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Chapter 1

Fourier Series: Review1

1.1 Fourier Series: Review

A function or signal x (t) is called periodic with period T if x (t+ T ) = x (t). All �typical� periodic function
x (t) with period T can be developed as follows

x (t) =
a0

2
+
∞∑
k=1

akcos

(
k

2π
T
t

)
+ bksin

(
k

2π
T
t

)
(1.1)

where the coe�cients are computed as follows:

ak =
2
T

∫ T/2

−T/2
x (t) cos

(
k

2π
T
t

)
dt (k = 0, 1, 2, ...) (1.2)

bk =
2
T

∫ T/2

−T/2
x (t) sin

(
k

2π
T
t

)
dt (k = 1, 2, 3, ...) (1.3)

The natural interpretation of (1.1) is as a decomposition of the signal x (t) into individual oscillations where
ak indicates the amplitude of the even oscillation cos

(
k 2π
T t
)
of frequency k/T (meaning its period is T/k),

and bk indicates the amplitude of the odd oscillation sin
(
k 2π
T t
)
of frequency k/T . For an audio signal x (t),

frequency corresponds to how high a sound is and amplitude to how loud it is. The oscillations appearing
in the Fourier decomposition are often also called harmonics (�rst, second, third harmonic etc).

Note: one can also integrate over [0, T ] or any other interval of length T . Note also, that the average
value of x (t) over one period is equal to a0/2.

Complex representation of Fourier series
Often it is more practical to work with complex numbers in the area of Fourier analysis. Using the famous

formula

ejα = cos (α) + jsin (α) (1.4)

it is possible to simplify several formulas at the price of working with complex numbers. Towards this end
we write

acos (α) + bsin (α) = a
1
2
(
ejα + e−jα

)
+ b

1
2j
(
ejα − e−jα

)
=

1
2

(a− bj) ejα +
1
2

(a+ bj) e−jα (1.5)

1This content is available online at <http://cnx.org/content/m46817/1.5/>.
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2 CHAPTER 1. FOURIER SERIES: REVIEW

From this we observe that we may replace the cos and sin harmonics by a pair of exponential harmonics
with opposite frequencies and with complex amplitudes which are conjugate complex to each other. In fact,
we arrive at the more simple complex Fourier series:

x (t) =
∞∑

k=−∞

Xke
j2πkt/T with Xk =

1
T

∫ T

0

x (t) e−j2πkt/T dt (1.6)

Note that X is complex, but x is real-valued (the imaginary parts of all the terms in
∑
Xke

j2πkt/T add up
to zero; in other words, they cancel each other out). The absolute value of Xk gives the amplitude of the
complex harmonic with frequency k/T (meaning its period is T/k); the argument of Xk provides the phase
di�erence between the complex harmonics. If x is even, Xk is real for all k and all harmonics are in phase.

To verify (1.6) note that by (1.2) and (1.3) we have for positive k

Xk =
1
T

∫ T

0

x (t) [cos (2πkt/T )− jsin (2πkt/T )] dt =
1
2

(ak − bkj) . (1.7)

For negative k we note that X−k = X∗k by (1.6), where ()∗ denotes the conjugate complex. By (1.5), the
Xk are exactly as they are supposed to be.

Properties

• Linearity: The Fourier coe�cients of the signal z (t) = cx (t) + y (t) are simply

Zk = cXk + Yk (1.8)

• Change of frequency: The signal z (t) = x (λt) has the period T/λ and has the same Fourier coe�cients
as x (t) � but they correspond to di�erent frequencies f :

Zk|f= k
T/λ

= Xk|f= k
T

since z (t) = x (λt) =
∞∑

k=−∞

Xke
j2πλkt/T =

∞∑
k=−∞

Zke
j2πt k

T/λ (1.9)

The equation on the right allows to read o� the Fourier coe�cients and to establish Zk = Xk. (For an
alternative computation see box Comment Box 1 (p. 2))

Comment Box 1

Zk = 1
T/λ

∫ T/λ
0

z (t) e−2πjkt/(T/λ)dt = λ
T

∫ T/λ
0

x (tλ) e−2πjktλ/T dt

= 1
T

∫ T
0
x (s) e−2πjks/T ds = Xk

(1.10)

• Shift: The Fourier coe�cients of z (t) = x (t+ d) are simply

Zk = Xke
j2πkd/T (1.11)

The modulation is much more simple in complex writing then it would be with real coe�cients. For the
special shift by half a period, i.e., d = T/2 we have Zk = Xke

jπk = (−1)kXk.

• Derivative: The Fourier series of the derivative of x (t) with development (1.1) can be obtained simply
by taking the derivative of (1.1) term by term:

Available for free at Connexions <http://cnx.org/content/col11529/1.2>



3

x' (t) =
∞∑

k=−∞

Xk · k
2πj
T
· ej2πkt/T (1.12)

Short: when taking the derivative of a signal, the complex Fourier coe�cients get multiplied by k 2πj
T .

Consequently, the coe�cients of the derivative decay slower.
Examples

• The pure oscillation (containing only one real but two complex frequencies)

x (t) = sin (2πt/T ) X1 = −X−1 =
j

2
(1.13)

or B1 = 1/2 = −B−1, or b1 = 1, and all other coe�cients are zero. This formula can be obtained
without computing integrals by noting that sin (α) =

(
ejα − e−jα

)
/ (2j) = (j/2)

(
e−jα − ejα

)
and

setting α = 2πt/T .
• Functions which are time-limited, i.e., de�ned on a �nite interval can be periodically extended. Example

with T = 2π:

x (t) = {
1 for 0 < t < π

−1 for − π < t < 0

c for t = 0, π

bk = 2Bk =
4
πk

for odd k ≥ 1 (1.14)

and all other coe�cients zero. Note that c is any constant; the value of c does not a�ect the coe�cients
bk. We have for 0 < t < π

1 =
4
π

(
sin (t) +

1
3
sin (3t) +

1
5
sin (5t) + ...

)
(1.15)

Note that for t = 0 the value of the series on the right is 0, which is equal to x (0−) + x (0+), the
middle of the jump of x (t) at 0, no matter what c is. Similar for t = π.

Available for free at Connexions <http://cnx.org/content/col11529/1.2>
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Chapter 2

Discrete Fourier Transform1

2.1 Discrete Fourier Transform

The Discrete Fourier Transform, from now on DFT, of a �nite length sequence (x0, ..., xK−1) is de�ned as

Θ
xk=

K−1∑
n=0

xne
−2πjk nK (k = 0, ...,K − 1) (2.1)

To motivate this transform think of xn as equally spaced samples of a T -periodic signal x (t) over a period,
e.g., xn = x (nT/K). Then, using the Riemann Sum as an approximation of an integral, i.e.,

K−1∑
n=0

f

(
nT

K

)
T

K
'
∫ T

0

f (t) dt (2.2)

we �nd

Θ
xk=

K−1∑
n=0

x

(
nT

K

)
e−2πj nTK k/T ' K

T

∫ T

0

x (t) e−2πjtk/T dt = KXk(2.3)

Note that the approximation is better, the larger the sample size K is.

Remark on why the factor K in (2.3): recall that Xk is an average while
^
xk is a sum. Take for instance

k = 0: X0 is the average of the signal while
^
x0 is the sum of the samples.

From the above we may hope that a development similar to the Fourier series (1.6) should also exist in
the discrete case. To this end, we note �rst that the DFT is a linear transform and can be represented by a
matrix multiplication (the �exponent� T means transpose):(

Θ
x0, ...,

Θ
xK−1

)T
= DFTK · (x0, ..., xK−1)T . (2.4)

The matrix DFTK possesses K lines and K rows; the entry in line k row n is e−2πjkn/K . A few examples
are

DFT1 =
(

1
)

DFT2 =

 1 1

1 −1

 DFT4 =


1 1 1 1

1 −j −1 j

1 −1 1 −1

1 j −1 −j

 (2.5)

1This content is available online at <http://cnx.org/content/m46804/1.2/>.
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6 CHAPTER 2. DISCRETE FOURIER TRANSFORM

The rows are orthogonal2 to each other. Also, all rows have length3
√
K. Finally, the matrices are symmetric

(exchanging lines for rows does not change the matrix). So, the multiplying DFT with its conjugate complex
matrix (DFTK)∗ we get K times the unit matrix (diagonal matrix with all diagonal elements equal to K).

Inverse DFT
From all this we conclude that the inverse matrix of DFTK is IDFTK = (1/K) · (DFTK)∗. Since

(e−α)∗ = eα we �nd

xn =
1
K

K−1∑
k=0

Θ
xk e

2πjk nK (n = 0, ...,K − 1) (2.7)

Spectral interpretation, symmetries, periodicity

Combining (2.3) and (2.7) we may now interpret
Θ
xk as the coe�cient of the complex harmonic with

frequency k/T in a decomposition of the discrete signal xn; its absolute value provides the amplitude of the
harmonic and its argument the phase di�erence.

If x is even,
Θ
xk is real for all k and all harmonics are in phase.

Using the periodicity of e2πjt we obtain xn = xn+K when evaluating (2.7) for arbitrary n. Short, we can
consider xn as equally-spaced samples of the T -periodic signal x (t) over any interval of length T :

Θ
xk=

K/2−1∑
n=−K/2

xne
−2πjk nK .(2.8)

Similarly,
Θ
xk is periodic:

Θ
xk=

Θ
xk+K . Thus, it makes sense to evaluate

Θ
xk for any k. For instance, we can

rewrite (2.1) as

xn =
1
K

K/2−1∑
n=−K/2

Θ
xk e

2πjk nK (2.9)

Since
Θ
xk corresponds to the frequency k/T , the period K of

Θ
xk corresponds to a period of K/T in actual

frequency. This is exactly the sampling frequency (or sampling rate) of the original signal (K samples per
T time units). Compare to the spectral repetitions.

However, the period T of the original signal x is nowhere present in the formulas of the DFT (cpre. (2.1)
and (2.7)). Thus, if nothing is known about T , it is assumed that the sampling rate is 1 (1 sample per time
unit), meaning that K = T .

FFT
The Fast Fourier Transform (FFT) is a clever algorithm which implements the DFT in only Klog (K)

operations. Note that the matrix multiplication would require K2 operations.
Matlab implements the FFT with the command fft(x) where x is the input vector. Note that in Matlab

the indices start always with 1! This means that the �rst entry of the Matlab vector x, i.e. x (1) is the
sample point x0 = x (0). Similar, the last entry of the Matlab vector x is, i.e. x (K) is the sample point
xK−1 = x ((K − 1)T/K) = x (T − T/K).

2The scalar product for complex vectors x = (x1, x2, ..., xK) and y = (y1, y2, ..., yK) is computed as

x · y = x1y
∗
1 + x2y

∗
2 + ...+ xKy

∗
K , (2.6)

where a∗ is the conjugate complex of a. Orthogonal means x · y = 0.

3Length is computed as ||x|| =
√
x · x =

p
x1x∗1 + x2x∗2 + ...+ xKx

∗
K =

q
|x1|2 + |x2|2 + ...+ |xK |2.

Available for free at Connexions <http://cnx.org/content/col11529/1.2>



Chapter 3

Fourier Integral1

3.1 Fourier Integral

Continuous-time signals x (t) which are not periodic can still be understood as superpositions of pure oscil-
lations ej2πft where now all frequencies are present in the signal. The coe�cients X (f) of the oscillations
can be computed as follows:

X (f) =
∫ ∞
−∞

x (t) e−j2πftdt [Fourier transform] (3.1)

The representation as a superposition takes then the following form:

x (t) =
∫ ∞
−∞

X (f) ej2πftdf [Inverse Fourier transform] (3.2)

We call X (f) the Fourier transform of x and write also F{x} (f) instead of X (f) to indicate clearly which
signal has been transformed. The �Fourier spectrum�, or simply the spectrum, or also the �power spectrum�
of the signal is the squared amplitude |X (f) |2. This is the function usually plotted, while the phase of X

is not shown. Nevertheless, the plots are usually �and erroneously� labeled with X instead of |X|2 (see
Figure 4.1).

A signal is called bandlimited if its Fourier transform X (f) is zero for high frequencies, i.e. for large |f |.
Similarly we say that a signal is time-limited if it is zero for large times, i.e., for large |t|. By Heisenberg's
principle a bandlimited signal can not be time-limited. Since bandlimited signals are of great importance,
there is a need to study signals which are not time-limited and, thus, the Fourier integral.

Properties

• Linearity:
F{ax+ y} (f) = aX (f) + Y (f) (3.3)

• Convolution
F{x ∗ y} (f) = X (f) · Y (f) F{x · y} (f) = X (f) ∗ Y (f) (3.4)

• Change of time scale

F{1
a
x

(
t

a

)
} (f) = X (af) F{x (at)} (f) =

1
a
X

(
f

a

)
(3.5)

1This content is available online at <http://cnx.org/content/m46819/1.3/>.
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8 CHAPTER 3. FOURIER INTEGRAL

• Translation in time and frequency

F{x (t− b)} (f) = X (f) e−j2πbf F{x (t) ej2πbt} (f) = X (f − b) (3.6)

• Symmetries and Fourier pairs The symmetry of (3.2) and (3.1) leads one to consider x (t) and X (f)
as a Fourier pair. Indeed, the Fourier transform of X is almost x: F{X} (f) = x (−f). Clearly,
the symmetry is not perfect since X (f) is in general complex, while x is real. However: If x (t) is
symmetric, i.e. x (−t) = x (t) then X (f) is real-valued, and vice versa!

In summary: Symmetric real signals have symmetric real Fourier transforms and vice versa. As we will see
below, they also possess the same energy.

Available for free at Connexions <http://cnx.org/content/col11529/1.2>



Chapter 4

Energy and Power1

4.1 Energy and Power

The energy of a continuous-time signal x (t) is given as

||x||2 :=
∫ ∞
−∞

x2 (t) dt (4.1)

Plancherel's theorem says (for more information see Comment Box 2 (p. 9)): If the signal x (t) has �nite
energy then its Fourier transform X (f) has the same energy:

||X (f) ||2 =
∫ ∞
−∞
|X|2 (f) df =

∫ ∞
−∞

x2 (t) dt = ||x||2 [�nite energy case] (4.2)

Comment Box 2 Plancherel theorem is a result in harmonic analysis, �rst proved by Michel Plancherel.
In its simplest form it states that if a function f is in both L1 (IR) and L2 (IR), then its Fourier transform is
in L2 (IR); moreover the Fourier transform map is isometric. This implies that the Fourier transform map
restricted to L1 (IR) ∩ L2 (IR) has a unique extension to a linear isometric map L2 (IR) → L2 (IR). This
isometry is actually a unitary map.

Periodic signals have of course in�nite energy; therefore, one introduces the power Px of the signal
x (t), which is the average energy over one period. Energy is measured in Joule, power is measured in
Watt=Joule/Sec.

The analog of Plancherel's theorem is Parseval's theorem which applies to T -periodic signals and says

P = Px =
1
T

∫ T/2

−T/2
|x (t) |2dt =

∞∑
k=−∞

|Xk|2 [periodic case] (4.3)

We may derive Parseval's theorem as follows, using (1.6) and |a|2 = a · a∗:

Px = 1
T

∫ T/2
−T/2 |x (t) |2dt = 1

T

∫ T/2
−T/2

∣∣∑∞
k=−∞Xke

j2πkt/T
∣∣2dt

= 1
T

∫ T/2
−T/2

(∑∞
k=−∞Xke

j2πkt/T
) (∑∞

n=−∞Xne
j2πnt/T

)∗
dt

= 1
T

∫ T/2
−T/2

(∑∞
k=−∞Xke

j2πkt/T
) (∑∞

n=−∞X∗ne
−j2πnt/T ) dt

=
∑∞
k=−∞

∑∞
n=−∞XkX

∗
n

1
T

∫ T/2
−T/2 e

j2π(k−n)t/T dt

=
∑∞
k=−∞XkX

∗
k =

∑∞
k=−∞ |Xk|2

(4.4)

1This content is available online at <http://cnx.org/content/m46811/1.4/>.
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10 CHAPTER 4. ENERGY AND POWER

Here, we used that
∫ T/2
−T/2 e

j2π(k−n)t/T equals T when k = n (since e0 = 1), but equals 0 when k 6= n since

(since ejs = cos (s) + jsin (s), which are integrated over several periods).
A similar computation can be carried out for Plancherel's equation. However, some di�culties arise due

to the integrals over in�nite intervals (see Comment Box 3 (p. 10) below). Also, a justi�cation of Plancherel
could be given by performing a limit of in�nite period in Parseval's equation (see Comment Box 4 (p. 12)
below).

For �nite discrete signals the analog is simply the fact, that DFT is unitary up to a stretching factor.
More precisely, the matrix DFTK leaves angles intact and stretches length by

√
K. Intuitively, one may

think of the DFT as a rotation and a stretching. In other words, to perform a DFT simply means to change
the coordinate system into a new one, and to change length measurement by a factor

√
K. Thus:

Px =
1
K

K∑
n=1

x2
n =

1
K2

K∑
k=1

|Θxk |
2

=
1
K
P
x̂

[discrete case](4.5)

Note that the DFT Fourier coe�cients are complex numbers; thus, the absolute value has to be taken (for

a complex number a we have |a|2 = a · a∗, which is usually di�erent from a2�unless a is by chance real
valued).

Comment Box 3 A �hand-waving� argument for Plancherel's theorem runs as follows, using (3.1) and

|a|2 = a · a∗:
||x (t) ||2 =

∫∞
−∞ |x (t) |2dt =

∫∞
−∞

∣∣∣∫∞−∞X (f) ej2πftdf
∣∣∣2dt

=
∫∞
−∞

(∫∞
−∞X (f) ej2πftdf

)(∫∞
−∞X (g) ej2πgtdg

)∗
dt

=
∫∞
−∞

(∫∞
−∞X (f) ej2πftdf

)(∫∞
−∞X(g)∗e−j2πgtdg

)
dt

=
∫∞
−∞

∫∞
−∞X (f)X(g)∗

∫∞
−∞ ej2πt(f−g)dt dfdg

=
∫∞
−∞

∫∞
−∞X (f)X(g)∗δ (f − g) dfdg

=
∫∞
−∞X (f)X(f)∗dt =

∫∞
−∞ |X (f) |2dt = ||X||2

(4.6)

Thereby, the step
∫∞
−∞ ej2πt(f−g)dt = δ (f − g) would require some more care, but we content ourselves here

with this intuitive computation.

Available for free at Connexions <http://cnx.org/content/col11529/1.2>
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(a)

(b)

(c)

Figure 4.1: (a) An important example of a band-limited signal: the sinc-function. (b) Sinc and the
un-normalized version in comparison. (c) The power spectrum of sinc is Rect(f).
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