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Chapter 1

Analog Sampling Theory

1.1 The Shannon-Whitaker Sampling Theorem1

The classical theory behind the encoding analog signals into bit streams and decoding bit streams back into
signals, rests on a famous sampling theorem which is typically refereed to as the Shannon-Whitaker Sampling
Theorem. In this course, this sampling theory will serve as a benchmark to which we shall compare the new
theory of compressed sensing.

To introduce the Shannon-Whitaker theory, we �rst de�ne the class of bandlimited signals. A bandlimited
signal is a signal whose Fourier transform only has �nite support. We shall denote this class as BA and de�ne
it in the following way:

BA := {f ∈ L2 (R) :
^
f (ω) = 0, |ω| ≥ Aπ}. (1.1)

Here, the Fourier transform of f is de�ned by

^
f (ω) :=

1√
2π

∫
R
f (t) e−iωt dt. (1.2)

This formula holds for any f ∈ L1 and extends easily to f ∈ L2 via limits. The inversion of the Fourier
transform is given by

f (t) :=
1√
2π

∫
R

^
f (ω) eiωt dω. (1.3)

Theorem 1.1: Shannon-Whitaker Sampling Theorem
If f ∈ BA, then f can be uniquely determined by the uniformly spaced samples f

(
n
A

)
and in fact,

is given by

f (t) =
∑
n∈Z

f
( n
A

)
sinc (π (At− n)) , (1.4)

where sinc (t) = sint
t .

Proof:
It is enough to consider A = 1, since all other cases can be reduced to this through a simple change
of variables. Because f ∈ BA=1, the Fourier inversion formula takes the form

f (t) =
1√
2π

∫ π

−π

^
f (ω) eiωt dω. (1.5)

1This content is available online at <http://cnx.org/content/m15146/1.2/>.
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2 CHAPTER 1. ANALOG SAMPLING THEORY

De�ne F (ω) as the 2π periodization of
^
f ,

F (ω) :=
∑
n∈Z

^
f (ω − 2nπ) . (1.6)

Because F (ω) is periodic, it admits a Fourier series representation

F (ω) =
∑
n∈Z

cne
−inω, (1.7)

where the Fourier coe�cients cn given by

cn = 1
2π

∫ π
−π F (ω) einω dω

= 1
2π

∫ π
−π

^
f (ω) einω dω.

(1.8)

By comparing ((1.8)) with ((1.5)), we conclude that

cn =
1√
2π
f (n) . (1.9)

Therefore by plugging ((1.9)) back into ((1.6)), we have that

F (ω) =
1√
2π

∑
n∈Z

f (n) e−inω. (1.10)

Now, because
^
f (ω) = F (ω)χ[−π,π] =

1√
2π

∑
n∈Z

f (n) e−inωχ[−π,π], (1.11)

and because of the facts that

F
(
χ[−π,π]

)
= 1√

2π
sinc (πω) and

F (g (t− n)) = e−inωF (g (t)) ,
(1.12)

we conclude
f (t) =

∑
n∈Z

f (n) sinc (π (t− n)) . (1.13)

Comments:

1. (Good news) The set {sinc (π (t− n)) }n∈Z is an orthogonal system and therefore, has the property
that the L2 norm of the function and its Fourier coe�cients are related by,

‖ f ‖2L2
= 2π

∑
n∈Z
|f (n) |2 (1.14)

2. (Bad news) The representation of f in terms of sinc functions is not a stable representation, i.e.∑
n∈Z
|sinc (π (t− n)) | ≈

∑
n∈Z

1
|t− n|+ 1

→ divergences (1.15)

Available for free at Connexions <http://cnx.org/content/col11355/1.2>



3

1.2 Stable Signal Representations2

To �x the instability of the Shannon representation, we assume that the signal is slightly more bandlimited
than before

^
f (ω) = 0 for |ω| ≥ π − δ, δ > 0, (1.16)

and instead of using χ[−π,π], we multiply by another function
^
g (ω) which is very similar in form to the

characteristic function, but decays at its boundaries in a smoother fashion (i.e. it has more derivatives). A

candidate function
^
g is sketched in Figure 1.1.

Figure 1.1: Sketch of
^
g .

Now, it is a property of the Fourier transform that an increased smoothness in one domain translates

into a faster decay in the other. Thus, we can �x our instability problem, by choosing
^
g so that

^
g is smooth

and
^
g (ω) = 1, |ω| ≤ π − δ and

^
g= 0, |ω| > π. By choosing the smoothness of g suitably large, we can, for

any given m ≥ 1, choose g to satisfy

|g (t) | ≤ C

(|t|+ 1)

m

(1.17)

for some constant C > 0.

Using such a
^
g , we can rewrite () as

^
f (ω) = F (ω)

^
g (ω) =

1√
2π

∑
n∈Z

f (n) e−inω
^
g (ω) . (1.18)

Thus, we have the new representation

f (t) =
∑
n∈Z

f (n) g (t− n) , (1.19)

where we gain stability from our additional assumption that the signal is bandlimited on [−π − δ, π − δ].
2This content is available online at <http://cnx.org/content/m15144/1.1/>.

Available for free at Connexions <http://cnx.org/content/col11355/1.2>



4 CHAPTER 1. ANALOG SAMPLING THEORY

Does this assumption really hurt? No, not really because if our signal is really bandlimited to [−π, π] and
not [−π − δ, π − δ], we can always take a slightly larger bandwidth, say [−λπ, λπ] where λ is a little larger
than one, and carry out the same analysis as above. Doing so, would only mean slightly oversampling the
signal (small cost).

Recall that in the end we want to convert analog signals into bit streams. Thus far, we have the two
representations

f (t) =
∑
n∈Z f (n) sinc (π (t− n)) ,

f (t) =
∑
n∈Z f

(
n
λ

)
g (λt− n) .

(1.20)

Shannon's Theorem tells us that if f ∈ BA, we should sample f at the Nyquist rate A (which is twice

the support of
^
f) and then take the binary representation of the samples. Our more stable representation

says to slightly oversample f and then convert to a binary representation. Both representations o�er perfect
reconstruction, although in the more stable representation, one is straddled with the additional task of
choosing an appropriate λ.

In practical situations, we shall be interested in approximating f on an interval [−T, T ] for some T > 0
and not for all time. Questions we still want to answer include

1. How many bits do we need to represent f in BA=1 on some interval [−T, T ] in the norm L∞ [−T, T ]?
2. Using this methodology, what is the optimal way of encoding?
3. How is the optimal encoding implemented?

Towards this end, we de�ne

BA := {f ∈ L2 (R) : |
^
f (ω) | = 0, |ω| ≥ Aπ}. (1.21)

Then for any f ∈ BA, we can write

f =
∑
n

f
( n
A

)
· sinc π (At− n) . (1.22)

Figure 1.2: Fourier transform of gλ (·).

In other words, samples at 0, ± 1
A , ±

2
A , · · · are su�cient to reconstruct f . Recall also that sinc (x) = sin(x)

x
decays poorly (leading to numerical instability). We can overcome this problem by slight over-sampling. Say
we over-sample by a factor λ > 1. Then, we can write

f =
∑

f
( n

λA

)
gλ (λAt− n) . (1.23)

Available for free at Connexions <http://cnx.org/content/col11355/1.2>
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Hence we need samples at 0, ± 1
λA , ±

2
λA , etc. What is the advantage? Sampling more often than necessary

buys us stability because we now have a choice for gλ (·). If we choose gλ (·) in�nitely di�erentiable whose
Fourier transform looks as shown in Figure 1.2 we can obtain

|gλ (t) | ≤ cλ,k
(1 + |t|)

k
, k = 1, 2, ... (1.24)

and therefore gλ (·) decays very fast. In other words, a sample's in�uence is felt only locally. Note however,
that over-sampling generates basis functions that are redundant (linearly dependent), unlike the integer
translates of the sinc (·) function.

Figure 1.3: To reconstruct signals in [−T, T ], the sampling interval is [−cT, cT ].

If we restrict our reconstruction to t in the interval [−T, T ], we will only need samples only from [−cT, cT ],
for c > 1 (see Figure 1.3), because the distant samples will have little e�ect on the reconstruction in [−T, T ].

1.3 Optimal Encoding3

We shall consider now the encoding of signals on [−T, T ] where T > 0 is �xed. Ultimately we shall be
interested in encoding classes of bandlimited signals like the class BA However, we begin the story by
considering the more general setting of encoding the elements of any given compact subset K of a normed
linear space X. One can determine the best encoding of K by what is known as the Kolmogorov entropy of
K in X.

To begin, let us consider an encoder-decoder pair (E,D) E maps K to a �nite stream of bits. D maps a
stream of bits to a signal in X. This is illustrated in Figure 1.4. Note that many functions can be mapped
onto the same bitstream.

3This content is available online at <http://cnx.org/content/m15139/1.1/>.
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6 CHAPTER 1. ANALOG SAMPLING THEORY

Figure 1.4: Illustration of encoding and decoding.

De�ne the distortion d for this encoder-decoder by

d (K,E,D,X) := sup f∈K ‖ f −D (Ef) ‖X . (1.25)

Let n (K,E) = sup f∈K#Ef where #Ef is the number of bits in the bitstream Ef . Thus n is the maximum
length of the bitstreams for the various f ∈ K. There are two ways we can de�ne optimal encoding:

1. Prescribe ε, the maximum distortion that we are willing to tolerate. For this ε, �nd the smallest
nε (K,X) := inf (E,D){n (K,E) : d (K,E,D,X) ≤ ε}. This is the smallest bit budget under which we
could encode all elements of K to distortion ε.

2. Prescribe N : �nd the smallest distortion d (K,E,D,X) over all E,D with n (K,E) ≤ N . This is the
best encoding performance possible with a prescribed bit budget.

There is a simple mathematical solution to these two encoding problems based on the notion of Kolmogorov
Entropy.

Available for free at Connexions <http://cnx.org/content/col11355/1.2>
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1.4 Kolmogorov Entropy4

Figure 1.5: Coverings of K by balls of radius ε.

Given ε > 0, and the compact set K, consider all coverings of K by balls of radius ε, as shown in Figure 1.5.
In other words,

K ⊆ UNi=1b (fi, ε) . (1.26)

Let Nε := inf {N : over all such covers}. Nε (K) is called the covering number of K. Since it depends on
X and K, we write it as Nε = Nε (K,X).

Rule 1.1: Kolmogorov entropy
The Kolmogorov entropy, denoted by Hε (K,X), of the compact set K in X is de�ned as the
logarithm of the covering number:

Hε (K,X) = logNε (K,X) . (1.27)

The Kolmogorov entropy solves our problem of optimal encoding in the sense of the following theorem.

Theorem 1.2:
For any compact set K ⊂ X, we have nε (K,X) = dHε (K,X)e, where d·e is the ceiling function.
Proof:
Sketch: We can de�ne an encoder-decoder as follows To encode: Say f ∈ K. Just specify which
ball it is covered by. Because the number of balls is Nε

(
K,X

)
, we need at most dlogNε

(
K,X

)
e

bits to specify any such ball ball.
To decode: Just take the center of the ball speci�ed by the bitstream.
It is now easy to see that this encoder-decoder pair is optimal in either of the senses given above.

�

The above encoder is not practical. However, the Kolmogorov entropy tells us the best performance we
can expect from any encoder-decoder pair. Kolmogorov entropy is de�ned in the deterministic setting. It is
the analogue of the Shannon entropy which is de�ned in a stochastic setting.

4This content is available online at <http://cnx.org/content/m15137/1.1/>.
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8 CHAPTER 1. ANALOG SAMPLING THEORY

1.5 Optimal Encoding of Bandlimited Signals5

We now turn back to the encoding of signals. We are interested in encoding the set

BA (M) = {f ∈ BA : |f (t) | ≤M, t ∈ R} (1.28)

where M is arbitrary but �xed. We shall restrict our discussion to the case where distortion is measured
in L∞ [−T, T ] where T > 0 is arbitrary but �xed. Then, BA (M) is a compact subset of L∞: BA (M) ⊆
L∞ [−T, T ].

Figure 1.6: Sample points n
λA

are chosen in the interval [−T (1 + δ) , T (1 + δ)].

We shall sketch how one can construct an asymptotically optimal encoder/decoder for BA. The details
for this construction can be found in .

We know
^
f (ω) = 0 for |ω| ≥ Aπ, and |f | ≤M . How can we encode f in practice? We begin by chosing

λ = λ (T ) > 1 (see Figure 1.6) which will represent a slight oversampling factor we shall utilize. Given a
target distortion ε > 0, we choose k so that 2−k−1 < ε ≤ 2−k. Given f , we shall encode f by �rst taking
samples f

(
n
λA

)
for n

λA ∈ [−T (1 + δ) , T (1 + δ)] where δ (T ) > 0. In other words, we sample f on a slightly

larger interval than [−T, T ]. For each sample f
(
n
λA

)
, we shall use the �rst k + k0 (T ) bits of its binary

expansion. In other words, our encoder takes f and the samples f
(
n
λA

)
and then assigns to f

(
n
λA

)
the �rst

k + k0 (T ) bits of this number.
To decode, the receiver would take the bits and construct the approximation f

(
n
λA

)
to f

(
n
Aλ

)
from the

bits provided. Notice that we have the accuracy∣∣∣f ( n

λA

)
− f

( n

λA

)∣∣∣ ≤ 2−k−k0 ·M. (1.29)

We utilize the function gλ satisfying () to de�ne

f (t) =
∑
n∈NT

f
( n

λA

)
gλ (λAt− n) , (1.30)

where
NT := {n : − T (1 + δ) ≤ n

λA
≤ T (1 + δ)}. (1.31)

We then have

|f (t)− f (t) | ≤
∑
n∈NT

∣∣f ( n
λA

)
− f

(
n
λA

)∣∣ · |gλ (λAt− n) |
+
∑
| nλA |>T (1+δ)

∣∣f ( n
λA

)∣∣ · |gλ (λAt− n) |
(1.32)

5This content is available online at <http://cnx.org/content/m15140/1.2/>.
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The term
∣∣f ( n

λA

)
− f

(
n
λA

)∣∣ that appears in the �rst summation in ((1.32)) is bounded by M · 2−k−k0 .

The term
∣∣f ( n

λA

)∣∣ that appears in the second summation in the same equation is bounded byM . Therefore,

|f (t)− f (t) | ≤
∑
n∈NT M · 2

−k−k0 · |gλ (λAt− n) |
+
∑
| nλA |>T (1+δ)M · |gλ (λAt− n) | =: S1 + S2

(1.33)

We can estimate S1 by

S1 =
∑
n∈NT M · 2

−k−k0 · |gλ (λAt− n) |
≤ M · 2−k−k0 ·

∑
n |gλ (λAt− n) |

≤ M · C0 (λ) · 2−k−k0 (because g (·) decays fast)

(1.34)

Therefore, if we choose k0 su�ciently large, then S1 ≤M · C0 (λ) · 2−k−k0 ≤ ε
2 . The second summation S2

can also be bounded by ε/2 by using the fast decay of the function gλ (see ()).
To make the encoder/decoder speci�c we need to precisely de�ne δ and λ. It turns out that the best

choices (in terms of bit rate performance on the class BA) depend on T . But δT → 0 and λT → 1 as
T →∞. Recall that Shannon sampling requires 2TλA samples. Since our encoder/decoder uses k + k0 bits
per sample, the total number of bits is (k + k0) · 2λAT (1 + δ), and so coding will require roughly k bits per
Shannon sample.

This encoder/decoder can be proven to be optimal in the sense of averaged performance as we shall now
describe. The average of performance of optimal encoding is de�ned by

lim
T→∞

nε (BA (M) , L∞b−T, T c)
2T

(1.35)

If we replace the optimal bit rate nε in ((1.35)) by the number of bits required by our encoder/decoder then
the resulting limit will be the same as that in ((1.35)).

In summary, to encode band limited signals on an interval [−T, T ], an optimal strategy is to sample at a
slightly higher rate than Nyquist and on a slightly large interval than [−T, T ]. Each sample should then be
quantized by using the binary expansion of the sample. In this way, for an investment of k bits per Nyquist
rate sample, we get a distortion of 2−k.

To get a feel for the number of bits required by such an encoder, let us say A = 106 (signals band limited
to 1Mhz). Say T = 24 hours ≈ 105 seconds, and k = 10 bits. Then, A · k · 2T = 106 · 10 · 105 = 1012 bits.
This is too BIG!

The above encoding is is known as Pulse Coded Modulation (PCM). In practice, people frequently use
another encoder called Sigma-Delta Modulation. Instead of oversampling just slightly, Sigma Delta over
samples a lot and then assign only one (or a few) bits per sample.

Why is Sigma-Delta preferred to PCM in practice? There are two reasons commonly given:

1. Getting accurate samples, quantization, etc. is not practical because of noise. For better accuracy, we
need more expensive hardware.

2. Noise shaping. In Sigma-Delta, the distortion is higher but the distortion is spread over frequencies
outside of the desired range.

In PCM, the distortion decays exponentially (like 2−k), whereas for Sigma-Delta, the distortion decays like a
polynomial (like 1

km ). Although the distortion decays faster in PCM, the distortion in Sigma-Delta is spread
outside the desired frequency range.
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Chapter 2

Sparsity and Compressibilty

2.1 Introduction to vector spaces1

For much of its history, signal processing has focused on signals produced by physical systems. Many
natural and man-made systems can be modeled as linear. Thus, it is natural to consider signal models that
complement this kind of linear structure. This notion has been incorporated into modern signal processing
by modeling signals as vectors living in an appropriate vector space. This captures the linear structure that
we often desire, namely that if we add two signals together then we obtain a new, physically meaningful
signal. Moreover, vector spaces allow us to apply intuitions and tools from geometry in R3, such as lengths,
distances, and angles, to describe and compare signals of interest. This is useful even when our signals live
in high-dimensional or in�nite-dimensional spaces.

Throughout this course2, we will treat signals as real-valued functions having domains that are either
continuous or discrete, and either in�nite or �nite. These assumptions will be made clear as necessary in
each chapter. In this course, we will assume that the reader is relatively comfortable with the key concepts
in vector spaces. We now provide only a brief review of some of the key concepts in vector spaces that will
be required in developing the theory of compressive sensing3 (CS). For a more thorough review of vector
spaces see this introductory course in Digital Signal Processing4.

We will typically be concerned with normed vector spaces, i.e., vector spaces endowed with a norm. In
the case of a discrete, �nite domain, we can view our signals as vectors in an N -dimensional Euclidean space,
denoted by RN . When dealing with vectors in RN , we will make frequent use of the `p norms, which are
de�ned for p ∈ [1,∞] as

‖x‖p = {

(∑N
i=1 |xi|

p
) 1
p

, p ∈ [1,∞) ;

max
i=1,2,...,N

|xi|, p =∞.
(2.1)

In Euclidean space we can also consider the standard inner product in RN , which we denote

< x, z >= zTx =
N∑
i=1

xizi. (2.2)

This inner product leads to the `2 norm: ‖x‖2 =
√
< x, x >.

In some contexts it is useful to extend the notion of `p norms to the case where p < 1. In this case, the
�norm� de�ned in (2.1) fails to satisfy the triangle inequality, so it is actually a quasinorm. We will also

1This content is available online at <http://cnx.org/content/m37167/1.6/>.
2An Introduction to Compressive Sensing <http://cnx.org/content/col11133/latest/>
3"Introduction to compressive sensing" <http://cnx.org/content/m37172/latest/>
4Digital Signal Processing <http://cnx.org/content/col11172/latest/>
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