Precalculus An Investigation of Functions

Edition 1.3

David Lippman Melonie Rasmussen

This book is also available to read free online at http://www.opentextbookstore.com/precalc/
If you want a printed copy, buying from the bookstore is cheaper than printing yourself.

Copyright © 2012 David Lippman and Melonie Rasmussen

This text is licensed under a Creative Commons Attribution-Share Alike 3.0 United States License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

You are free:
to Share - to copy, distribute, display, and perform the work
to Remix - to make derivative works
Under the following conditions:
Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or a compatible license.

With the understanding that:
Waiver. Any of the above conditions can be waived if you get permission from the copyright holder.
Other Rights. In no way are any of the following rights affected by the license:

- Your fair dealing or fair use rights;
- Apart from the remix rights granted under this license, the author's moral rights;
- Rights other persons may have either in the work itself or in how the work is used, such as publicity or privacy rights.
- Notice - For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to this web page: http://creativecommons.org/licenses/by-sa/3.0/us/

In addition to these rights, we give explicit permission to remix small portions of this book (less than 10% cumulative) into works that are CC-BY, CC-BY-SA-NC, or GFDL licensed.

Selected exercises were remixed from Precalculus by D.H. Collingwood and K.D. Prince, originally licensed under the GNU Free Document License, with permission from the authors.

Cover Photo by David Lippman, of artwork by
John Rogers
Lituus, 2010
Dichromatic glass and aluminum
Washington State Arts Commission in partnership with Pierce College

This is the fourth official version of Edition 1. It contains typo corrections and language clarification, but is page number and problem set number equivalent to the original Edition 1.

About the Authors

David Lippman received his master's degree in mathematics from Western Washington University and has been teaching at Pierce College since Fall 2000.

Melonie Rasmussen also received her master's degree in mathematics from Western Washington University and has been teaching at Pierce College since Fall 2002. Prior to this Melonie taught for the Puyallup School district for 6 years after receiving her teaching credentials from Pacific Lutheran University.

We have both been long time advocates of open learning, open materials, and basically any idea that will reduce the cost of education for students. It started by supporting the college's calculator rental program, and running a book loan scholarship program. Eventually the frustration with the escalating costs of commercial text books and the online homework systems that charged for access led them to take action.

First, David developed IMathAS, open source online math homework software that runs WAMAP.org and MyOpenMath.com. Through this platform, we became integral parts of a vibrant sharing and learning community of teachers from around Washington State that support and contribute to WAMAP. Our pioneering efforts, supported by dozens of other dedicated faculty and financial support from the Transition Math Project, have led to a system used by thousands of students every quarter, saving hundreds of thousands of dollars over comparable commercial offerings.

David continued further and wrote his first open textbook, Math in Society, a math for liberal arts majors book, after being frustrated by students having to pay $\$ 100+$ for a textbook for a terminal course. Together, frustrated by both cost and the style of commercial texts, we began writing PreCalculus: An Investigation of Functions in 2010.

Acknowledgements

We would like to thank the following for their generous support and feedback.

- The community of WAMAP users and developers for creating a majority of the homework content used in our online homework sets.
- Pierce College students in our Fall 2010 - Summer 2011 Math 141 and Math 142 classes for helping correct typos, identifying videos related to the homework, and being our willing test subjects.
- The Open Course Library Project for providing the support needed to produce a full course package for these courses.
- Mike Kenyon, Chris Willett, Tophe Anderson, and Vauhn Foster-Grahler for reviewing the course and giving feedback and suggestions.
- Our Pierce College colleagues for providing their suggestions.
- Tophe Anderson, James Gray, and Lawrence Morales for their feedback and suggestions in content and examples.
- Jeff Eldridge for extensive proofreading and suggestions for clarification.
- James Sousa for developing videos associated with the online homework.
- Kevin Dimond for his work on indexing the book and creating PowerPoint slides.
- Faculty at Green River Community College and the Maricopa College District for their feedback and suggestions.

Preface

Over the years, when reviewing books we found that many had been mainstreamed by the publishers in an effort to appeal to everyone, leaving them with very little character. There were only a handful of books that had the conceptual and application driven focus we liked, and most of those were lacking in other aspects we cared about, like providing students sufficient examples and practice of basic skills. The largest frustration, however, was the never ending escalation of cost and being forced into new editions every three years. We began researching open textbooks, however the ability for those books to be adapted, remixed, or printed were often limited by the types of licenses, or didn't approach the material the way we wanted.

This book is available online for free, in both Word and PDF format. You are free to change the wording, add materials and sections or take them away. We welcome feedback, comments and suggestions for future development at precalc@opentextbookstore.com. Additionally, if you add a section, chapter or problems, we would love to hear from you and possibly add your materials so everyone can benefit.

In writing this book, our focus was on the story of functions. We begin with function notation, a basic toolkit of functions, and the basic operation with functions: composition and transformation. Building from these basic functions, as each new family of functions is introduced we explore the important features of the function: its graph, domain and range, intercepts, and asymptotes. The exploration then moves to evaluating and solving equations involving the function, finding inverses, and culminates with modeling using the function.

The "rule of four" is integrated throughout - looking at the functions verbally, graphically, numerically, as well as algebraically. We feel that using the "rule of four" gives students the tools they need to approach new problems from various angles. Often the "story problems of life" do not always come packaged in a neat equation. Being able to think critically, see the parts and build a table or graph a trend, helps us change the words into meaningful and measurable functions that model the world around us.

There is nothing we hate more than a chapter on exponential equations that begins "Exponential functions are functions that have the form $f(x)=a^{x}$." As each family of functions is introduced, we motivate the topic by looking at how the function arises from life scenarios or from modeling. Also, we feel it is important that precalculus be the bridge in level of thinking between algebra and calculus. In algebra, it is common to see numerous examples with very similar homework exercises, encouraging the student to mimic the examples. Precalculus provides a link that takes students from the basic plug \& chug of formulaic calculations towards building an understanding that equations and formulas have deeper meaning and purpose. While you will find examples and similar exercises for the basic skills in this book, you will also find examples of multistep problem solving along with exercises in multistep problem solving. Often times these exercises will not exactly mimic the exercises, forcing the students to employ their critical thinking skills and apply the skills they've learned to new situations. By
developing students' critical thinking and problem solving skills this course prepares students for the rigors of Calculus.

While we followed a fairly standard ordering of material in the first half of the book, we took some liberties in the trig portion of the book. It is our opinion that there is no need to separate unit circle trig from triangle trig, and instead integrated them in the first chapter. Identities are introduced in the first chapter, and revisited throughout. Likewise, solving is introduced in the second chapter and revisited more extensively in the third chapter. As with the first part of the book, an emphasis is placed on motivating the concepts and on modeling and interpretation.

Supplements

During Spring 2010, the Washington Open Course Library (OCL) project was announced with the goal of creating open courseware for the 81 highest enrolled community college courses with a price cap on course materials of $\$ 30$. We were chosen to work on precalculus for this project, and that helped drive us to complete our book, and allowed us to create supplemental materials.

A course package is available that contains the following features:

- Suggested syllabus
- Day by day course guide
- Instructor guide with lecture outlines and examples
- Additional online resources, with links to other textbooks, videos, and other resources
- Discussion forums
- Diagnostic review
- Online homework for each section (algorithmically generated, free response)
- A list of videos related to the online homework
- Printable class worksheets, activities, and handouts
- Chapter review problems
- Sample quizzes
- Sample chapter exams

The course shell was built for the IMathAS online homework platform, and is available for Washington State faculty at www.wamap.org and mirrored for others at www.myopenmath.com.

The course shell was designed to follow Quality Matters (QM) guidelines, but has not yet been formally reviewed.

How To Be Successful In This Course

This is not a high school math course, although for some of you the content may seem familiar. There are key differences to what you will learn here, how quickly you will be required to learn it and how much work will be required of you.

You will no longer be shown a technique and be asked to mimic it repetitively as the only way to prove learning. Not only will you be required to master the technique, but you will also be required to extend that knowledge to new situations and build bridges between the material at hand and the next topic, making the course highly cumulative.

As a rule of thumb, for each hour you spend in class, you should expect this course will require an average of 2 hours of out-of-class focused study. This means that some of you with a stronger background in mathematics may take less, but if you have a weaker background or any math anxiety it will take you more.

Notice how this is the equivalent of having a part time job, and if you are taking a fulltime load of courses as many college students do, this equates to more than a full time job. If you must work, raise a family and take a full load of courses all at the same time, we recommend that you get a head start \& get organized as soon as possible. We also recommend that you spread out your learning into daily chunks and avoid trying to cram or learn material quickly before an exam.

To be prepared, read through the material before it is covered in class and note or highlight the material that is new or confusing. The instructor's lecture and activities should not be the first exposure to the material. As you read, test your understanding with the Try it Now problems in the book. If you can't figure one out, try again after class, and ask for help if you still can't get it.

As soon as possible after the class session recap the day's lecture or activities into a meaningful format to provide a third exposure to the material. You could summarize your notes into a list of key points, or reread your notes and try to work examples done in class without referring back to your notes. Next, begin any assigned homework. The next day, if the instructor provides the opportunity to clarify topics or ask questions, do not be afraid to ask. If you are afraid to ask, then you are not getting your money's worth! If the instructor does not provide this opportunity, be prepared to go to a tutoring center or build a peer study group. Put in quality effort and time and you can get quality results.

Lastly, if you feel like you do not understand a topic. Don't wait, ASK FOR HELP!
ASK: Ask a teacher or tutor, Search for ancillaries, Keep a detailed list of questions
FOR: Find additional resources, Organize the material, Research other learning options
HELP: Have a support network, Examine your weaknesses, List specific examples \& Practice
Best of luck learning! We hope you like the course \& love the price. David \& Melonie

Table of Contents

About the Authors i
Acknowledgements ii
Preface iii
Supplements iv
How To Be Successful In This Course v
Table of Contents vi
Chapter 1: Functions 1
Section 1.1 Functions and Function Notation 1
Section 1.2 Domain and Range. 21
Section 1.3 Rates of Change and Behavior of Graphs 34
Section 1.4 Composition of Functions 49
Section 1.5 Transformation of Functions 61
Section 1.6 Inverse Functions 90
Chapter 2: Linear Functions 99
Section 2.1 Linear Functions 99
Section 2.2 Graphs of Linear Functions 111
Section 2.3 Modeling with Linear Functions. 126
Section 2.4 Fitting Linear Models to Data 138
Section 2.5 Absolute Value Functions 146
Chapter 3: Polynomial and Rational Functions 155
Section 3.1 Power Functions \& Polynomial Functions 155
Section 3.2 Quadratic Functions 163
Section 3.3 Graphs of Polynomial Functions 176
Section 3.4 Rational Functions 188
Section 3.5 Inverses and Radical Functions 206
Chapter 4: Exponential and Logarithmic Functions. 215
Section 4.1 Exponential Functions 215
Section 4.2 Graphs of Exponential Functions 232
Section 4.3 Logarithmic Functions 242
Section 4.4 Logarithmic Properties 253
Section 4.5 Graphs of Logarithmic Functions 262
Section 4.6 Exponential and Logarithmic Models. 270
Section 4.7 Fitting Exponentials to Data 289
Chapter 5: Trigonometric Functions of Angles 297
Section 5.1 Circles 297
Section 5.2 Angles 307
Section 5.3 Points on Circles using Sine and Cosine 321
Section 5.4 The Other Trigonometric Functions 333
Section 5.5 Right Triangle Trigonometry 343
Chapter 6: Periodic Functions 353
Section 6.1 Sinusoidal Graphs 353
Section 6.2 Graphs of the Other Trig Functions 369
Section 6.3 Inverse Trig Functions 379
Section 6.4 Solving Trig Equations 387
Section 6.5 Modeling with Trigonometric Equations. 397
Chapter 7: Trigonometric Equations and Identities 409
Section 7.1 Solving Trigonometric Equations with Identities 409
Section 7.2 Addition and Subtraction Identities 417
Section 7.3 Double Angle Identities 431
Section 7.4 Modeling Changing Amplitude and Midline 442
Chapter 8: Further Applications of Trigonometry 451
Section 8.1 Non-right Triangles: Law of Sines and Cosines 451
Section 8.2 Polar Coordinates 467
Section 8.3 Polar Form of Complex Numbers 480
Section 8.4 Vectors 491
Section 8.5 Parametric Equations 504
Solutions to Selected Exercises 519
Chapter 1 519
Chapter 2 526
Chapter 3 530
Chapter 4 534
Chapter 5 539
Chapter 6 542
Chapter 7 546
Chapter 8 549
Index 555

Chapter 1: Functions

Section 1.1 Functions and Function Notation... 1
Section 1.2 Domain and Range... 21
Section 1.3 Rates of Change and Behavior of Graphs.. 34
Section 1.4 Composition of Functions.. 49
Section 1.5 Transformation of Functions.. 61
Section 1.6 Inverse Functions .. 90

Section 1.1 Functions and Function Notation

What is a Function?

The natural world is full of relationships between quantities that change. When we see these relationships, it is natural for us to ask "If I know one quantity, can I then determine the other?" This establishes the idea of an input quantity, or independent variable, and a corresponding output quantity, or dependent variable. From this we get the notion of a functional relationship in which the output can be determined from the input.

For some quantities, like height and age, there are certainly relationships between these quantities. Given a specific person and any age, it is easy enough to determine their height, but if we tried to reverse that relationship and determine height from a given age, that would be problematic, since most people maintain the same height for many years.

Function

Function: A rule for a relationship between an input, or independent, quantity and an output, or dependent, quantity in which each input value uniquely determines one output value. We say "the output is a function of the input."

Example 1

In the height and age example above, is height a function of age? Is age a function of height?

In the height and age example above, it would be correct to say that height is a function of age, since each age uniquely determines a height. For example, on my $18^{\text {th }}$ birthday, I had exactly one height of 69 inches.

However, age is not a function of height, since one height input might correspond with more than one output age. For example, for an input height of 70 inches, there is more than one output of age since I was 70 inches at the age of 20 and 21.

Example 2

At a coffee shop, the menu consists of items and their prices. Is price a function of the item? Is the item a function of the price?

We could say that price is a function of the item, since each input of an item has one output of a price corresponding to it. We could not say that item is a function of price, since two items might have the same price.

Example 3

In many classes the overall percentage you earn in the course corresponds to a decimal grade point. Is decimal grade a function of percentage? Is percentage a function of decimal grade?

For any percentage earned, there would be a decimal grade associated, so we could say that the decimal grade is a function of percentage. That is, if you input the percentage, your output would be a decimal grade. Percentage may or may not be a function of decimal grade, depending upon the teacher's grading scheme. With some grading systems, there are a range of percentages that correspond to the same decimal grade.

One-to-One Function

Sometimes in a relationship each input corresponds to exactly one output, and every output corresponds to exactly one input. We call this kind of relationship a one-to-one function.

From Example 3, if each unique percentage corresponds to one unique decimal grade point and each unique decimal grade point corresponds to one unique percentage then it is a one-to-one function.

Try it Now

Let's consider bank account information.

1. Is your balance a function of your bank account number?
(if you input a bank account number does it make sense that the output is your balance?)
2. Is your bank account number a function of your balance?
(if you input a balance does it make sense that the output is your bank account number?)

Function Notation

To simplify writing out expressions and equations involving functions, a simplified notation is often used. We also use descriptive variables to help us remember the meaning of the quantities in the problem.

Rather than write "height is a function of age", we could use the descriptive variable h to represent height and we could use the descriptive variable a to represent age.
"height is a function of age" if we name the function f we write
" h is f of a "
$h=f(a)$
$h(a)$
or more simply
we could instead name the function h and write which is read " h of a "

Remember we can use any variable to name the function; the notation $h(a)$ shows us that h depends on a. The value " a " must be put into the function " h " to get a result. Be careful - the parentheses indicate that age is input into the function (Note: do not confuse these parentheses with multiplication!).

Function Notation

The notation output $=f$ (input) defines a function named f. This would be read "output is f of input"

Example 4

Introduce function notation to represent a function that takes as input the name of a month, and gives as output the number of days in that month.

The number of days in a month is a function of the name of the month, so if we name the function f, we could write "days $=f($ month $)$ " or $d=f(m)$. If we simply name the function d, we could write $d(m)$

For example, d (March $)=31$, since March has 31 days. The notation $d(m)$ reminds us that the number of days, d (the output) is dependent on the name of the month, m (the input)

Example 5

A function $N=f(y)$ gives the number of police officers, N, in a town in year y. What does $f(2005)=300$ tell us?

When we read $f(2005)=300$, we see the input quantity is 2005 , which is a value for the input quantity of the function, the year (y). The output value is 300 , the number of police officers (N), a value for the output quantity. Remember $N=f(y)$. So this tells us that in the year 2005 there were 300 police officers in the town.

Tables as Functions

Functions can be represented in many ways: Words (as we did in the last few examples), tables of values, graphs, or formulas. Represented as a table, we are presented with a list of input and output values.

4 Chapter 1

In some cases, these values represent everything we know about the relationship, while in other cases the table is simply providing us a few select values from a more complete relationship.

Table 1: This table represents the input, number of the month (January $=1$, February $=2$, and so on) while the output is the number of days in that month. This represents everything we know about the months \& days for a given year (that is not a leap year)

(input) Month number, m	1	2	3	4	5	6	7	8	9	10	11	12
(output) Days in month, D	31	28	31	30	31	30	31	31	30	31	30	31

Table 2: The table below defines a function $Q=g(n)$. Remember this notation tells us g is the name of the function that takes the input n and gives the output Q.

n	1	2	3	4	5
Q	8	6	7	6	8

Table 3: This table represents the age of children in years and their corresponding heights. This represents just some of the data available for height and ages of children.

(input) a, age in years	5	5	6	7	8	9	10
(output) h, height inches	40	42	44	47	50	52	54

Example 6

Which of these tables define a function (if any)? Are any of them one-to-one?

Input	Output
2	1
5	3
8	6

Input	Output
-3	5
0	1
4	5

Input	Output
1	0
5	2
5	4

The first and second tables define functions. In both, each input corresponds to exactly one output. The third table does not define a function since the input value of 5 corresponds with two different output values.

Only the first table is one-to-one; it is both a function, and each output corresponds to exactly one input. Although table 2 is a function, because each input corresponds to exactly one output, each output does not correspond to exactly one input so this function is not one-to-one. Table 3 is not even a function and so we don't even need to consider if it is a one-to-one function.

Try it Now

3. If each percentage earned translated to one letter grade, would this be a function? Is it one-to-one?

Solving and Evaluating Functions:

When we work with functions, there are two typical things we do: evaluate and solve. Evaluating a function is what we do when we know an input, and use the function to determine the corresponding output. Evaluating will always produce one result, since each input of a function corresponds to exactly one output.

Solving equations involving a function is what we do when we know an output, and use the function to determine the inputs that would produce that output. Solving a function could produce more than one solution, since different inputs can produce the same output.

Example 7

Using the table shown, where $Q=g(n)$
a) Evaluate $g(3)$

n	1	2	3	4	5
Q	8	6	7	6	8

Evaluating $g(3)$ (read: " g of 3 ")
means that we need to determine the output value, Q, of the function g given the input value of $n=3$. Looking at the table, we see the output corresponding to $n=3$ is $Q=7$, allowing us to conclude $g(3)=7$.
b) Solve $g(n)=6$

Solving $g(n)=6$ means we need to determine what input values, n, produce an output value of 6 . Looking at the table we see there are two solutions: $n=2$ and $n=4$.

When we input 2 into the function g, our output is $Q=6$
When we input 4 into the function g, our output is also $Q=6$

Try it Now

4. Using the function in Example 7, evaluate $g(4)$

Graphs as Functions

Oftentimes a graph of a relationship can be used to define a function. By convention, graphs are typically created with the input quantity along the horizontal axis and the output quantity along the vertical.

6 Chapter 1

The most common graph has y on the vertical axis and x on the horizontal axis, and we say y is a function of x, or $y=f(x)$ when the function is named f.

Example 8

Which of these graphs defines a function $y=f(x)$? Which of these graphs defines a one-to-one function?

Looking at the three graphs above, the first two define a function $y=f(x)$, since for each input value along the horizontal axis there is exactly one output value corresponding, determined by the y-value of the graph. The $3^{\text {rd }}$ graph does not define a function $y=f(x)$ since some input values, such as $x=2$, correspond with more than one output value.

Graph 1 is not a one-to-one function. For example, the output value 3 has two corresponding input values, -2 and 2.3

Graph 2 is a one-to-one function; each input corresponds to exactly one output, and every output corresponds to exactly one input.

Graph 3 is not even a function so there is no reason to even check to see if it is a one-toone function.

Vertical Line Test

The vertical line test is a handy way to think about whether a graph defines the vertical output as a function of the horizontal input. Imagine drawing vertical lines through the graph. If any vertical line would cross the graph more than once, then the graph does not define only one vertical output for each horizontal input.

Horizontal Line Test

Once you have determined that a graph defines a function, an easy way to determine if it is a one-to-one function is to use the horizontal line test. Draw horizontal lines through the graph. If any horizontal line crosses the graph more than once, then the graph does not define a one-to-one function.

Evaluating a function using a graph requires taking the given input and using the graph to look up the corresponding output. Solving a function equation using a graph requires taking the given output and looking on the graph to determine the corresponding input.

Example 9

Given the graph below,
a) Evaluate $f(2)$
b) Solve $f(x)=4$

a) To evaluate $f(2)$, we find the input of $x=2$ on the horizontal axis. Moving up to the graph gives the point $(2,1)$, giving an output of $y=1$. So $f(2)=1$
b) To solve $f(x)=4$, we find the value 4 on the vertical axis because if $f(x)=4$ then 4 is the output. Moving horizontally across the graph gives two points with the output of 4 : $(-1,4)$ and $(3,4)$. These give the two solutions to $f(x)=4: x=-1$ or $x=3$ This means $f(-1)=4$ and $f(3)=4$, or when the input is -1 or 3 , the output is 4 .

Notice that while the graph in the previous example is a function, getting two input values for the output value of 4 shows us that this function is not one-to-one.

Try it Now

5. Using the graph from example 9 , solve $f(x)=1$.

Formulas as Functions

When possible, it is very convenient to define relationships using formulas. If it is possible to express the output as a formula involving the input quantity, then we can define a function.

Thank You for previewing this eBook

You can read the full version of this eBook in different formats:
> HTML (Free /Available to everyone)
$>$ PDF / TXT (Available to V.I.P. members. Free Standard members can access up to 5 PDF/TXT eBooks per month each month)
> Epub \& Mobipocket (Exclusive to V.I.P. members)
To download this full book, simply select the format you desire below

