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Chapter 1

Probability Distributions

1.1 Aims and Motivation for the Course1

We aim to:

• Develop a theory which can characterize the behavior of real-world Random Signals and Pro-
cesses;

• Use standard Probability Theory for this.

Random signal theory is important for

• Analysis of signals;
• Inference of underlying system parameters from noisy observed data;
• Design of optimal systems (digital and analogue signal recovery, signal classi�cation, estimation ...);
• Predicting system performance (error-rates, signal-to-noise ratios, ...).

Example 1.1: Speech signals
Use probability theory to characterize that some sequences of vowels and consonants are more
likely than others, some waveforms more likely than others for a given vowel or consonant. Please
see Figure 1.1.

Use this to achieve: speech recognition, speech coding, speech enhancement, ...

1This content is available online at <http://cnx.org/content/m10983/2.4/>.
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2 CHAPTER 1. PROBABILITY DISTRIBUTIONS

Figure 1.1: Four utterances of the vowel sound 'Aah'.

Example 1.2: Digital communications
Characterize the properties of the digital data source (mobile phone, digital television transmitter,
...), characterize the noise/distortions present in the transmission channel. Please see Figure 1.2.

Use this to achieve: accurate regeneration of the digital signal at the receiver, analysis of the
channel characteristics ...

Available for free at Connexions <http://cnx.org/content/col10204/1.3>
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Figure 1.2: Digital data stream from a noisy communications Channel.

Probability theory is used to give a mathematical description of the behavior of real-world systems which
involve elements of randomness. Such a system might be as simple as a coin-�ipping experiment, in which
we are interested in whether 'Heads' or 'Tails' is the outcome, or it might be more complex, as in the study
of random errors in a coded digital data stream (e.g. a CD recording or a digital mobile phone).

The basics of probability theory should be familiar from the IB Probability and Statistics course. Here
we summarize the main results from that course and develop them into a framework that can encompass
random signals and processes.

1.2 Probability Distributions2

The distribution PX of a random variable X is simply a probability measure which assigns probabilities to
events on the real line. The distribution PX answers questions of the form:

What is the probability that X lies in some subset F of the real line?
In practice we summarize PX by its Probability Mass Function - pmf (for discrete variables only),

Probability Density Function - pdf (mainly for continuous variables), or Cumulative Distribution
Function - cdf (for either discrete or continuous variables).

2This content is available online at <http://cnx.org/content/m10984/2.8/>.
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4 CHAPTER 1. PROBABILITY DISTRIBUTIONS

1.2.1 Probability Mass Function (pmf)

Suppose the discrete random variable X can take a set of M real values {x1, . . . , xM}, then the pmf is
de�ned as:

pX (xi) = Pr [X = xi]

= PX ({xi})
(1.1)

where
∑M
i=1 pX (xi) = 1. e.g. For a normal 6-sided die, M = 6 and pX (xi) = 1

6 . For a pair of dice being
thrown, M = 11 and the pmf is as shown in (a) of Figure 1.3.

Available for free at Connexions <http://cnx.org/content/col10204/1.3>
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Figure 1.3: Examples of pmfs, cdfs and pdfs: (a) to (c) for a discrete process, the sum of two dice; (d)
and (e) for a continuous process with a normal or Gaussian distribution, whose mean = 2 and variance
= 3.

Available for free at Connexions <http://cnx.org/content/col10204/1.3>



6 CHAPTER 1. PROBABILITY DISTRIBUTIONS

1.2.2 Cumulative Distribution Function (cdf)

The cdf can describe discrete, continuous or mixed distributions of X and is de�ned as:

FX (x) = Pr [X ≤ x]

= PX ((−∞, x])
(1.2)

For discrete X:

FX (x) =
∑
i

{pX (xi) | xi ≤ x} (1.3)

giving step-like cdfs as in the example of (b) of Figure 1.3.
Properties follow directly from the Axioms of Probability:

1. 0 ≤ FX (x) ≤ 1
2. FX (−∞) = 0, FX (∞) = 1
3. FX (x) is non-decreasing as x increases
4. Pr [x1 < X ≤ x2] = FX (x2)− FX (x1)
5. Pr [X > x] = 1− FX (x)

where there is no ambiguity we will often drop the subscript X and refer to the cdf as F (x).

1.2.3 Probability Density Function (pdf)

The pdf of X is de�ned as the derivative of the cdf:

fX (x) =
d

dx
FX (x) (1.4)

The pdf can also be interpreted in derivative form as δ (x)→ 0:

fX (x) δ (x) = Pr [x < X ≤ x+ δ (x)]

= FX (x+ δ (x))− FX (x)
(1.5)

For a discrete random variable with pmf given by pX (xi):

fX (x) =
M∑
i=1

pX (xi) δ (x− xi) (1.6)

An example of the pdf of the 2-dice discrete random process is shown in (c) of Figure 1.3. (Strictly the
delta functions should extend vertically to in�nity, but we show them only reaching the values of their areas,
pX (xi).)

The pdf and cdf of a continuous distribution (in this case the normal or Gaussian distribution) are
shown in (d) and (e) of Figure 1.3.

note: The cdf is the integral of the pdf and should always go from zero to unity for a valid
probability distribution.

Properties of pdfs:

1. fX (x) ≥ 0
2.
∫∞
−∞ fX (x) dx = 1

3. FX (x) =
∫ x
−∞ fX (α) dα

4. Pr [x1 < X ≤ x2] =
∫ x2

x1
fX (α) dα

As for the cdf, we will often drop the subscript X and refer simply to f (x) when no confusion can arise.

Available for free at Connexions <http://cnx.org/content/col10204/1.3>
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1.3 Conditional Probabilities and Bayes' Rule3

If A and B are two separate but possibly dependent random events, then:

1. Probability of A and B occurring together = Pr [A,B]
2. The conditional probability of A, given that B occurs = Pr [A | B]
3. The conditional probability of B, given that A occurs = Pr [B | A]

From elementary rules of probability (Venn diagrams):

Pr [A,B] = Pr [A | B]Pr [B]

= Pr [B | A]Pr [A]
(1.7)

Dividing the right-hand pair of expressions by Pr [B] gives Bayes' rule:

Pr [A | B] =
Pr [B | A]Pr [A]

Pr [B]
(1.8)

In problems of probabilistic inference, we are often trying to estimate the most probable underlying model for
a random process, based on some observed data or evidence. If A represents a given set of model parameters,
and B represents the set of observed data values, then the terms in (1.8) are given the following terminology:

• Pr [A] is the prior probability of the model A (in the absence of any evidence);
• Pr [B] is the probability of the evidence B;
• Pr [B | A] is the likelihood that the evidence B was produced, given that the model was A;
• Pr [A | B] is the posterior probability of the model being A, given that the evidence is B.

Quite often, we try to �nd the model A which maximizes the posterior Pr [A | B]. This is known as
maximum a posteriori or MAP model selection.

The following example illustrates the concepts of Bayesian model selection.

Example 1.3: Loaded Dice
Problem:

Given a tub containing 100 six-sided dice, in which one die is known to be loaded towards the
six to a speci�ed extent, derive an expression for the probability that, after a given set of throws,
an arbitrarily chosen die is the loaded one? Assume the other 99 dice are all fair (not loaded in any
way). The loaded die is known to have the following pmf:

pL (1) = 0.05

{pL (2) , . . . , pL (5)} = 0.15

pL (6) = 0.35

Here derive a good strategy for �nding the loaded die from the tub.
Solution:
The pmfs of the fair dice may be assumed to be:

pF (i) =
1
6
, i = {1, . . . , 6}

3This content is available online at <http://cnx.org/content/m10985/2.8/>.
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8 CHAPTER 1. PROBABILITY DISTRIBUTIONS

Let each die have one of two states, S = L if it is loaded and S = F if it is fair. These are our two
possiblemodels for the random process and they have underlying pmfs given by {pL (1) , . . . , pL (6)}
and {pF (1) , . . . , pF (6)} respectively.

After N throws of the chosen die, let the sequence of throws be ΘN = {θ1, . . . , θN}, where each
θi ∈ {1, . . . , 6}. This is our evidence.

We shall now calculate the probability that this die is the loaded one. We therefore wish to �nd
the posterior Pr [S = L | ΘN ].

We cannot evaluate this directly, but we can evaluate the likelihoods, Pr [ΘN | S = L] and
Pr [ΘN | S = F ], since we know the expected pmfs in each case. We also know the prior proba-
bilities Pr [S = L] and Pr [S = F ] before we have carried out any throws, and these are {0.01, 0.99}
since only one die in the tub of 100 is loaded. Hence we can use Bayes' rule:

Pr [S = L | ΘN ] =
Pr [ΘN | S = L]Pr [S = L]

Pr [ΘN ]
(1.9)

The denominator term Pr [ΘN ] is there to ensure that Pr [S = L | ΘN ] and Pr [S = F | ΘN ]
sum to unity (as they must). It can most easily be calculated from:

Pr [ΘN ] = Pr [ΘN , S = L] + Pr [ΘN , S = F ]

= Pr [ΘN | S = L]Pr [S = L] + Pr [ΘN | S = F ]Pr [S = F ]
(1.10)

so that

Pr [S = L | ΘN ] = Pr[ ΘN | S=L]Pr[S=L]
Pr[ ΘN | S=L]Pr[S=L]+Pr[ ΘN | S=F ]Pr[S=F ]

= 1
1+RN

(1.11)

where

RN =
Pr [ΘN | S = F ]Pr [S = F ]
Pr [ΘN | S = L]Pr [S = L]

(1.12)

To calculate the likelihoods, Pr [ΘN | S = L] and Pr [ΘN | S = F ], we simply take the product
of the probabilities of each throw occurring in the sequence of throws ΘN , given each of the two
modules respectively (since each new throw is independent of all previous throws, given the model).
So, after N throws, these likelihoods will be given by:

Pr [ΘN | S = L] =
N∏
i=1

pL (θi) (1.13)

and

Pr [ΘN | S = F ] =
N∏
i=1

pF (θi) (1.14)

We can now substitute these probabilities into the above expression for RN and include
Pr [S = L] = 0.01 and Pr [S = F ] = 0.99 to get the desired a posteriori probability
Pr [S = L | ΘN ] after N throws using (1.11).

We may calculate this iteratively by noting that

Pr [ΘN | S = L] = Pr [ΘN−1 | S = L] pL (θn) (1.15)

and
Pr [ΘN | S = F ] = Pr [ΘN−1 | S = F ] pF (θn) (1.16)

so that

RN = RN−1
pF (θn)
pL(θn)

(1.17)

Available for free at Connexions <http://cnx.org/content/col10204/1.3>
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where R0 = Pr[S=F ]
Pr[S=L] = 99. If we calculate this after every throw of the current die being

tested (i.e. as N increases), then we can either move on to test the next die from the tub if
Pr [S = L | ΘN ] becomes su�ciently small (say <

(
10−4

)
) or accept the current die as the loaded

one when Pr [S = L | ΘN ] becomes large enough (say > (0.995)). (These thresholds correspond
approximately to RN > 104 and RN < 5× 10−3 respectively.)

The choice of these thresholds for Pr [S = L | ΘN ] is a function of the desired tradeo� between
speed of searching versus the probability of failure to �nd the loaded die, either by moving on to
the next die even when the current one is loaded, or by selecting a fair die as the loaded one.

The lower threshold, p1 = 10−4, is the more critical, because it a�ects how long we spend before
discarding each fair die. The probability of correctly detecting all the fair dice before the loaded
die is reached is (1− p1)n ' 1−np1, where n ' 50 is the expected number of fair dice tested before
the loaded one is found. So the failure probability due to incorrectly assuming the loaded die to be
fair is approximately np1 ' 0.005.

The upper threshold, p2 = 0.995, is much less critical on search speed, since the loaded
result only occurs once, so it is a good idea to set it very close to unity. The failure prob-
ability caused by selecting a fair die to be the loaded one is just 1 − p2 = 0.005. Hence the
overall failure probability = 0.005 + 0.005 = 0.01

note: In problems with signi�cant amounts of evidence (e.g. large N), the evidence probability
and the likelihoods can both get very very small, su�cient to cause �oating-point under�ow on
many computers if equations such as (1.13) and (1.14) are computed directly. However the ratio
of likelihood to evidence probability still remains a reasonable size and is an important quantity
which must be calculated correctly.

One solution to this problem is to compute only the ratio of likelihoods, as in (1.17). A more
generally useful solution is to compute log(likelihoods) instead. The product operations in the
expressions for the likelihoods then become sums of logarithms. Even the calculation of likelihood
ratios such as RN and comparison with appropriate thresholds can be done in the log domain.
After this, it is OK to return to the linear domain if necessary since RN should be a reasonable
value as it is the ratio of very small quantities.

Available for free at Connexions <http://cnx.org/content/col10204/1.3>
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Figure 1.4: Probabilities of the current die being the loaded one as the throws progress (20th die is
the loaded one). A new die is selected whenever the probability falls below p1.
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Figure 1.5: Histograms of the dice throws as the throws progress. Histograms are reset when each
new die is selected.
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