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Chapter 1

Discrete Distributions

1.1 DISCRETE DISTRIBUTION1

1.1.1 DISCRETE DISTRIBUTION

1.1.1.1 RANDOM VARIABLE OF DISCRETE TYPE

A SAMPLE SPACE S may be di�cult to describe if the elements of S are not numbers. Let discuss
how one can use a rule by which each simple outcome of a random experiment, an element s of S, may be
associated with a real number x.

De�nition 1.1: DEFINITION OF RANDOM VARIABLE
1. Given a random experiment with a sample space S, a function X that assigns to each element
s in S one and only one real number X (s) = x is called a random variable. The space of X is
the set of real numbers {x : x = X (s) , s ∈ S}, where s belongs to S means the element s belongs
to the set S.
2. It may be that the set S has elements that are themselves real numbers. In such an instance we
could write X (s) = s so that X is the identity function and the space of X is also S. This is
illustrated in the example below.

Example 1.1
Let the random experiment be the cast of a die, observing the number of spots on the side facing
up. The sample space associated with this experiment is S = (1, 2, 3, 4, 5, 6) . For each s belongs
to S, let X (s) = s . The space of the random variable X is then {1,2,3,4,5,6}.

If we associate a probability of 1/6 with each outcome, then, for example, P (X = 5) =
1/6, P (2 ≤ X ≤ 5) = 4/6, and s belongs to S seem to be reasonable assignments, where (2 ≤ X ≤ 5)
means (X = 2,3,4 or 5) and (X ≤ 2) means (X = 1 or 2), in this example.

We can recognize two major di�culties:

1. In many practical situations the probabilities assigned to the event are unknown.
2. Since there are many ways of de�ning a function X on S, which function do we want to use?

1.1.1.1.1

Let X denotes a random variable with one-dimensional space R, a subset of the real numbers. Suppose that
the space R contains a countable number of points; that is, R contains either a �nite number of points or

1This content is available online at <http://cnx.org/content/m13114/1.5/>.
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2 CHAPTER 1. DISCRETE DISTRIBUTIONS

the points of R can be put into a one-to- one correspondence with the positive integers. Such set R is called
a set of discrete points or simply a discrete sample space.

Furthermore, the random variable X is called a random variable of the discrete type, and X is
said to have a distribution of the discrete type. For a random variable X of the discrete type, the
probability P (X = x) is frequently denoted by f(x), and is called the probability density function and
it is abbreviated p.d.f..

Let f(x) be the p.d.f. of the random variable X of the discrete type, and let R be the space of X.
Since, f (x) = P (X = x) , x belongs to R, f(x) must be positive for x belongs to R and we want all these
probabilities to add to 1 because each P (X = x) represents the fraction of times x can be expected to occur.
Moreover, to determine the probability associated with the event A ⊂ R , one would sum the probabilities
of the x values in A.

That is, we want f(x) to satisfy the properties

• P (X = x) ,
•
∑
x∈R f (x) = 1;

• P (X ∈ A) =
∑
x∈A f (x) , where A ⊂ R.

Usually let f (x) = 0 when x /∈ R and thus the domain of f(x) is the set of real numbers. When we de�ne
the p.d.f. of f(x) and do not say zero elsewhere, then we tacitly mean that f(x) has been de�ned at all x's
in space R, and it is assumed that f (x) = 0 elsewhere, namely, f (x) = 0 , x /∈ R. Since the probability
P (X = x) = f (x) > 0 when x ∈ R and since R contains all the probabilities associated with X, R is
sometimes referred to as the support of X as well as the space of X.

Example 1.2
Roll a four-sided die twice and let X equal the larger of the two outcomes if there are dif-
ferent and the common value if they are the same. The sample space for this experiment is
S = [(d1, d2) : d1 = 1, 2, 3, 4; d2 = 1, 2, 3, 4] , where each of this 16 points has probability 1/16.
Then P (X = 1) = P [(1, 1)] = 1/16 , P (X = 2) = P [(1, 2) , (2, 1) , (2, 2)] = 3/16 , and similarly
P (X = 3) = 5/16 and P (X = 4) = 7/16 . That is, the p. d.f. of X can be written simply as
f (x) = P (X = x) = 2x−1

16 , x = 1, 2, 3, 4.
We could add that f (x) = 0 elsewhere; but if we do not, one should take f(x) to equal zero

when x /∈ R.

1.1.1.1.2

A better understanding of a particular probability distribution can often be obtained with a graph that
depicts the p.d.f. of X.

note: the graph of the p.d.f. when f (x) > 0 , would be simply the set of points {[x, f (x)] : x ∈ R
}, where R is the space of X.

Two types of graphs can be used to give a better visual appreciation of the p.d.f., namely, a bar graph and
a probability histogram. A bar graph of the p.d.f. f(x) of the random variable X is a graph having a
vertical line segment drawn from (x, 0) to [x, f (x)] at each x in R, the space of X. If X can only assume
integer values, a probability histogram of the p.d.f. f(x) is a graphical representation that has a rectangle
of height f(x) and a base of length 1, centered at x, for each x ∈ R, the space of X.

De�nition 1.2: CUMULATIVE DISTRIBUTION FUNCTION
1. Let X be a random variable of the discrete type with space R and p.d.f. f (x) = P (X = x) ,
x ∈ R. Now take x to be a real number and consider the set A of all points in R that are less than
or equal to x. That is, A = (t : t ≤ x) and t ∈ R.

Available for free at Connexions <http://cnx.org/content/col10343/1.3>



3

2. Let de�ne the function F(x) by

F (x) = P (X ≤ x) =
∑
t∈A

f (t) . (1.1)

The function F(x) is called the distribution function (sometimes cumulative distribution
function) of the discrete-type random variable X.

Several properties of a distribution function F(x) can be listed as a consequence of the fact that proba-
bility must be a value between 0 and 1, inclusive:

• 0 ≤ F (x) ≤ 1 because F(x) is a probability,
• F(x) is a nondecreasing function of x,
• F (y) = 1 , where y is any value greater than or equal to the largest value in R; and F (z) = 0 , where

z is any value less than the smallest value in R;
• If X is a random variable of the discrete type, then F(x) is a step function, and the height at a step

at x, x ∈ R, equals the probability P (X = x) .

note: It is clear that the probability distribution associated with the random variable X can be
described by either the distribution function F(x) or by the probability density function f(x). The
function used is a matter of convenience; in most instances, f(x) is easier to use than F(x).

Available for free at Connexions <http://cnx.org/content/col10343/1.3>



4 CHAPTER 1. DISCRETE DISTRIBUTIONS

Graphical representation of the relationship between p.d.f. and c.d.f.

Figure 1.1: Area under p.d.f. curve to a equal to a value of c.d.f. curve at a point a.

Available for free at Connexions <http://cnx.org/content/col10343/1.3>
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1.1.1.1.3

De�nition 1.3: MATHEMATICAL EXPECTATION
If f(x) is the p.d.f. of the random variableX of the discrete type with spaceR and if the summation∑

R

u (x) f (x) =
∑
x∈R

u (x) f (x) (1.2)

exists, then the sum is called the mathematical expectation or the expected value of the
function u(X), and it is denoted by E [u (X)] . That is,

E [u (X)] =
∑
R

u (x) f (x) . (1.3)

We can think of the expected value E [u (X)] as a weighted mean of u(x), x ∈ R, where the
weights are the probabilities f (x) = P (X = x) .

note: The usual de�nition of the mathematical expectation of u(X) requires that the sum con-
verges absolutely; that is,

∑
x∈R |u (x) |f (x) exists.

There is another important observation that must be made about consistency of this de�nition. Certainly,
this function u(X) of the random variable X is itself a random variable, say Y. Suppose that we �nd the
p.d.f. of Y to be g(y) on the support R1 . Then E(Y) is given by the summation

∑
y∈R1

yg (y)
In general it is true that ∑

R

u (x) f (x) =
∑
y∈R1

yg (y) ;

that is, the same expectation is obtained by either method.

Example 1.3
Let X be the random variable de�ned by the outcome of the cast of the die. Thus the p.d.f. of X
is

f (x) = 1
6 , x = 1, 2, 3, 4, 5, 6.

In terms of the observed value x, the function is as follows

u (x) = {
1, x = 1, 2, 3,

5, x = 4, 5,

35, x = 6.

The mathematical expectation is equal to

6∑
x=1

u (x) f (x) = 1
(

1
6

)
+1
(

1
6

)
+1
(

1
6

)
+5
(

1
6

)
+5
(

1
6

)
+35

(
1
6

)
= 1

(
3
6

)
+5
(

2
6

)
+35

(
1
6

)
= 8. (1.4)

Example 1.4
Let the random variable X have the p.d.f. f (x) = 1

3 , x ∈ R, where R ={-1,0,1}. Let u (X) = X2.
Then ∑

x∈R
x2f (x) = (−1)2

(
1
3

)
+ (0)2

(
1
3

)
+ (1)2

(
1
3

)
=

2
3
. (1.5)

However, the support of random variable Y = X2 is R1 = (0, 1) and

Available for free at Connexions <http://cnx.org/content/col10343/1.3>



6 CHAPTER 1. DISCRETE DISTRIBUTIONS

P (Y = 0) = P (X = 0) = 1
3

P (Y = 1) = P (X = −1) + P (X = 1) = 1
3 + 1

3 = 2
3 .

That is,

g (y) = {
1
3 , y = 0,
2
3 , y = 1;

and R1. Hence∑
y∈R1

yg (y) = 0
(

1
3

)
+ 1

(
2
3

)
, which illustrates the preceding observation.

Theorem 1.1:
When it exists, mathematical expectation E satis�es the following properties:

1. If c is a constant, E(c)=c,
2. If c is a constant and u is a function, E [cu (X)] = cE [u (X)],
3. If c1 and c2 are constants and u1 and u2 are functions, then E [c1u1 (X) + c2u2 (X)] =
c1E [u1 (X)] + c2E [u2 (X)]

Proof:
First, we have for the proof of (1) that
E (c) =

∑
R cf (x) = c

∑
R f (x) = c

because
∑
R f (x) = 1.

Proof:
Next, to prove (2), we see that
E [cu (X)] =

∑
R cu (x) f (x) = c

∑
R u (x) f (x) = cE [u (X)] .

Proof:
Finally, the proof of (3) is given by
E [c1u1 (X) + c2u2 (X)] =

∑
R [c1u1 (x) + c2u2 (x)] f (x) =

∑
R c1u1 (x) f (x) +∑

R c2u2 (x) f (x) .
By applying (2), we obtain
E [c1u1 (X) + c2u2 (X)] = c1E [u1 (x)] + c2E [u2 (x)] .
Property (3) can be extended to more than two terms by mathematical induction; That is, we

have
3'. E

[∑k
i=1 ciui (X)

]
=
∑k
i=1 ciE [ui (X)] .

Because of property (3'), mathematical expectation E is called a linear or distributive operator.

Example 1.5
Let X have the p.d.f. f (x) = x

10 , x=1,2,3,4.
then

E (X) =
∑4
x=1 x

(
x
10

)
= 1

(
1
10

)
+ 2

(
2
10

)
+ 3

(
3
10

)
+ 4

(
4
10

)
= 3

E
(
X2
)

=
∑4
x=1 x

2
(
x
10

)
= 12

(
1
10

)
+ 22

(
2
10

)
+ 32

(
3
10

)
+ 42

(
4
10

)
= 10,

and
E [X (5−X)] = 5E (X)− E

(
X2
)

= (5) (3)− 10 = 5.

1.1.2

note: the MEAN, VARIANCE, and STANDARD DEVIATION (Section 1.3.1: The MEAN,
VARIANCE, and STANDARD DEVIATION)

Available for free at Connexions <http://cnx.org/content/col10343/1.3>
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1.2 MATHEMATICAL EXPECTATION2

1.2.1 MATHEMATICAL EXPECTIATION

De�nition 1.4: MATHEMATICAL EXPECTIATION
If f (x) is the p.d.f. of the random variable X of the discrete type with space R and if the
summation ∑

R

u (x) f (x) =
∑
x∈R

u (x) f (x) . (1.6)

exists, then the sum is called the mathematical expectation or the expected value of the function
u (X) , and it is denoted by E [u (x)] . That is,

E [u (X)] =
∑
R

u (x) f (x) . (1.7)

We can think of the expected value E [u (x)] as a weighted mean of u (x) , x ∈ R, where the weights are the
probabilities f (x) = P (X = x).

note: The usual de�nition of the mathematical expectation of u (X) requires that the sum
converges absolutely; that is,

∑
x∈R |u (x) |f (x) exists.

There is another important observation that must be made about consistency of this de�nition. Certainly,
this function u (X) of the random variable X is itself a random variable, say Y. Suppose that we �nd the
p.d.f. of Y to be g (y) on the support R1 . Then, E (Y ) is given by the summation

∑
y∈R1

yg (y) .
In general it is true that

∑
R u (x) f (x) =

∑
y∈R1

yg (y).
This is, the same expectation is obtained by either method.

1.2.1.1

Example 1.6
Let X be the random variable de�ned by the outcome of the cast of the die. Thus the p.d.f. of X
is

f (x) = 1
6 , x = 1, 2, 3, 4, 5, 6.

In terms of the observed value x, the function is as follows

u (x) = {
1, x = 1, 2, 3,

5, x = 4, 5,

35, x = 6.
The mathematical expectation is equal to∑6
x=1 u (x) f (x) = 1

(
1
6

)
+ 1

(
1
6

)
+ 1

(
1
6

)
+ 5

(
1
6

)
+ 5

(
1
6

)
+ 35

(
1
6

)
= 1

(
3
6

)
+ 5

(
2
6

)
+ 35

(
1
6

)
= 8.

1.2.1.2

Example 1.7
Let the random variable X have the p.d.f.
f (x) = 1

3 , x ∈ R,
where, R = (−1, 0, 1) . Let u (X) = X2 . Then∑
x∈R x

2f (x) = (−1)2
(

1
3

)
+ (0)2

(
1
3

)
+ (1)2

(
1
3

)
= 2

3 .
However, the support of random variable Y = X2 is R1 = (0, 1) and

2This content is available online at <http://cnx.org/content/m13530/1.2/>.
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8 CHAPTER 1. DISCRETE DISTRIBUTIONS

P (Y = 0) = P (X = 0) = 1
3

P (Y = 1) = P (X = −1) + P (X = 1) = 1
3 + 1

3 = 2
3 .

That is, g (y) = {
1
3 , y = 0,
2
3 , y = 1;

and R1 = (0, 1) . Hence

∑
y∈R1

yg (y) = 0
(

1
3

)
+ 1

(
2
3

)
=

2
3
,

which illustrates the preceding observation.

1.2.1.3

Theorem 1.2:
When it exists, mathematical expectation E satis�es the following properties:

1. If c is a constant, E (c) = c,
2. If c is a constant and u is a function, E [cu (X)] = cE [u (X)] ,
3. If c1 and c2 are constants and u1 and u2 are functions, then E [c1u1 (X) + c2u2 (X)] =
c1E [u1 (X)] + c2E [u2 (X)] .

Proof:
First, we have for the proof of (1) that

E (c) =
∑
R

cf (x) = c
∑
R

f (x) = c,

because
∑
R f (x) = 1.

Proof:
Next, to prove (2), we see that

E [cu (X)] =
∑
R

cu (x) f (x) = c
∑
R

u (x) f (x) = cE [u (X)] .

Proof:
Finally, the proof of (3) is given by

E [c1u1 (X) + c2u2 (X)] =
∑
R

[c1u1 (x) + c2u2 (x)] f (x) =
∑
R

c1u1 (x) f (x) +
∑
R

c2u2 (x) f (x) .

By applying (2), we obtain

E [c1u1 (X) + c2u2 (X)] = c1E [u1 (x)] + c2E [u2 (x)] .

Property (3) can be extended to more than two terms by mathematical induction; that is, we
have (3')

E

[
k∑
i=1

ciui (X)

]
=

k∑
i=1

ciE [ui (X)] .

Because of property (3'), mathematical expectation E is called a linear or distributive op-
erator.
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1.2.1.4

Example 1.8
Let X have the p.d.f. f (x) = x

10 , x = 1, 2, 3, 4, then

E (X) =
4∑

x=1

x
( x

10

)
= 1

(
1
10

)
+ 2

(
2
10

)
+ 3

(
3
10

)
+ 4

(
4
10

)
= 3,

E
(
X2
)

=
4∑

x=1

x2
( x

10

)
= 12

(
1
10

)
+ 22

(
2
10

)
+ 32

(
3
10

)
+ 42

(
4
10

)
= 10,

and
E [X (5−X)] = 5E (X)− E

(
X2
)

= (5) (3)− 10 = 5.

1.3 THE MEAN, VARIANCE, AND STANDARD DEVIATION3

1.3.1 The MEAN, VARIANCE, and STANDARD DEVIATION

1.3.1.1 MEAN and VARIANCE

Certain mathematical expectations are so important that they have special names. In this section we consider
two of them: the mean and the variance.

1.3.1.1.1

Mean Value
If X is a random variable with p.d.f. f (x) of the discrete type and space R=(b1, b2, b3, ...), then E (X) =∑
R xf (x) = b1f (b1) + b2f (b2) + b3f (b3) + ... is the weighted average of the numbers belonging to R, where

the weights are given by the p.d.f. f (x).
We call E (X) the mean of X (or the mean of the distribution) and denote it by µ. That is,

µ = E (X).

note: In mechanics, the weighted average of the points b1, b2, b3, ... in one-dimensional space
is called the centroid of the system. Those without the mechanics background can think of the
centroid as being the point of balance for the system in which the weights f (b1) , f (b2) , f (b3) , ...
are places upon the points b1, b2, b3, ....

Example 1.9
Let X have the p.d.f.

f (x) = {
1
8 , x = 0, 3,
3
8 , x = 1, 2.

The mean of X is

µ = E

[
X = 0

(
1
8

)
+ 1

(
3
8

)
+ 2

(
3
8

)
+ 3

(
1
8

)
=

3
2
.

The example below shows that if the outcomes of X are equally likely (i.e., each of the outcomes has the
same probability), then the mean of X is the arithmetic average of these outcomes.

3This content is available online at <http://cnx.org/content/m13122/1.3/>.
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Example 1.10
Roll a fair die and let X denote the outcome. Thus X has the p.d.f.

f (x) =
1
6
, x = 1, 2, 3, 4, 5, 6.

Then,

E (X) =
6∑

x=1

x

(
1
6

)
=

1 + 2 + 3 + 4 + 5 + 6
6

=
7
2
,

which is the arithmetic average of the �rst six positive integers.

1.3.1.1.2

Variance
It was denoted that the mean µ = E (X) is the centroid of a system of weights of measure of the central

location of the probability distribution of X. A measure of the dispersion or spread of a distribution
is de�ned as follows:

If u (x) = (x− µ)2 and E
[
(X − µ)2

]
exists, the variance, frequently denoted by σ2 or V ar (X), of a

random variable X of the discrete type (or variance of the distribution) is de�ned by

σ2 = E
[
(X − µ)2

]
=
∑
R

(x− µ)2f (x) . (1.8)

The positive square root of the variance is called the standard deviation of X and is denoted by

σ =
√
V ar (X) =

√
E
[
(X − µ)2

]
. (1.9)

Example 1.11
Let the p.d.f. of X by de�ned by

f (x) =
x

6
, x = 1, 2, 3.

The mean of X is

µ = E (X) = 1
(

1
6

)
+ 2

(
2
6

)
+ 3

(
3
6

)
=

7
3
.

To �nd the variance and standard deviation of X we �rst �nd

E
(
X2
)

= 12

(
1
6

)
+ 22

(
2
6

)
+ 32

(
3
6

)
=

36
6

= 6.

Thus the variance of X is

σ2 = E
(
X2
)
− µ2 = 6−

(
7
3

)2

=
5
9
,

and the standard deviation of X is
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Example 1.12
Let X be a random variable with mean µx and variance σ2

x. Of course, Y = aX + b, where a and
b are constants, is a random variable, too. The mean of Y is

µY = E (Y ) = E (aX + b) = aE (X) + b = aµX + b.

Moreover, the variance of Y is

σ2
Y = E

[
(Y − µY )2

]
= E

[
(aX + b− aµX − b)2

]
= E

[
a2(X − µX)2

]
= a2σ2

X .

1.3.1.1.3

Moments of the distribution
Let r be a positive integer. If

E (Xr) =
∑
R

xrf (x)

exists, it is called the rth moment of the distribution about the origin. The expression moment has its
origin in the study of mechanics.

In addition, the expectation

E [(X − b)r] =
∑
R

xrf (x)

is called the rth moment of the distribution about b. For a given positive integer r.

E [(X)r] = E [X (X − 1) (X − 2) · · · (X − r + 1)]

is called the rth factorial moment.

note: The second factorial moment is equal to the di�erence of the second and �rst moments:

E [X (X − 1)] = E
(
X2
)
− E (X) .

There is another formula that can be used for computing the variance that uses the second factorial moment
and sometimes simpli�es the calculations.

First �nd the values of E (X) and E [X (X − 1)]. Then

σ2 = E [X (X − 1)] + E (X)− [E (X)]2,

since using the distributive property of E, this becomes

σ2 = E
(
X2
)
− E (X) + E (X)− [E (X)]2 = E

(
X2
)
− µ2.

Example 1.13
Let continue with example 4 (Example 1.12), it can be �nd that

E [X (X − 1)] = 1 (0)
(

1
6

)
+ 2 (1)

(
2
6

)
+ 3 (2)

(
3
6

)
=

22
6
.

Thus

σ2 = E [X (X − 1)] + E (X)− [E (X)]2 =
22
6

+
7
3
−
(

7
3

)2

=
5
9
.
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