Sampling Rate Conversion

Collection Editor:
Denver Greene

Sampling Rate Conversion

Collection Editor:
Denver Greene
Author:
Rudolf Riedi

Online:
< http://cnx.org/content/col11529/1.2/ >

CONNEXIONS

Rice University, Houston, Texas

This selection and arrangement of content as a collection is copyrighted by Denver Greene. It is licensed under the Creative Commons Attribution 3.0 license (http://creativecommons.org/licenses/by/3.0/).
Collection structure revised: September 5, 2013
PDF generated: September 5, 2013
For copyright and attribution information for the modules contained in this collection, see p. 57 .

Table of Contents

1 Fourier Series: Review 1
2 Discrete Fourier Transform 5
3 Fourier Integral 7
4 Energy and Power 9
5 Examples 13
6 Estimation of Spectrum and Power via DFT 19
7 Sampling: Review 23
8 Decimation and Downsampling 31
9 Interpolation and Upsampling 35
10 Sampling Rate Conversion 41
11 Models of Noise 43
12 Oversampling 47
13 Noise-Shaping 53
Attributions 57

Chapter 1

Fourier Series: Review ${ }^{1}$

1.1 Fourier Series: Review

A function or signal $x(t)$ is called periodic with period T if $x(t+T)=x(t)$. All "typical" periodic function $x(t)$ with period T can be developed as follows

$$
\begin{equation*}
x(t)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos \left(k \frac{2 \pi}{T} t\right)+b_{k} \sin \left(k \frac{2 \pi}{T} t\right) \tag{1.1}
\end{equation*}
$$

where the coefficients are computed as follows:

$$
\begin{align*}
a_{k} & =\frac{2}{T} \int_{-T / 2}^{T / 2} x(t) \cos \left(k \frac{2 \pi}{T} t\right) d t \quad(k=0,1,2, \ldots) \tag{1.2}\\
b_{k} & =\frac{2}{T} \int_{-T / 2}^{T / 2} x(t) \sin \left(k \frac{2 \pi}{T} t\right) d t \quad(k=1,2,3, \ldots) \tag{1.3}
\end{align*}
$$

The natural interpretation of (1.1) is as a decomposition of the signal $x(t)$ into individual oscillations where a_{k} indicates the amplitude of the even oscillation $\cos \left(k \frac{2 \pi}{T} t\right)$ of frequency k / T (meaning its period is $\left.T / k\right)$, and b_{k} indicates the amplitude of the odd oscillation $\sin \left(k \frac{2 \pi}{T} t\right)$ of frequency k / T. For an audio signal $x(t)$, frequency corresponds to how high a sound is and amplitude to how loud it is. The oscillations appearing in the Fourier decomposition are often also called harmonics (first, second, third harmonic etc).

Note: one can also integrate over $[0, T]$ or any other interval of length T. Note also, that the average value of $x(t)$ over one period is equal to $a_{0} / 2$.

Complex representation of Fourier series

Often it is more practical to work with complex numbers in the area of Fourier analysis. Using the famous formula

$$
\begin{equation*}
e^{j \alpha}=\cos (\alpha)+j \sin (\alpha) \tag{1.4}
\end{equation*}
$$

it is possible to simplify several formulas at the price of working with complex numbers. Towards this end we write

$$
\begin{equation*}
a \cos (\alpha)+b \sin (\alpha)=a \frac{1}{2}\left(e^{j \alpha}+e^{-j \alpha}\right)+b \frac{1}{2 j}\left(e^{j \alpha}-e^{-j \alpha}\right)=\frac{1}{2}(a-b j) e^{j \alpha}+\frac{1}{2}(a+b j) e^{-j \alpha} \tag{1.5}
\end{equation*}
$$

[^0]From this we observe that we may replace the cos and \sin harmonics by a pair of exponential harmonics with opposite frequencies and with complex amplitudes which are conjugate complex to each other. In fact, we arrive at the more simple complex Fourier series:

$$
\begin{equation*}
x(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{j 2 \pi k t / T} \quad \text { with } \quad X_{k}=\frac{1}{T} \int_{0}^{T} x(t) e^{-j 2 \pi k t / T} d t \tag{1.6}
\end{equation*}
$$

Note that X is complex, but x is real-valued (the imaginary parts of all the terms in $\sum X_{k} e^{j 2 \pi k t / T}$ add up to zero; in other words, they cancel each other out). The absolute value of X_{k} gives the amplitude of the complex harmonic with frequency k / T (meaning its period is T / k); the argument of X_{k} provides the phase difference between the complex harmonics. If x is even, X_{k} is real for all k and all harmonics are in phase.

To verify (1.6) note that by (1.2) and (1.3) we have for positive k

$$
\begin{equation*}
X_{k}=\frac{1}{T} \int_{0}^{T} x(t)[\cos (2 \pi k t / T)-j \sin (2 \pi k t / T)] d t=\frac{1}{2}\left(a_{k}-b_{k} j\right) \tag{1.7}
\end{equation*}
$$

For negative k we note that $X_{-k}=X_{k}^{*}$ by (1.6), where () $)^{*}$ denotes the conjugate complex. By (1.5), the X_{k} are exactly as they are supposed to be.

Properties

- Linearity: The Fourier coefficients of the signal $z(t)=c x(t)+y(t)$ are simply

$$
\begin{equation*}
Z_{k}=c X_{k}+Y_{k} \tag{1.8}
\end{equation*}
$$

- Change of frequency: The signal $z(t)=x(\lambda t)$ has the period T / λ and has the same Fourier coefficients as $x(t)$ - but they correspond to different frequencies f :

$$
\begin{equation*}
\left.Z_{k}\right|_{f=\frac{k}{T / \lambda}}=\left.X_{k}\right|_{f=\frac{k}{T}} \quad \text { since } \quad z(t)=x(\lambda t)=\sum_{k=-\infty}^{\infty} X_{k} e^{j 2 \pi \lambda k t / T}=\sum_{k=-\infty}^{\infty} Z_{k} e^{j 2 \pi t \frac{k}{T / \lambda}} \tag{1.9}
\end{equation*}
$$

The equation on the right allows to read off the Fourier coefficients and to establish $Z_{k}=X_{k}$. (For an alternative computation see box Comment Box 1 (p. 2))

Comment Box 1

$$
\begin{array}{rc}
Z_{k} & =\frac{1}{T / \lambda} \int_{0}^{T / \lambda} z(t) e^{-2 \pi j k t /(T / \lambda)} d t=\frac{\lambda}{T} \int_{0}^{T / \lambda} x(t \lambda) e^{-2 \pi j k t \lambda / T} d t \tag{1.10}\\
& =\quad \frac{1}{T} \int_{0}^{T} x(s) e^{-2 \pi j k s / T} d s=X_{k}
\end{array}
$$

- Shift: The Fourier coefficients of $z(t)=x(t+d)$ are simply

$$
\begin{equation*}
Z_{k}=X_{k} e^{j 2 \pi k d / T} \tag{1.11}
\end{equation*}
$$

The modulation is much more simple in complex writing then it would be with real coefficients. For the special shift by half a period, i.e., $d=T / 2$ we have $Z_{k}=X_{k} e^{j \pi k}=(-1)^{k} X_{k}$.

- Derivative: The Fourier series of the derivative of $x(t)$ with development (1.1) can be obtained simply by taking the derivative of (1.1) term by term:

$$
\begin{equation*}
x^{\prime}(t)=\sum_{k=-\infty}^{\infty} X_{k} \cdot k \frac{2 \pi j}{T} \cdot e^{j 2 \pi k t / T} \tag{1.12}
\end{equation*}
$$

Short: when taking the derivative of a signal, the complex Fourier coefficients get multiplied by $k \frac{2 \pi j}{T}$. Consequently, the coefficients of the derivative decay slower.

Examples

- The pure oscillation (containing only one real but two complex frequencies)

$$
\begin{equation*}
x(t)=\sin (2 \pi t / T) \quad X_{1}=-X_{-1}=\frac{j}{2} \tag{1.13}
\end{equation*}
$$

or $B_{1}=1 / 2=-B_{-1}$, or $b_{1}=1$, and all other coefficients are zero. This formula can be obtained without computing integrals by noting that $\sin (\alpha)=\left(e^{j \alpha}-e^{-j \alpha}\right) /(2 j)=(j / 2)\left(e^{-j \alpha}-e^{j \alpha}\right)$ and setting $\alpha=2 \pi t / T$.

- Functions which are time-limited, i.e., defined on a finite interval can be periodically extended. Example with $T=2 \pi$:

$$
x(t)=\left\{\begin{array}{cc}
1 \quad \text { for } 0<t<\pi \\
-1 & \text { for }-\pi<t<0 \tag{1.14}\\
c & \text { for } t=0, \pi
\end{array} \quad b_{k}=2 B_{k}=\frac{4}{\pi k} \quad \text { for odd } k \geq 1\right.
$$

and all other coefficients zero. Note that c is any constant; the value of c does not affect the coefficients b_{k}. We have for $0<t<\pi$

$$
\begin{equation*}
1=\frac{4}{\pi}\left(\sin (t)+\frac{1}{3} \sin (3 t)+\frac{1}{5} \sin (5 t)+\ldots\right) \tag{1.15}
\end{equation*}
$$

Note that for $t=0$ the value of the series on the right is 0 , which is equal to $x(0-)+x(0+)$, the middle of the jump of $x(t)$ at 0 , no matter what c is. Similar for $t=\pi$.

Chapter 2

Discrete Fourier Transform ${ }^{1}$

2.1 Discrete Fourier Transform

The Discrete Fourier Transform, from now on DFT, of a finite length sequence $\left(x_{0}, \ldots, x_{K-1}\right)$ is defined as

$$
\stackrel{\Theta}{x}_{k}=\sum_{n=0}^{K-1} x_{n} e^{-2 \pi j k \frac{n}{K}} \quad(k=0, \ldots, K-1)(2.1)
$$

To motivate this transform think of x_{n} as equally spaced samples of a T-periodic signal $x(t)$ over a period, e.g., $x_{n}=x(n T / K)$. Then, using the Riemann Sum as an approximation of an integral, i.e.,

$$
\begin{equation*}
\sum_{n=0}^{K-1} f\left(\frac{n T}{K}\right) \frac{T}{K} \simeq \int_{0}^{T} f(t) d t \tag{2.2}
\end{equation*}
$$

we find

$$
\begin{equation*}
\stackrel{\Theta}{x}_{k}=\sum_{n=0}^{K-1} x\left(\frac{n T}{K}\right) e^{-2 \pi j \frac{n T}{K} k / T} \simeq \frac{K}{T} \int_{0}^{T} x(t) e^{-2 \pi j t k / T} d t=K X_{k}(2.3 \tag{2.3}
\end{equation*}
$$

Note that the approximation is better, the larger the sample size K is.
Remark on why the factor K in (2.3): recall that X_{k} is an average while x_{k} is a sum. Take for instance $k=0: X_{0}$ is the average of the signal while \hat{x}_{0} is the sum of the samples.

From the above we may hope that a development similar to the Fourier series (1.6) should also exist in the discrete case. To this end, we note first that the DFT is a linear transform and can be represented by a matrix multiplication (the "exponent" T means transpose):

$$
\begin{equation*}
\left(\stackrel{\Theta}{x}_{0}, \ldots, \stackrel{\Theta}{x}_{K-1}\right)^{T}=D F T_{K} \cdot\left(x_{0}, \ldots, x_{K-1}\right)^{T} \tag{2.4}
\end{equation*}
$$

The matrix $D F T_{K}$ possesses K lines and K rows; the entry in line k row n is $e^{-2 \pi j k n / K}$. A few examples are

$$
D F T_{1}=(1) \quad D F T_{2}=\left(\begin{array}{cc}
1 & 1 \tag{2.5}\\
1 & -1
\end{array}\right) \quad D F T_{4}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -j & -1 & j \\
1 & -1 & 1 & -1 \\
1 & j & -1 & -j
\end{array}\right)
$$

[^1]The rows are orthogonal ${ }^{2}$ to each other. Also, all rows have length ${ }^{3} \sqrt{K}$. Finally, the matrices are symmetric (exchanging lines for rows does not change the matrix). So, the multiplying DFT with its conjugate complex matrix $\left(D F T_{K}\right)^{*}$ we get K times the unit matrix (diagonal matrix with all diagonal elements equal to K).

Inverse DFT

From all this we conclude that the inverse matrix of $D F T_{K}$ is $I D F T_{K}=(1 / K) \cdot\left(D F T_{K}\right)^{*}$. Since $\left(e^{-\alpha}\right)^{*}=e^{\alpha}$ we find

$$
\begin{equation*}
x_{n}=\frac{1}{K} \sum_{k=0}^{K-1} \stackrel{\Theta}{x}_{k} e^{2 \pi j k \frac{n}{K}} \quad(n=0, \ldots, K-1) \tag{2.7}
\end{equation*}
$$

Spectral interpretation, symmetries, periodicity

Combining (2.3) and (2.7) we may now interpret $\stackrel{\Theta}{x}_{k}$ as the coefficient of the complex harmonic with frequency k / T in a decomposition of the discrete signal x_{n}; its absolute value provides the amplitude of the harmonic and its argument the phase difference.

If x is even, $\stackrel{\ominus}{x}_{k}$ is real for all k and all harmonics are in phase.
Using the periodicity of $e^{2 \pi j t}$ we obtain $x_{n}=x_{n+K}$ when evaluating (2.7) for arbitrary n. Short, we can consider x_{n} as equally-spaced samples of the T-periodic signal $x(t)$ over any interval of length T :

$$
\begin{equation*}
\stackrel{\Theta}{x}_{k}=\sum_{n=-K / 2}^{K / 2-1} x_{n} e^{-2 \pi j k \frac{n}{K}} \tag{2.8}
\end{equation*}
$$

Similarly, $\stackrel{\Theta}{x}_{k}$ is periodic: $\stackrel{\Theta}{x}_{k}=\stackrel{\Theta}{x}_{k+K}$. Thus, it makes sense to evaluate $\stackrel{\Theta}{x}_{k}$ for any k. For instance, we can rewrite (2.1) as

$$
\begin{equation*}
x_{n}=\frac{1}{K} \sum_{n=-K / 2}^{K / 2-1} \stackrel{\Theta}{x}_{k} e^{2 \pi j k \frac{n}{K}} \tag{2.9}
\end{equation*}
$$

Since $\stackrel{\Theta}{x}_{k}$ corresponds to the frequency k / T, the period K of $\stackrel{\Theta}{x}_{k}$ corresponds to a period of K / T in actual frequency. This is exactly the sampling frequency (or sampling rate) of the original signal (K samples per T time units). Compare to the spectral repetitions.

However, the period T of the original signal x is nowhere present in the formulas of the DFT (cpre. (2.1) and (2.7)). Thus, if nothing is known about T, it is assumed that the sampling rate is 1 (1 sample per time unit), meaning that $K=T$.

FFT

The Fast Fourier Transform (FFT) is a clever algorithm which implements the DFT in only Klog (K) operations. Note that the matrix multiplication would require K^{2} operations.

Matlab implements the FFT with the command $\mathrm{fft}(\mathrm{x})$ where x is the input vector. Note that in Matlab the indices start always with 1! This means that the first entry of the Matlab vector x, i.e. $x(1)$ is the sample point $x_{0}=x(0)$. Similar, the last entry of the Matlab vector x is, i.e. $x(K)$ is the sample point $x_{K-1}=x((K-1) T / K)=x(T-T / K)$.

[^2]where a^{*} is the conjugate complex of a. Orthogonal means $x \cdot y=0$.
${ }^{3}$ Length is computed as $\|x\|=\sqrt{x \cdot x}=\sqrt{x_{1} x_{1}^{*}+x_{2} x_{2}^{*}+\ldots+x_{K} x_{K}^{*}}=\sqrt{\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\ldots+\left|x_{K}\right|^{2}}$.

Chapter 3

Fourier Integral'

3.1 Fourier Integral

Continuous-time signals $x(t)$ which are not periodic can still be understood as superpositions of pure oscillations $e^{j 2 \pi f t}$ where now all frequencies are present in the signal. The coefficients $X(f)$ of the oscillations can be computed as follows:

$$
\begin{equation*}
X(f)=\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t \quad[\text { Fourier transform }] \tag{3.1}
\end{equation*}
$$

The representation as a superposition takes then the following form:

$$
\begin{equation*}
x(t)=\int_{-\infty}^{\infty} X(f) e^{j 2 \pi f t} d f \quad \text { [Inverse Fourier transform] } \tag{3.2}
\end{equation*}
$$

We call $X(f)$ the Fourier transform of x and write also $\mathcal{F}\{x\}(f)$ instead of $X(f)$ to indicate clearly which signal has been transformed. The "Fourier spectrum", or simply the spectrum, or also the "power spectrum" of the signal is the squared amplitude $|X(f)|^{2}$. This is the function usually plotted, while the phase of X is not shown. Nevertheless, the plots are usually -and erroneously- labeled with X instead of $|X|^{2}$ (see Figure 4.1).

A signal is called bandlimited if its Fourier transform $X(f)$ is zero for high frequencies, i.e. for large $|f|$. Similarly we say that a signal is time-limited if it is zero for large times, i.e., for large $|t|$. By Heisenberg's principle a bandlimited signal can not be time-limited. Since bandlimited signals are of great importance, there is a need to study signals which are not time-limited and, thus, the Fourier integral.

Properties

- Linearity:

$$
\begin{equation*}
\mathcal{F}\{a x+y\}(f)=a X(f)+Y(f) \tag{3.3}
\end{equation*}
$$

- Convolution

$$
\begin{equation*}
\mathcal{F}\{x * y\}(f)=X(f) \cdot Y(f) \quad \mathcal{F}\{x \cdot y\}(f)=X(f) * Y(f) \tag{3.4}
\end{equation*}
$$

- Change of time scale

$$
\begin{equation*}
\mathcal{F}\left\{\frac{1}{a} x\left(\frac{t}{a}\right)\right\}(f)=X(a f) \quad \mathcal{F}\{x(a t)\}(f)=\frac{1}{a} X\left(\frac{f}{a}\right) \tag{3.5}
\end{equation*}
$$

[^3]- Translation in time and frequency

$$
\begin{equation*}
\mathcal{F}\{x(t-b)\}(f)=X(f) e^{-j 2 \pi b f} \quad \mathcal{F}\left\{x(t) e^{j 2 \pi b t}\right\}(f)=X(f-b) \tag{3.6}
\end{equation*}
$$

- Symmetries and Fourier pairs The symmetry of (3.2) and (3.1) leads one to consider $x(t)$ and $X(f)$ as a Fourier pair. Indeed, the Fourier transform of X is almost $x: \mathcal{F}\{X\}(f)=x(-f)$. Clearly, the symmetry is not perfect since $X(f)$ is in general complex, while x is real. However: If $x(t)$ is symmetric, i.e. $x(-t)=x(t)$ then $X(f)$ is real-valued, and vice versa!

In summary: Symmetric real signals have symmetric real Fourier transforms and vice versa. As we will see below, they also possess the same energy.

Chapter 4

Energy and Power

4.1 Energy and Power

The energy of a continuous-time signal $x(t)$ is given as

$$
\begin{equation*}
\|x\|^{2}:=\int_{-\infty}^{\infty} x^{2}(t) d t \tag{4.1}
\end{equation*}
$$

Plancherel's theorem says (for more information see Comment Box 2 (p. 9)): If the signal $x(t)$ has finite energy then its Fourier transform $X(f)$ has the same energy:

$$
\begin{equation*}
\|X(f)\|^{2}=\int_{-\infty}^{\infty}|X|^{2}(f) d f=\int_{-\infty}^{\infty} x^{2}(t) d t=\|x\|^{2} \quad \text { [finite energy case] } \tag{4.2}
\end{equation*}
$$

Comment Box 2 Plancherel theorem is a result in harmonic analysis, first proved by Michel Plancherel. In its simplest form it states that if a function f is in both $L_{1}(I R)$ and $L_{2}(I R)$, then its Fourier transform is in $L_{2}(I R)$; moreover the Fourier transform map is isometric. This implies that the Fourier transform map restricted to $L_{1}(I R) \cap L_{2}(I R)$ has a unique extension to a linear isometric map $L_{2}(I R) \rightarrow L_{2}(I R)$. This isometry is actually a unitary map.

Periodic signals have of course infinite energy; therefore, one introduces the power P_{x} of the signal $x(t)$, which is the average energy over one period. Energy is measured in Joule, power is measured in Watt=Joule/Sec.

The analog of Plancherel's theorem is Parseval's theorem which applies to T-periodic signals and says

$$
\begin{equation*}
P=P_{x}=\frac{1}{T} \int_{-T / 2}^{T / 2}|x(t)|^{2} d t=\sum_{k=-\infty}^{\infty}\left|X_{k}\right|^{2} \quad \text { [periodic case] } \tag{4.3}
\end{equation*}
$$

We may derive Parseval's theorem as follows, using (1.6) and $|a|^{2}=a \cdot a^{*}$:

$$
\begin{array}{rlc}
P_{x} & = & \frac{1}{T} \int_{-T / 2}^{T / 2}|x(t)|^{2} d t=\frac{1}{T} \int_{-T / 2}^{T / 2}\left|\sum_{k=-\infty}^{\infty} X_{k} e^{j 2 \pi k t / T}\right|^{2} d t \\
& = & \frac{1}{T} \int_{-T / 2}^{T / 2}\left(\sum_{k=-\infty}^{\infty} X_{k} e^{j 2 \pi k t / T}\right)\left(\sum_{n=-\infty}^{\infty} X_{n} e^{j 2 \pi n t / T}\right)^{*} d t \\
& = & \frac{1}{T} \int_{-T / 2}^{T / 2}\left(\sum_{k=-\infty}^{\infty} X_{k} e^{j 2 \pi k t / T}\right)\left(\sum_{n=-\infty}^{\infty} X_{n}^{*} e^{-j 2 \pi n t / T}\right) d t \tag{4.4}\\
& = & \sum_{k=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} X_{k} X_{n}^{*} \frac{1}{T} \int_{-T / 2}^{T / 2} e^{j 2 \pi(k-n) t / T} d t \\
& = & \sum_{k=-\infty}^{\infty} X_{k} X_{k}^{*}=\sum_{k=-\infty}^{\infty}\left|X_{k}\right|^{2}
\end{array}
$$

[^4]Here, we used that $\int_{-T / 2}^{T / 2} e^{j 2 \pi(k-n) t / T}$ equals T when $k=n$ (since $e^{0}=1$), but equals 0 when $k \neq n$ since (since $e^{j s}=\cos (s)+j \sin (s)$, which are integrated over several periods).

A similar computation can be carried out for Plancherel's equation. However, some difficulties arise due to the integrals over infinite intervals (see Comment Box 3 (p. 10) below). Also, a justification of Plancherel could be given by performing a limit of infinite period in Parseval's equation (see Comment Box 4 (p. 12) below).

For finite discrete signals the analog is simply the fact, that DFT is unitary up to a stretching factor. More precisely, the matrix $D F T_{K}$ leaves angles intact and stretches length by \sqrt{K}. Intuitively, one may think of the DFT as a rotation and a stretching. In other words, to perform a DFT simply means to change the coordinate system into a new one, and to change length measurement by a factor \sqrt{K}. Thus:

$$
P_{x}=\frac{1}{K} \sum_{n=1}^{K} x_{n}^{2}=\frac{1}{K^{2}} \sum_{k=1}^{K}\left|\stackrel{\Theta}{x}_{k}\right|^{2}=\frac{1}{K} P_{\hat{x}} \quad[\text { discrete case }](4.5)
$$

Note that the DFT Fourier coefficients are complex numbers; thus, the absolute value has to be taken (for a complex number a we have $|a|^{2}=a \cdot a^{*}$, which is usually different from a^{2}-unless a is by chance real valued).

Comment Box 3 A "hand-waving" argument for Plancherel's theorem runs as follows, using (3.1) and $|a|^{2}=a \cdot a^{*}$:

$$
\begin{align*}
\|x(t)\|^{2} & =\quad \int_{-\infty}^{\infty}|x(t)|^{2} d t=\int_{-\infty}^{\infty}\left|\int_{-\infty}^{\infty} X(f) e^{j 2 \pi f t} d f\right|^{2} d t \\
& =\quad \int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} X(f) e^{j 2 \pi f t} d f\right)\left(\int_{-\infty}^{\infty} X(g) e^{j 2 \pi g t} d g\right)^{*} d t \\
& =\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} X(f) e^{j 2 \pi f t} d f\right)\left(\int_{-\infty}^{\infty} X(g)^{*} e^{-j 2 \pi g t} d g\right) d t \tag{4.6}\\
& =\quad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} X(f) X(g)^{*} \int_{-\infty}^{\infty} e^{j 2 \pi t(f-g)} d t d f d g \\
& =\quad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} X(f) X(g)^{*} \delta(f-g) d f d g \\
& =\quad \int_{-\infty}^{\infty} X(f) X(f)^{*} d t=\int_{-\infty}^{\infty}|X(f)|^{2} d t=\|X\|^{2}
\end{align*}
$$

Thereby, the step $\int_{-\infty}^{\infty} e^{j 2 \pi t(f-g)} d t=\delta(f-g)$ would require some more care, but we content ourselves here with this intuitive computation.

(a)

Thank You for previewing this eBook

You can read the full version of this eBook in different formats:
> HTML (Free /Available to everyone)
$>$ PDF / TXT (Available to V.I.P. members. Free Standard members can access up to 5 PDF/TXT eBooks per month each month)
> Epub \& Mobipocket (Exclusive to V.I.P. members)
To download this full book, simply select the format you desire below

[^0]: ${ }^{1}$ This content is available online at http://cnx.org/content/m46817/1.5/.

[^1]: ${ }^{1}$ This content is available online at http://cnx.org/content/m46804/1.2/.
 Available for free at Connexions < http://cnx.org/content/col11529/1.2>

[^2]: ${ }^{2}$ The scalar product for complex vectors $x=\left(x_{1}, x_{2}, \ldots, x_{K}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{K}\right)$ is computed as

 $$
 \begin{equation*}
 x \cdot y=x_{1} y_{1}^{*}+x_{2} y_{2}^{*}+\ldots+x_{K} y_{K}^{*}, \tag{2.6}
 \end{equation*}
 $$

[^3]: ${ }^{1}$ This content is available online at http://cnx.org/content/m46819/1.3/.
 Available for free at Connexions < http://cnx.org/content/col11529/1.2>

[^4]: ${ }^{1}$ This content is available online at http://cnx.org/content/m46811/1.4/.

