Gauge Theory and Related Topics
by Nestor Azziz

Lectures Delivered to the New College of Florida
Sarasota, FL

Note: These notes were typed by Annabel Azziz, Andrew Fiorello, and Nicholas Wojtalewicz.

This book will be uploaded to the web as a free download. If any mistakes should be found, the author would very much appreciate being told about them at nestorazziz@gmail.com.
The author would like to thank Professor Marcelo Ubriaco for encouraging him to publish these lectures.

Contents

0.1 Lecture 1 8
0.1.1 Frenet Triad 8
Example: Helix of Unit Velocity 8
Oscular Plane and Geodesic 10
0.1.2 Connecting Functions 14
0.2 Lecture 2 16
0.2.1 Metric Tensor 16
Example 1 17
0.2.2 Euclidian Space 17
Simple Examples: Vector as Tensor 18
0.2.3 Tensors 21
0.2.4 Operations with Elements 23
Addition 23
Changing from Covariant to Contravariant and Vice-Versa 24
0.2.5 Tensor Density 25
0.2.6 Notes on the Jacobian 27
Differential Volume 30
0.3 Lecture 3 32
0.3.1 Absolute Tensor Derivative 32
Absolute Derivative of the Metric Tensor, $g_{i j}$ 34
Christoffel Symbols as Functions of the Deriva- tive of the Metric Tensor 35
Absolute Derivative of a Tensor of the Second Order (Two Indices), Tensor $t_{i j}$: 36
Note on the Absolute Derivative of a Second Order Tensor $t_{i j}$: 36
Summary of the Absolute Tensor Derivative of the Previous Examples 38
NOTE: Advanced Conclusions on Parallel Trans- port as it will be Discussed in the Next Section 40
Summary: Relationship Between the Christof- fel Symbols and the Metric Tensor 41
Examples of Christoffel Values for Curvilinear Coordinates 42
Christoffel Symbols in Polar Coordinates and Their Relationship to the Centripetal Force 43
0.4 Lecture 4 45
0.4.1 Riemann Space 45
Example of a Geodesic and Parallel Transport 48
Curvature of the Space and Riemann Space 49
Space With Normal Coordinates 54
Ricci Tensor 54
Bianchi Identity 55
0.5 Lecture 5 60
0.5.1 Weyl Space 60Variation of the Length of a Vector as it MovesParallel to Itself: Weyl Geometry . . 60
Transport of a scalar l around a closed curve 60
Generalization of the Ricci Theorem 64
Invariance of the Angle Between Two Vectors as They Move Parallel to Themselves 64
Relationship Between Weyl $\bar{\Gamma}$ and the Christof- fel Symbols 65
Curvature and Generalized Christoffel Symbols 66
0.6 Lecture 6 67
0.6.1 Gauge Theory 67
Introducing Different Gauges, or "Etalon," in the Same Space 67
Invariance of the Absolute Derivative of ξ^{i} 71
Invariance of Curvature as Gauge Changes 72
Appendix 74
0.7 Lecture 7 80
0.7.1 Analytic Dynamics 80
Variational Calculus and the Euler Differen- tial Equation 80
Application of the Euler Differential Equa- tion: Geodesic from the Variational Point of View 83
Geodesic and absolute derivatives 86
Geodesic: Summary 87
D'Alembert Principle 89
Problems Using the D'Alembert Principle and the Euler-Lagrange Equation 92
Euler-Lagrange-Poisson-Jacobi-Hamilton- Canonical Equations 96
Lagrange-Poisson-Jacobi-Maupertuis 98
Maxwell Equations and Their Invariance Un- der Gauge Change 101
Tensor Form of the Maxwell Equations 103
Review of Relativity 106
Relativity According to Minkowsky 112
Relativistic Dynamics: Application of Tensor Theory to Special Relativity 123
Relativistic Forces 127
Relativistic Lagrangian and the Lorentz Force 135
Hamiltonian for a Charged Particle 139
Note on Maupertuis and Fermat 141
Canonical Equations of Hamilton-Poisson Brack- ets and Jacobi Algebra 143
Poisson Brackets 144
Mathematicians That Contributed to Analytic Mechanics 146
0.8 Lecture 8 147
0.8.1 Matrices, Operators, and Elementary Group Theory 147
The Adjoint Matrix (a^{+}) 149
Examples of Linear Operators 152
Some Geometric Uses of Matrices 152
Group Theory: A Review 154
0.8.2 Review of Lie Algebra 159
Infinitesimal Transformations 159
Lorentz Generators 167
Lorentz Generators and Lie Algebra 174
0.9 Lecture 9: Fundamentals of Today's Cosmology 178
0.9.1 Differential Operators in Curvilinear Coordi- nates 178
The Gradient ∇ of the Function Φ 181
The Rotational $\nabla \times$ of the Vector \vec{F} 181
The Divergence ∇. of the vector \vec{F} 181
The Laplacian Δ of the Function Φ 183
0.9.2 Potential Theory and the Hamilton-Jacobi Equa- tion 184
Relationship of Potential Theory to the Pois- son Bracket 185
Differential Equations for Potential Theory 186
Some Typical Potentials in Classic Physics and the Corresponding Differential Equa- tions 187
Examples 188
0.9.3 Simplifications Regarding the the Space-time "Length" Invariant, the Geodesic Equation, the Red Shift, Black Holes, and the Einstein Approximation 190
1.) The Space-time "Length" Invariant 190
2.) The Geodesic Equation 190
3.) The Red Shift Due to Gravitational Ef- fects and the Expansion of the Uni- verse 193
4.) Classic Visualization of Black Holes 196
Simplified Black Hole Derivations Using Equa- tions (0.9.10) and (0.9.13) 197
5.) The Einstein Relationship in Different Ap- proximations 199
Subapproximation for the Einstein Relationship200
Simplifications for the Ricci Tensor and theGravitational Einstein Equations ina New Approximation201
0.9.4 Calculation of the Christoffel Symbols Under Some Simplifications 203
The Schwarzchild Metric Tensor 205
0.9.5 The Hubble Law 210
0.9.6 Expansion of the Universe Under the Fried-mann Fundamental Metric and a Tensor ForceActing on the Material of the Galaxy 215
A Particular Case of the Tensor Force $T^{\mu \nu}$ 222

0.1 Lecture 1

0.1.1 Frenet Triad

Parametric Curves are functions which are defined in terms of useful and related quantities, often in time or arc length. Before going on much further, it is necessary to define a few expressions:

- The velocity (or tangent vector) can be thought of as the change in position with respect to arc length, or $\vec{T}=\frac{\Delta \vec{f}}{\Delta s}=\vec{f}^{\prime}(s)$. We also want to define the unit tangent vector such that $\hat{\mathbf{T}}=\frac{\vec{T}}{|T|}$, where its magnitude is always equal to 1 .
- From the tangent vector we can define the normal vector as $\frac{\vec{T}^{\prime}}{\left|\vec{T}^{\prime}\right|}$, or in other terms, $\overrightarrow{T^{\prime}}=k \vec{N} . k$ here is called the curvature; to be specific it is the extrinsic curvature.
- The Binormal vector is defined as $\vec{B}=\vec{T} \times \vec{N}$. The derivative of the this vector can be related to the normal vector N by $\overrightarrow{B^{\prime}}=-\tau \vec{N}$ using a quantity called torsion, represented by τ.
- Since $\vec{N}=\vec{B} \times \vec{T}$,

$$
\vec{N}^{\prime}=\vec{B}^{\prime} \times \vec{T}+\vec{B} \times \vec{T}^{\prime}=-\tau(\vec{N} \times \vec{T})+k(\vec{B} \times \vec{N})=\tau \vec{B}-k \vec{T}
$$

Together, these quantities form the Frenet Formulas:

$$
\left[\begin{array}{c}
\vec{T}^{\prime} \\
\overrightarrow{N^{\prime}} \\
\vec{B}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & k & 0 \\
-k & 0 & \tau \\
0 & -\tau & 0
\end{array}\right]\left[\begin{array}{c}
\vec{T} \\
\vec{N} \\
\vec{B}
\end{array}\right]
$$

Example: Helix of Unit Velocity

Let us look at the function

$$
\vec{f}(s)=a \cos \left(\frac{s}{c}\right) \hat{\mathbf{i}}+a \sin \left(\frac{s}{c}\right) \hat{\mathbf{j}}+\frac{b}{c} s \hat{\mathbf{k}},
$$

where a, b and c are arbitrary constants and s is the length of the curve itself. It could equivalently be written by its components

$$
x(s)=a \cos \left(\frac{s}{c}\right) \quad, \quad y(s)=a \sin \left(\frac{s}{c}\right) \quad \text { and } \quad z(s)=\frac{b}{c} s
$$

Plotted, this curve gives us a circular spiral that rises or falls depending on the ratio of b to c. Note that if $b=0$ then we have a two-dimensional curve $\left(f^{\prime}(s)\right)$ that traces out a circle on the xyplane. The tangent vector can be found to be

$$
\vec{T}(s)=\left(-\frac{a}{c}\right) \sin \left(\frac{s}{c}\right) \hat{\mathbf{i}}+\left(\frac{a}{c}\right) \cos \left(\frac{s}{c}\right) \hat{\mathbf{j}}+\left(\frac{b}{c}\right) \hat{\mathbf{k}} .
$$

By analyzing the tangent vector, we can guess the following orthogonal vector in the (x, y) plane:

$$
\vec{N}(s)=\left(\frac{c}{a}\right) \cos \left(\frac{s}{c}\right) \hat{\mathbf{i}}+\left(\frac{c}{a}\right) \sin \left(\frac{s}{c}\right) \hat{\mathbf{j}}+0 \hat{\mathbf{k}}
$$

(observe that we chose $|N|=\frac{c}{a}$). From this, we can find the derivative to be

$$
\vec{N}^{\prime}(s)=\left(-\frac{1}{a}\right) \sin \left(\frac{s}{c}\right) \hat{\mathbf{i}}+\left(\frac{1}{a}\right) \cos \left(\frac{s}{c}\right) \hat{\mathbf{j}}+0 \hat{\mathbf{k}} .
$$

With the tangent and normal vectors, we can also find the binormal and its derivative:

$$
\begin{gathered}
\vec{B}(s)=\vec{T} \times \vec{N}=\left(-\frac{b}{a}\right) \sin \left(\frac{s}{c}\right) \hat{\mathbf{i}}+\left(\frac{b}{a}\right) \cos \left(\frac{s}{c}\right) \hat{\mathbf{j}}-1 \hat{\mathbf{k}}, \text { and } \\
\vec{B}^{\prime}(s)=\left(-\frac{b}{c a}\right) \cos \left(\frac{s}{c}\right) \hat{\mathbf{i}}-\left(\frac{b}{c a}\right) \sin \left(\frac{s}{c}\right) \hat{\mathbf{j}}+0 \hat{\mathbf{k}} .
\end{gathered}
$$

Comparing with the equation for \vec{N},

$$
\vec{B}^{\prime}=-\frac{b}{c^{2}} \rightarrow \tau=\frac{b}{c^{2}}=\frac{b}{a^{2}+b^{2}} .
$$

If $b=0$, then there is no torsion $(\tau=0)$.

Observe that if \vec{T} is a unit vector, then $a^{2}+b^{2}=c^{2}$.
From the equations for \vec{T}^{\prime} and \vec{N},

$$
\vec{T}^{\prime}=-\frac{a^{2}}{c^{3}} N \therefore k=-\frac{a^{2}}{c^{3}} .
$$

The parametric function of s can be Taylor expanded with a differential Δs. This expansion immediately reveals the quantities we defined above:

$$
f(s)=f(0)+\underbrace{f^{\prime}(0)}_{T_{0}} \Delta s+\underbrace{f^{\prime \prime}(0)}_{k_{0} N_{0}} \frac{(\Delta s)^{2}}{2}+\underbrace{f^{\prime \prime \prime}(0)}_{N_{0} k_{0}} \frac{(\Delta s)^{3}}{6}+\ldots
$$

and, if we only look at a small portion of the curve, we can assume that $k \cong$ constant. Then,

$$
f(s)=f(0)+T_{0} \Delta s+k_{0} N_{0} \frac{(\Delta s)^{2}}{2}+k_{0}\left(\tau_{0} B_{0}-k_{0} T_{0}\right) \frac{(\Delta s)^{3}}{6}+\ldots
$$

In the last term we neglect a second order one $\left(k_{0}^{2} T_{0}^{2}\right)$, and the final form of $f(s)$ for small increments is:

$$
\begin{equation*}
f(s)=f(0)+T_{0} \Delta s+k_{0} N_{0} \frac{(\Delta s)^{2}}{2}+k_{0} \tau_{0} B_{0} \frac{(\Delta s)^{3}}{6} \tag{0.1.1}
\end{equation*}
$$

Oscular Plane and Geodesic

The helix is an interesting case that can be used to introduce the concepts of the oscular plane and the geodesic.

In the case discussed above, the oscular plane is the one formed by the tangent \vec{T} and the normal \vec{N}. The vector \vec{B} is perpendicular to this plane. In this plane, we may draw a circle that is at the point in consideration to the tangent \vec{T}, and that also contains the differential segment of the helix that encloses the point. Thus, the circle has the same curvature R as the helix $(R=k)$.

Next, we will show that if the helix is the curve that joins two points A and B on the surface of a cylinder, then it is the shortest distance between the two points, just like a straight line is the shortest distance between two points in a plane. The curve that fulfills these properties is called the geodesic.

Assume a point moving on a cylinder from A to B. We will show that if the distance between A and B as measured by the length of the curve is the shortest possible, then it is a helix. If we take s as the parameter on the curve, then the coordinates of a point on the curve are

$$
\begin{gathered}
x=a \cos (s) \\
y=a \sin (s) \\
z=z
\end{gathered}
$$

or

$$
\begin{gathered}
\mathrm{d} x=(-a \sin s) \mathrm{d} s \\
\mathrm{~d} y=(a \cos s) \mathrm{d} s \\
\mathrm{~d} z=\mathrm{d} z .
\end{gathered}
$$

The function $z(s)$ is to be determined. The differential length $\mathrm{d} l$ is such that

$$
(\mathrm{d} l)^{2}=(\mathrm{d} x)^{2}+(\mathrm{d} y)^{2}+(\mathrm{d} z)^{2}=(a \mathrm{~d} s)^{2}+(\mathrm{d} z)^{2} .
$$

Thus, we want to minimize the following integral:

$$
I=\int_{A}^{B} \mathrm{~d} l=\int_{A}^{B} \sqrt{a^{2}(\mathrm{~d} s)^{2}+(\mathrm{d} z)^{2}}=\int_{A}^{B} \mathrm{~d} s \sqrt{a^{2}+z^{\prime 2}}
$$

where $z^{\prime}=\frac{\mathrm{d} z}{\mathrm{~d} s}$. The problem of minimizing an integral belongs to the subject of Variational Calculus. This branch of calculus is discussed in Lecture 7: Review of Analytic Dynamics. It may be presented in the following way: if the function $f\left(s, y(s), y^{\prime}(s)\right)$ is to be integrated between the point A and B while s is a parameter (it could be, for instance, length or time), then the integral

$$
I=\int_{A}^{B} f\left(s, y(s), y^{\prime}(s)\right) \mathrm{d} s
$$

will have a minimum or maximum when $y(s)$ fulfills the following differential equation (named after Euler, the mathematician who found the solution in 1700):

$$
\frac{\partial f}{\partial y}-\frac{\mathrm{d}}{\mathrm{~d} s}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0
$$

In our case,

$$
f=\sqrt{a^{2}+z^{\prime 2}}
$$

and z is the function y and thus $z^{\prime}=y^{\prime}=\frac{\mathrm{d} z}{\mathrm{~d} s}$.
The Euler equation says

$$
\frac{\partial^{2}}{\partial s} \frac{f(s)}{\partial z^{\prime}}=0
$$

or

$$
\frac{\mathrm{d}}{\mathrm{~d} s}\left(\frac{1}{2} \frac{2 z^{\prime}}{\sqrt{a^{2}+z^{\prime 2}}}\right)=0
$$

Thus,

$$
\frac{z^{\prime}}{\sqrt{a^{2}+b^{2}}}=c
$$

where c is any constant. And so,

$$
z^{\prime 2}=\frac{a^{2} c^{2}}{1-c^{2}}=D^{2}
$$

or

$$
z=D s
$$

where D is a constant; so our curve with the minimum length between two points is a helix. Since D could be any constant, there are an infinite number of helices.

The fact that the helix is a geodesic is easily seen if the cylinder is unfolded and converted into a plane with width $2 \pi r$. The helical coils become straight lines, and obviously the shortest path between two points A and B is a segment of a coil. We note that on the cylinder, as mentioned before, we may create an infinite number of geodesics, each characterized by a slope α. The slope of the helix passing through two points A and B is predetermined by those two points.

Another interesting example that helps to visualize the meanings of the oscular plane and the geodesic is the case of a thread on a sphere; the only force acting on the thread is the normal reaction from the sphere. The normal reaction passes through the center of the sphere at any point on the thread. So, the plane containing the normal is the oscular plane, which cuts the sphere into a grand circle. The grand circle through the equator and prime meridian is the geodesic of the sphere. If the arc of that circle is greater than 180 degrees, then the distance between two point A and B on this arc is not the shortest distance, because the shortest distance is the supplement arc. So, in this case we have a geodesic which is not necessarily the shortest distance between two points.

0.1.2 Connecting Functions

As in the case of Frenet frames, when the frame moves, the derivatives of \vec{T}, \vec{N}, and \vec{B} give the intrinsic properties of the curve - its curvature (k) and its torsion (τ). These derivatives with respect to the curve parameter are called "covariant derivatives."

It's interesting to note that those derivatives $\left(\overrightarrow{T^{\prime}}, \overrightarrow{N^{\prime}}\right.$, and $\left.\overrightarrow{B^{\prime}}\right)$ can be expressed as functions of the frame itself $(\vec{T}, \vec{N}$, and $\vec{B})$. We can think of these spatially as the variation from some point P to some point $P+\delta P$.

We can define this variation a bit more formally if we start in some general frame: $\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}$ such that $\vec{e}_{i} \cdot \vec{e}_{j}=g_{i j}$. In this frame, we can define the variation of the vector $\mathrm{d} \vec{e}_{i}$ as

$$
\mathrm{d} \vec{e}_{i}=W_{i j} \cdot \vec{e}_{j}
$$

Here, $W_{i j}$ is a function that depends on the point P in our generalized coordinate space $\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ where the frame $\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}$ is located. It is closely related to the matrix form for Frenet's formulas previously shown: in the simple case of the Frenet frame, the derivatives of \vec{T}, \vec{N}, and \vec{B} with respect to the parameter s which varies along the tangent \vec{T} are the covariant derivatives. As such, $\vec{e}_{1} \equiv \vec{T}, \vec{e}_{2} \equiv \vec{N}, \vec{e}_{3} \equiv \vec{B}$, and

$$
\mathrm{d} \vec{e}_{1}=W_{i j} \vec{e}_{j}
$$

The matrix $W_{i j}$ is

$$
W_{i j} \propto\left(\begin{array}{c}
T^{\prime} \\
N^{\prime} \\
B^{\prime}
\end{array}\right)\left(\begin{array}{ccc}
0 & k & 0 \\
-k & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)
$$

Considering the special case of an orthogonal frame $\left(\vec{e}_{i} \cdot \vec{e}_{j}=\delta_{i j}\right.$, where $\delta_{i j}$ is the Kronecker-Delta Function), we can use the product rule to expand that relation to $\left(\mathrm{d} \vec{e}_{i}\right) \vec{e}_{j}+\vec{e}_{i}\left(\mathrm{~d} \vec{e}_{j}\right)=0$. Using this, we can determine

$$
W_{i j}=-W_{j i}, \text { and } W_{k k}=0
$$

$W_{i j}$ is a connection function which depends on point P and it expresses the differential variation of \vec{e}_{i} in the direction of \vec{e}_{j}. If we act under the assumption that $W_{i j}$ is a linear combination of coordinate differentials $\mathrm{d} q_{1}, \mathrm{~d} q_{2}, \ldots, \mathrm{~d} q_{i}, \ldots, \mathrm{~d} q_{j}$ then it can be rewritten as

$$
W_{i j}=\mathrm{d}\left(\gamma_{i j}\right)=\Gamma_{i j}^{k} \cdot \mathrm{~d} q^{k},
$$

where the coefficient $\Gamma_{i j}^{k}$ was first introduced by (and is named after) E.B. Christoffel in 1869.

0.2 Lecture 2

0.2.1 Metric Tensor

A point M is determined in the Euclidian space by its coordinates with respect to a reference point 0 . The vector $\overrightarrow{O M}$ in rectilinear coordinates is fixed by the n coordinates $M\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

The idea is to find a set of curvilinear coordinates with center in M that allows us to describe the geometry of the space around M. Let us call $y^{1}, y^{2}, \ldots, y^{n}$ these coordinates. The $n y^{i}$ coordinates are called "normal" or "natural" coordinates at M. At $\vec{M}+\delta \vec{M}$ this system may be different.

As M moves by δM it generates a set of n vectors $\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}$, such that

$$
\vec{e}_{i}=\frac{\partial \vec{M}}{\partial \vec{y}^{i}}
$$

When introducing a metric $g_{i j}$ in the space, the "surface" where M exists becomes a "geometric surface". The differential length $\mathrm{d} s^{2}=(\delta \vec{M})^{2}$ is given by

$$
\mathrm{d} s^{2}=g_{i j} \mathrm{~d} y^{i} \mathrm{~d} y^{j}
$$

where $g_{i j}$ now may depend on the coordinates y^{i} s.
If the curve described by M is parametrized with parameter t, then the length between two points a and b is

$$
\delta M=\int_{a}^{b} \sqrt{g_{i j} \frac{\mathrm{~d} y^{i}}{\mathrm{~d} t} \frac{\mathrm{~d} y^{j}}{\mathrm{~d} t}} \mathrm{~d} t
$$

and the volume $\mathrm{d} v$ formed by $\vec{e}_{i} \mathrm{~d} y^{i}$ with origin at M is

$$
\mathrm{d} V=\sqrt{|g|} \mathrm{d} y^{1}, \ldots, \mathrm{~d} y^{n}
$$

Example 1

The curvilinear coordinates at M are the spherical one with the vectors \vec{e}_{r} along the $\overrightarrow{O M}$ direction, \vec{e}_{ψ} on the parallel around the x^{3} axis and \vec{e}_{θ} in the meridian passing by M. Thus, if $\hat{r}, \hat{\psi}$ and $\hat{\theta}$ are the unit vectors in these three orthogonal directions, then

$$
\vec{e}_{r}=\hat{r} \quad \vec{e}_{\psi}=r \sin (\theta) \vec{\psi} \quad \vec{e}_{\theta}=r \hat{\theta}
$$

The matrix element is then associated with the differential length $\mathrm{d} s^{2}=\mathrm{d} M \times \mathrm{d} M$ by its Pythagoric form

$$
\mathrm{d} s^{2}=(\mathrm{d} r)^{2}+(r \sin \theta)^{2}(\mathrm{~d} \psi)^{2}+r^{2}(\mathrm{~d} \theta)^{2} .
$$

So

$$
\left.\mathrm{M}=\begin{array}{c}
\\
\hat{r} \\
\hat{\psi} \\
\hat{\theta}
\end{array} \begin{array}{ccc}
\hat{r} & \hat{\psi} & \hat{\theta} \\
1 & 0 & 0 \\
0 & (r \sin \theta)^{2} & 0 \\
0 & 0 & r^{2}
\end{array}\right) .
$$

The change in variables from the rectilinear coordinates to the curvilinear ones and viceversa are:

$$
\begin{gathered}
\left(x_{1}, x_{2}, x_{3}\right) \longrightarrow\left(y^{1}, y^{2}, y^{3}\right) \\
r=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}} \quad \psi=\tan ^{-1}\left(\frac{x_{2}}{x_{1}}\right) \quad \theta=\tan ^{-1}\left(\frac{\sqrt{x_{1}^{2}+x_{2}^{2}}}{x_{3}}\right) \\
\left(y^{1}, y^{2}, y^{3}\right) \longrightarrow\left(x_{1}, x_{2}, x_{3}\right) \\
x=r \sin (\theta) \cos (\psi) \quad y=r \sin (\theta) \sin (\psi) \quad z=r \cos (\theta)
\end{gathered}
$$

(Where the y^{i} are understood to be, in this context, r, θ, ψ).

0.2.2 Euclidian Space

Assume a Euclidian Space with coordinates $p^{1}, p^{2}, \ldots, p^{n}$. A point $M\left(p^{1}, \ldots, p^{n}\right)$ in the space moves in the direction of p^{i} generating a vector

$$
\vec{e}_{i}=\frac{\partial M}{\partial p^{i}} .
$$

Thank You for previewing this eBook

You can read the full version of this eBook in different formats:
> HTML (Free /Available to everyone)
> PDF / TXT (Available to V.I.P. members. Free Standard members can access up to 5 PDF/TXT eBooks per month each month)
> Epub \& Mobipocket (Exclusive to V.I.P. members)
To download this full book, simply select the format you desire below

Free-Ebooks.net

