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Chapter 1

Fourier Series: Review'

1.1 Fourier Series: Review

A function or signal z (t) is called periodic with period T if z (t + T) = x (t). All “typical” periodic function
z (t) with period T can be developed as follows

-+ Z axcos ( ) + bysin (k?{jt) (1.1)

where the coefficients are computed as follows:

S /m ) cos <kt> dt  (k=0,1,2,..) (1.2)

T/2

T/2 or
= —/ ) sin <th> dt (k=1,2,3,...) (1.3)

T/2

The natural interpretation of (1.1) is as a decomposition of the signal z (¢) into individual oscillations where
ay indicates the amplitude of the even oscillation cos (k%”t) of frequency k/T (meaning its period is T/k),
and by, indicates the amplitude of the odd oscillation sin (k%“t) of frequency k/T. For an audio signal z (),
frequency corresponds to how high a sound is and amplitude to how loud it is. The oscillations appearing
in the Fourier decomposition are often also called harmonics (first, second, third harmonic etc).

Note: one can also integrate over [0, 7] or any other interval of length T. Note also, that the average
value of x () over one period is equal to ag/2.

Complex representation of Fourier series

Often it is more practical to work with complex numbers in the area of Fourier analysis. Using the famous
formula

eI* = cos (o) + jsin (a) (1.4)

it is possible to simplify several formulas at the price of working with complex numbers. Towards this end
we write
1

acos () + bsin (o) = ag (7 +e77%) + b? (e —e7%) = 3 (a —bj) e’ + 3 (a+bj)e 7« (1.5)
J

LThis content is available online at <http://cnx.org/content/m46817/1.5/>.
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2 CHAPTER 1. FOURIER SERIES: REVIEW

From this we observe that we may replace the cos and sin harmonics by a pair of exponential harmonics
with opposite frequencies and with complex amplitudes which are conjugate complex to each other. In fact,
we arrive at the more simple complex Fourier series:

(o] ) 1 T '
z(t)= Y Xpe/?™ T with Xy = /0 x (t) e IR T gt (1.6)

k=—o0

Note that X is complex, but x is real-valued (the imaginary parts of all the terms in X,,e727kt/T add up
to zero; in other words, they cancel each other out). The absolute value of X}, gives the amplitude of the
complex harmonic with frequency k/T (meaning its period is T'/k); the argument of X}, provides the phase
difference between the complex harmonics. If z is even, X, is real for all £ and all harmonics are in phase.

To verify (1.6) note that by (1.2) and (1.3) we have for positive k

’ iy 1 .
Xi= o /0 2 (1) feos (2kt/T) — sin (2mkt/T)] dt = L (ak — ). (1.7)

For negative k we note that X_; = X by (1.6), where ()* denotes the conjugate complex. By (1.5), the
X, are exactly as they are supposed to be.
Properties

e Linearity: The Fourier coefficients of the signal z (t) = cz (¢) + y (¢) are simply

Zr =cXp+ Yy (1.8)

e Change of frequency: The signal z (t) = x (At) has the period T'/A and has the same Fourier coefficients
as x (t) — but they correspond to different frequencies f:

o0 oo

. j2m Nt/ T j2mt

Zk|f:ri/x = Xglp_x since  z(t) =z (\t) = Z X2 Rt/ T — Z Zpe? T/ (1.9)
k=—00 k=—o00

The equation on the right allows to read off the Fourier coefficients and to establish Z, = Xj. (For an

alternative computation see box Comment Box 1 (p. 2))

Comment Box 1

7, = ﬁ fOT//\ 2 () e—2mikt/(T/X) gt — % 0T//\ 2 (tN) e—2miktA/T gt (1.10)
- LT (s) el s — X, '
e Shift: The Fourier coefficients of z (t) = x (t + d) are simply
Zp = Xpe?2kd/T (1.11)

The modulation is much more simple in complex writing then it would be with real coefficients. For the
special shift by half a period, i.e., d = T/2 we have Z = X,e/™ = (—1)ka.

e Derivative: The Fourier series of the derivative of x (t) with development (1.1) can be obtained simply
by taking the derivative of (1.1) term by term:

Available for free at Connexions <http://cnx.org/content/col11529/1.2>



, > o2j
()= > Xk'k%'eﬂﬂkt/T (1.12)

k=—o0

Short: when taking the derivative of a signal, the complex Fourier coefficients get multiplied by kz%
Consequently, the coefficients of the derivative decay slower.
Examples

e The pure oscillation (containing only one real but two complex frequencies)

z(t) =sin (27t)T) X, =-X_1 = % (1.13)
or By =1/2 = —B_4, or by = 1, and all other coefficients are zero. This formula can be obtained
without computing integrals by noting that sin (o) = (e/® —e™9%) /(2j) = (j/2) (e77* — €/*) and
setting o = 27t/ T.

e Functions which are time-limited, i.e., defined on a finite interval can be periodically extended. Example

with T = 27
1 forO<t<m
4
x(t)={ -1 for —m<t<O0 bk:2Bk:—k for odd k> 1 (1.14)
0
c for t=0,7

and all other coefficients zero. Note that ¢ is any constant; the value of ¢ does not affect the coefficients
br. We have for 0 <t <7

1= % (sin (t) + %sin (3t) + %sin (5t) + ) (1.15)

Note that for t = 0 the value of the series on the right is 0, which is equal to = (0—) 4+ = (0+), the
middle of the jump of z () at 0, no matter what c is. Similar for ¢t = 7.
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Chapter 2

Discrete Fourier Transform'

2.1 Discrete Fourier Transform
The Discrete Fourier Transform, from now on DFT, of a finite length sequence (g, ...,xx—_1) is defined as
o Kol ‘
Tp= Y ape RE (B =0,..,K —1)(2.1)
n=0

To motivate this transform think of x,, as equally spaced samples of a T-periodic signal x (t) over a period,
e.g., , = x (nT/K). Then, using the Riemann Sum as an approximation of an integral, i.e.,

K—1 T
nT\ T
nlf’\ T 2.2
E:f<K>K /Of(t)dt (2.2)
n=0
we find
K—1 T
e nT\ _opinryr K/ —2mjtk)T
_ nT Lr/T o, — KX4(2.
T n§_0x<K>e T, z(t)e dt k(2.3)

Note that the approximation is better, the larger the sample size K is.

~

Remark on why the factor K in (2.3): recall that X}, is an average while zj is a sum. Take for instance

k = 0: Xg is the average of the signal while z( is the sum of the samples.

From the above we may hope that a development similar to the Fourier series (1.6) should also exist in
the discrete case. To this end, we note first that the DFT is a linear transform and can be represented by a
matrix multiplication (the “exponent” T means transpose):

) ) T
(5807 ...,CCK,1) = DFTK . (.270, “.7:L‘K71)T. (24)

The matrix DFTx possesses K lines and K rows; the entry in line k row n is e 2™*?/K A few examples
are

11 1 1
11 1 —j 1

DFT, = ( 1 ) DFT, = DFT, = (2.5)
1 -1 1 -1 1 -1

1 This content is available online at <http://cnx.org/content,/m46804/1.2/>.
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6 CHAPTER 2. DISCRETE FOURIER TRANSFORM

The rows are orthogonal? to each other. Also, all rows have length®y/K. Finally, the matrices are symmetric
(exchanging lines for rows does not change the matrix). So, the multiplying DFT with its conjugate complex
matrix (DFTk)" we get K times the unit matrix (diagonal matrix with all diagonal elements equal to K).
Inverse DFT
From all this we conclude that the inverse matrix of DFTy is IDFTx = (1/K) - (DFTk)". Since
(e=®)" = e we find

K-1
1 Z i
In =77 o B (n=0,...,K —1)(2.7)

Spectral interpretation, symmetries, periodicity

)
Combining (2.3) and (2.7) we may now interpret zj as the coefficient of the complex harmonic with
frequency k/T in a decomposition of the discrete signal z,,; its absolute value provides the amplitude of the
harmonic and its argument the phase difference.

e
If = is even, xy, is real for all £ and all harmonics are in phase.
Using the periodicity of e?™ we obtain x,, = x,,, ¥ when evaluating (2.7) for arbitrary n. Short, we can
consider x,, as equally-spaced samples of the T-periodic signal z (¢) over any interval of length T

o K
Tp= Z Te 2R (2.8)
n=—K/2

. e . . ... © o . €] .
Similarly, zj is periodic: p= T4+ k. Thus, it makes sense to evaluate xj, for any k. For instance, we can
rewrite (2.1) as

1 K/2—-1 o
_ 2njk %
Ty = K E Ty € K (29)
n=—K/2

Since %k corresponds to the frequency k/T, the period K of %k corresponds to a period of K/T in actual
frequency. This is exactly the sampling frequency (or sampling rate) of the original signal (K samples per
T time units). Compare to the spectral repetitions.

However, the period T of the original signal = is nowhere present in the formulas of the DFT (cpre. (2.1)
and (2.7)). Thus, if nothing is known about T', it is assumed that the sampling rate is 1 (1 sample per time
unit), meaning that K = T.

FFT

The Fast Fourier Transform (FFT) is a clever algorithm which implements the DFT in only Klog (K)
operations. Note that the matrix multiplication would require K? operations.

Matlab implements the FFT with the command f£ft (x) where x is the input vector. Note that in Matlab
the indices start always with 1! This means that the first entry of the Matlab vector z, i.e. x (1) is the
sample point zg = « (0). Similar, the last entry of the Matlab vector z is, i.e. x (K) is the sample point
zx-1=2(K-1)T/K)=2 (T -T/K).

2The scalar product for complex vectors = = (z1,z2,...,xx) and y = (y1, Y2, ..., Y& ) is computed as
z-y=z1y] +®2y5 + ... + TKYK, (2.6)

where a* is the conjugate complex of a. Orthogonal means z -y = 0.

3Length is computed as ||z|| = VT -z = \/Z12F + 2% + ... + Tz = +/|z1|2 + |22]2 + ... + |zK|?.
g 1 2 K

Available for free at Connexions <http://cnx.org/content/col11529/1.2>



Chapter 3

Fourier Integral

3.1 Fourier Integral

Continuous-time signals x (¢) which are not periodic can still be understood as superpositions of pure oscil-
lations €’/ where now all frequencies are present in the signal. The coefficients X (f) of the oscillations
can be computed as follows:

X(f) = / x(t)e 72 tqt [Fourier transform]| (3.1)

— 0o

The representation as a superposition takes then the following form:

x(t) = / X (f) P Itdf [Inverse Fourier transform]| (3.2)

We call X (f) the Fourier transform of x and write also F{z} (f) instead of X (f) to indicate clearly which
signal has been transformed. The “Fourier spectrum”; or simply the spectrum, or also the “power spectrum”
of the signal is the squared amplitude | X (f) |2. This is the function usually plotted, while the phase of X
is not shown. Nevertheless, the plots are usually —and erroneously— labeled with X instead of | X |2 (see
Figure 4.1).

A signal is called bandlimited if its Fourier transform X (f) is zero for high frequencies, i.e. for large | f].
Similarly we say that a signal is time-limited if it is zero for large times, i.e., for large |¢|. By Heisenberg’s
principle a bandlimited signal can not be time-limited. Since bandlimited signals are of great importance,
there is a need to study signals which are not time-limited and, thus, the Fourier integral.

Properties

e Linearity:

Flaz + ) () = aX (1) + Y (1) (3.3
e Convolution
Flasg}(N=X()Y(H)  Fla-n}()=X(H)xY () (3.4
e Change of time scale
Foe(tP =% Fan-x (1) (3.5)

1 This content is available online at <http://cnx.org/content,/m46819/1.3/>.
Available for free at Connexions <http://cnx.org/content/col11529/1.2>
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8 CHAPTER 3. FOURIER INTEGRAL

e Translation in time and frequency

Fla(t =0} (f) =X (e ™ Fla@®) ™} (f) = X (f-b) (3.6)

e Symmetries and Fourier pairs The symmetry of (3.2) and (3.1) leads one to consider z (¢) and X (f)
as a Fourier pair. Indeed, the Fourier transform of X is almost x: F{X} (f) = x(—f). Clearly,
the symmetry is not perfect since X (f) is in general complex, while z is real. However: If x (t) is
symmetric, i.e. z(—t) =z (¢) then X (f) is real-valued, and vice versal

In summary: Symmetric real signals have symmetric real Fourier transforms and vice versa. As we will see
below, they also possess the same energy.

Available for free at Connexions <http://cnx.org/content/col11529/1.2>



Chapter 4

Energy and Power

4.1 Energy and Power

The energy of a continuous-time signal z (¢) is given as

|])? = / 22 (t) dt (4.1)
Plancherel’s theorem says (for more information see Comment Box 2 (p. 9)): If the signal x (¢) has finite
energy then its Fourier transform X (f) has the same energy:

[1X () ||2 = /_ \X| HNdf = / t)dt = Hac|| [finite energy case| (4.2)

Comment Box 2 Plancherel theorem is a result in harmonic analysis, first proved by Michel Plancherel.
In its simplest form it states that if a function f is in both L; (IR) and Lo (IR), then its Fourier transform is
in Ly (IR); moreover the Fourier transform map is isometric. This implies that the Fourier transform map
restricted to L; (IR) N Lo (IR) has a unique extension to a linear isometric map Lo (IR) — Lo (IR). This
isometry is actually a unitary map.

Periodic signals have of course infinite energy; therefore, one introduces the power P, of the signal
x (t), which is the average energy over one period. Energy is measured in Joule, power is measured in
Watt=Joule/Sec.

The analog of Plancherel’s theorem is Parseval’s theorem which applies to T-periodic signals and says

1 [T/2 o0
P=P, = T /_T/2 |z (¢) Pdt = Z | X5 |? [periodic case] (4.3)

k=—o00

We may derive Parseval’s theorem as follows, using (1.6) and |a|* = a - a*:

Poo= R T e (0) Pt = 3 [T, [S570 s X2 Pt
= 7T fTéig (Zk_foo Xyl ITY (200 X,ed?mtT) gt
T fTﬁz (Zk— 0o X ej%kt/T) (Zn—, X e _jQW"t/T) dt (4.4)
= POPIND D XkX*} fT/Q ed2m(k—n)t/T gy

= SR oo Xk X = 01Xl

LThis content is available online at <http://cnx.org/content/m46811,/1.4/>.
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10 CHAPTER 4. ENERGY AND POWER

Here, we used that f_Tﬁz e2m(k=m)t/T equals T when k = n (since € = 1), but equals 0 when k # n since

(since €% = cos (s) + jsin (s), which are integrated over several periods).

A similar computation can be carried out for Plancherel’s equation. However, some difficulties arise due
to the integrals over infinite intervals (see Comment Box 3 (p. 10) below). Also, a justification of Plancherel
could be given by performing a limit of infinite period in Parseval’s equation (see Comment Box 4 (p. 12)
below).

For finite discrete signals the analog is simply the fact, that DFT is unitary up to a stretching factor.
More precisely, the matrix DF T leaves angles intact and stretches length by v/K. Intuitively, one may
think of the DFT as a rotation and a stretching. In other words, to perform a DFT simply means to change
the coordinate system into a new one, and to change length measurement by a factor v/K. Thus:

1 & 1o 2 1
P, = ?;x% =12 kz_:l |z | = ?P; [discrete case|(4.5)

Note that the DFT Fourier coefficients are complex numbers; thus, the absolute value has to be taken (for
a complex number a we have \a|2 = a - a*, which is usually different from a?—unless a is by chance real
valued).

Comment Box 3 A “hand-waving” argument for Plancherel’s theorem runs as follows, using (3.1) and

|a|2 =a-a*:
@I = [l P = [ | X () ety
= (I X e (J25, X (g) oty d
= 7 ([T x (yenitar) (7, X(g) eIty dt (46)
= L X (DX() [, 0t dfdg
= Lo 2 X (f) X (9)"6 (f — g) dfdg
= XX =[x () Pt = ||x]

Thereby, the step ffooo 2™t (f=9)dt = § (f — g) would require some more care, but we content ourselves here
with this intuitive computation.

Available for free at Connexions <http://cnx.org/content/col11529/1.2>
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