0$.
(d) The triple in part(c) is known as Euclid's formula for generating Pythagorean triples. Write down the first ten Pythagorean triples generated by this formula, i.e. use: $m=2$ and $n=1$; $m=3$ and $n=1,2 ; m=4$ and $n=1,2,3 ; m=5$ and $n=1,2,3,4$.
14. This exercise will describe how to draw a line through any point outside a circle such that the line intersects the circle at only one point. This is called a tangent line to the circle (see the picture on the left in Figure 1.1.6), a notion which we will use throughout the text.

Figure 1.1.6
On a sheet of paper draw a circle of radius 1 inch, and call the center of that circle O. Pick a point P which is 2.5 inches away from O. Draw the circle which has $\overline{O P}$ as a diameter, as in the picture on the right in Figure 1.1.6. Let A be one of the points where this circle intersects the first circle. Draw the line through P and A. In general the tangent line through a point on a circle is perpendicular to the line joining that point to the center of the circle (why?). Use this fact to explain why the line you drew is the tangent line through A and to calculate the length of $\overline{P A}$. Does it match the physical measurement of $\overline{P A}$?
15. Suppose that $\triangle A B C$ is a triangle with side $\overline{A B}$ a diameter of a circle with center O, as in the picture on the right, and suppose that the vertex C lies on the circle. Now imagine that you rotate the circle 180° around its center, so that $\triangle A B C$ is in a new position, as indicated by the dashed lines in the picture. Explain how this picture proves Thales' Theorem.

1.2 Trigonometric Functions of an Acute Angle

Consider a right triangle $\triangle A B C$, with the right angle at C and with lengths a, b, and c, as in the figure on the right. For the acute angle A, call the leg $\overline{B C}$ its opposite side, and call the leg $\overline{A C}$ its adjacent side. Recall that the hypotenuse of the triangle is the side $\overline{A B}$. The ratios of sides of a right triangle occur often enough in practical applications to warrant their own names, so we define the six
 trigonometric functions of A as follows:

Table 1.2 The six trigonometric functions of A

We will usually use the abbreviated names of the functions. Notice from Table 1.2 that the pairs $\sin A$ and $\csc A, \cos A$ and $\sec A$, and $\tan A$ and $\cot A$ are reciprocals:

$$
\begin{array}{lll}
\csc A=\frac{1}{\sin A} & \sec A=\frac{1}{\cos A} & \cot A=\frac{1}{\tan A} \\
\sin A=\frac{1}{\csc A} & \cos A=\frac{1}{\sec A} & \tan A=\frac{1}{\cot A}
\end{array}
$$

Example 1.5

For the right triangle $\triangle A B C$ shown on the right, find the values of all six trigonometric functions of the acute angles A and B.
Solution: The hypotenuse of $\triangle A B C$ has length 5 . For angle A, the opposite side $\overline{B C}$ has length 3 and the adjacent side $\overline{A C}$ has length 4 . Thus:

$$
\begin{array}{ll}
\sin A=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{3}{5} & \cos A=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{4}{5} \\
\csc A=\frac{\tan A=\frac{\text { opposite }}{\text { adjacent }}=\frac{3}{4}}{\text { opposite }}=\frac{5}{3} & \sec A=\frac{\text { hypotenuse }}{\text { adjacent }}=\frac{5}{4}
\end{array}
$$

For angle B, the opposite side $\overline{A C}$ has length 4 and the adjacent side $\overline{B C}$ has length 3 . Thus:

$$
\begin{array}{ll}
\sin B=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{4}{5} & \cos B=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{3}{5} \\
\tan B=\frac{\text { opposite }}{\text { adjacent }}=\frac{4}{3} \\
\csc B=\frac{\text { hypotenuse }}{\text { opposite }}=\frac{5}{4} & \sec B=\frac{\text { hypotenuse }}{\text { adjacent }}=\frac{5}{3}
\end{array}
$$

Notice in Example 1.5 that we did not specify the units for the lengths. This raises the possibility that our answers depended on a triangle of a specific physical size.

For example, suppose that two different students are reading this textbook: one in the United States and one in Germany. The American student thinks that the lengths 3, 4, and 5 in Example 1.5 are measured in inches, while the German student thinks that they are measured in centimeters. Since $1 \mathrm{in} \approx 2.54 \mathrm{~cm}$, the students are using triangles of different physical sizes (see Figure 1.2.1 below, not drawn to scale).

(a) Inches

(b) Centimeters

(c) Similar triangles

Figure 1.2.1 $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$

If the American triangle is $\triangle A B C$ and the German triangle is $\triangle A^{\prime} B^{\prime} C^{\prime}$, then we see from Figure 1.2.1 that $\triangle A B C$ is similar to $\triangle A^{\prime} B^{\prime} C^{\prime}$, and hence the corresponding angles
are equal and the ratios of the corresponding sides are equal. In fact, we know that common ratio: the sides of $\triangle A B C$ are approximately 2.54 times longer than the corresponding sides of $\triangle A^{\prime} B^{\prime} C^{\prime}$. So when the American student calculates $\sin A$ and the German student calculates $\sin A^{\prime}$, they get the same answer: ${ }^{3}$

$$
\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime} \Rightarrow \frac{B C}{B^{\prime} C^{\prime}}=\frac{A B}{A^{\prime} B^{\prime}} \Rightarrow \frac{B C}{A B}=\frac{B^{\prime} C^{\prime}}{A^{\prime} B^{\prime}} \Rightarrow \sin A=\sin A^{\prime}
$$

Likewise, the other values of the trigonometric functions of A and A^{\prime} are the same. In fact, our argument was general enough to work with any similar right triangles. This leads us to the following conclusion:

When calculating the trigonometric functions of an acute angle A, you may use any right triangle which has A as one of the angles.

Since we defined the trigonometric functions in terms of ratios of sides, you can think of the units of measurement for those sides as canceling out in those ratios. This means that the values of the trigonometric functions are unitless numbers. So when the American student calculated $3 / 5$ as the value of $\sin A$ in Example 1.5, that is the same as the $3 / 5$ that the German student calculated, despite the different units for the lengths of the sides.

Example 1.6

Find the values of all six trigonometric functions of 45°.
Solution: Since we may use any right triangle which has 45° as one of the angles, use the simplest one: take a square whose sides are all 1 unit long and divide it in half diagonally, as in the figure on the right. Since the two legs of the triangle $\triangle A B C$ have the same length, $\triangle A B C$ is an isosceles triangle, which means that the angles A and B are equal. So since $A+B=90^{\circ}$, this means that we must have $A=B=45^{\circ}$. By the Pythagorean Theorem, the
 length c of the hypotenuse is given by

$$
c^{2}=1^{2}+1^{2}=2 \Rightarrow c=\sqrt{2} .
$$

Thus, using the angle A we get:

$$
\begin{array}{lll}
\sin 45^{\circ}=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{1}{\sqrt{2}} & \cos 45^{\circ}=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{1}{\sqrt{2}} & \tan 45^{\circ}=\frac{\text { opposite }}{\text { adjacent }}=\frac{1}{1}=1 \\
\csc 45^{\circ}=\frac{\text { hypotenuse }}{\text { opposite }}=\sqrt{2} & \sec 45^{\circ}=\frac{\text { hypotenuse }}{\text { adjacent }}=\sqrt{2} & \cot 45^{\circ}=\frac{\text { adjacent }}{\text { opposite }}=\frac{1}{1}=1
\end{array}
$$

Note that we would have obtained the same answers if we had used any right triangle similar to $\triangle A B C$. For example, if we multiply each side of $\triangle A B C$ by $\sqrt{2}$, then we would have a similar triangle with legs of length $\sqrt{2}$ and hypotenuse of length 2 . This would give us $\sin 45^{\circ}=\frac{\sqrt{2}}{2}$, which equals $\frac{\sqrt{2}}{\sqrt{2} \cdot \sqrt{2}}=\frac{1}{\sqrt{2}}$ as before. The same goes for the other functions.

[^1]
Thank You for previewing this eBook

You can read the full version of this eBook in different formats:
> HTML (Free /Available to everyone)
$>$ PDF / TXT (Available to V.I.P. members. Free Standard members can access up to 5 PDF/TXT eBooks per month each month)
> Epub \& Mobipocket (Exclusive to V.I.P. members)
To download this full book, simply select the format you desire below

[^0]: ${ }^{1}$ Ahmes claimed that he copied the papyrus from a work that may date as far back as 3000 B.c.
 ${ }^{2}$ Later in the text we will discuss negative angles and angles larger than 360°.

[^1]: ${ }^{3}$ We will use the notation $A B$ to denote the length of a line segment $\overline{A B}$.

