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0.1 Lecture 1

0.1.1 Frenet Triad
Parametric Curves are functions which are defined in terms of useful
and related quantities, often in time or arc length. Before going on
much further, it is necessary to define a few expressions:

• The velocity (or tangent vector) can be thought of as the change

in position with respect to arc length, or ~T = ∆~f

∆s = ~f ′(s). We

also want to define the unit tangent vector such that T̂ =
~T

|T |
,

where its magnitude is always equal to 1.

• From the tangent vector we can define the normal vector as
~T ′

|~T ′| , or in other terms, ~T ′ = k ~N . k here is called the curvature;
to be specific it is the extrinsic curvature.

• The Binormal vector is defined as ~B = ~T × ~N . The derivative
of the this vector can be related to the normal vector N by
~B′ = −τ ~N using a quantity called torsion, represented by τ .

• Since ~N = ~B × ~T ,

~N ′ = ~B′ × ~T + ~B × ~T ′ = −τ( ~N × ~T ) + k( ~B × ~N) = τ ~B − k~T

Together, these quantities form the Frenet Formulas:
~T ′

~N ′

~B′

 =


0 k 0
−k 0 τ

0 −τ 0



~T
~N
~B


Example: Helix of Unit Velocity

Let us look at the function

~f(s) = a cos
(
s

c

)
î + a sin

(
s

c

)
ĵ + b

c
sk̂ ,
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where a, b and c are arbitrary constants and s is the length of the
curve itself. It could equivalently be written by its components

x(s) = a cos
(
s

c

)
, y(s) = a sin

(
s

c

)
and z(s) = b

c
s .

Plotted, this curve gives us a circular spiral that rises or falls de-
pending on the ratio of b to c. Note that if b = 0 then we have
a two-dimensional curve (f ′(s)) that traces out a circle on the xy-
plane. The tangent vector can be found to be

~T (s) =
(
−a
c

)
sin

(
s

c

)
î +

(
a

c

)
cos

(
s

c

)
ĵ +

(
b

c

)
k̂ .

By analyzing the tangent vector, we can guess the following orthog-
onal vector in the (x, y) plane:

~N(s) =
(
c

a

)
cos

(
s

c

)
î +

(
c

a

)
sin

(
s

c

)
ĵ + 0k̂

(observe that we chose |N | = c

a
). From this, we can find the deriva-

tive to be

~N ′(s) =
(
−1
a

)
sin

(
s

c

)
î +

(1
a

)
cos

(
s

c

)
ĵ + 0k̂ .

With the tangent and normal vectors, we can also find the binormal
and its derivative:

~B(s) = ~T × ~N =
(
− b
a

)
sin

(
s

c

)
î +

(
b

a

)
cos

(
s

c

)
ĵ− 1k̂ , and

~B′(s) =
(
− b

ca

)
cos

(
s

c

)
î−

(
b

ca

)
sin

(
s

c

)
ĵ + 0k̂ .

Comparing with the equation for ~N ,

~B′ = − b

c2 → τ = b

c2 = b

a2 + b2 .

If b = 0, then there is no torsion (τ = 0).
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Observe that if ~T is a unit vector, then a2 + b2 = c2.
From the equations for ~T ′ and ~N ,

~T ′ = −a
2

c3N ∴ k = −a
2

c3 .

The parametric function of s can be Taylor expanded with a
differential ∆s. This expansion immediately reveals the quantities
we defined above:

f(s) = f(0) + f ′(0)︸ ︷︷ ︸
T0

∆s+ f ′′(0)︸ ︷︷ ︸
k0N0

(∆s)2

2 + f ′′′(0)︸ ︷︷ ︸
N0′k0

(∆s)3

6 + . . .

and, if we only look at a small portion of the curve, we can assume
that k ∼= constant. Then,

f(s) = f(0) + T0∆s+ k0N0
(∆s)2

2 + k0(τ0B0 − k0T0)(∆s)3

6 + . . .

In the last term we neglect a second order one (k2
0T

2
0 ), and the

final form of f(s) for small increments is:

f(s) = f(0) + T0∆s+ k0N0
(∆s)2

2 + k0τ0B0
(∆s)3

6 (0.1.1)

Oscular Plane and Geodesic

The helix is an interesting case that can be used to introduce the
concepts of the oscular plane and the geodesic.

In the case discussed above, the oscular plane is the one formed
by the tangent ~T and the normal ~N . The vector ~B is perpendicular
to this plane. In this plane, we may draw a circle that is at the
point in consideration to the tangent ~T , and that also contains the
differential segment of the helix that encloses the point. Thus, the
circle has the same curvature R as the helix (R = k).
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Helix

R

N

T

Next, we will show that if the helix is the curve that joins two
points A and B on the surface of a cylinder, then it is the shortest
distance between the two points, just like a straight line is the short-
est distance between two points in a plane. The curve that fulfills
these properties is called the geodesic.

Assume a point moving on a cylinder from A to B. We will show
that if the distance between A and B as measured by the length of
the curve is the shortest possible, then it is a helix. If we take s as
the parameter on the curve, then the coordinates of a point on the
curve are

x = a cos(s)

y = a sin(s)

z = z

or
dx = (−a sin s)ds

dy = (a cos s)ds

dz = dz .

The function z(s) is to be determined. The differential length dl is
such that

(dl)2 = (dx)2 + (dy)2 + (dz)2 = (ads)2 + (dz)2 .



12 CONTENTS

Thus, we want to minimize the following integral:

I =
∫ B

A
dl =

∫ B

A

√
a2(ds)2 + (dz)2 =

∫ B

A
ds
√
a2 + z′2

where z′ = dz
ds . The problem of minimizing an integral belongs

to the subject of Variational Calculus. This branch of calculus is
discussed in Lecture 7: Review of Analytic Dynamics. It may be
presented in the following way: if the function f(s, y(s), y′(s)) is to
be integrated between the point A and B while s is a parameter (it
could be, for instance, length or time), then the integral

I =
∫ B

A
f(s, y(s), y′(s)) ds

will have a minimum or maximum when y(s) fulfills the following
differential equation (named after Euler, the mathematician who
found the solution in 1700):

∂f

∂y
− d

ds( ∂f
∂y′

) = 0 .

In our case,
f =

√
a2 + z′2

and z is the function y and thus z′ = y′ = dz
ds .

The Euler equation says

∂2

∂s

f(s)
∂z′

= 0

or
d
ds

(1
2

2z′√
a2 + z′2

)
= 0 .

Thus,
z′√

a2 + b2
= c

where c is any constant. And so,

z′
2 = a2c2

1− c2 = D2
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or
z = Ds .

where D is a constant; so our curve with the minimum length be-
tween two points is a helix. Since D could be any constant, there
are an infinite number of helices.

The fact that the helix is a geodesic is easily seen if the cylinder
is unfolded and converted into a plane with width 2πr. The helical
coils become straight lines, and obviously the shortest path between
two points A and B is a segment of a coil. We note that on the
cylinder, as mentioned before, we may create an infinite number of
geodesics, each characterized by a slope α. The slope of the helix
passing through two points A and B is predetermined by those two
points.

Another interesting example that helps to visualize the meanings
of the oscular plane and the geodesic is the case of a thread on a
sphere; the only force acting on the thread is the normal reaction
from the sphere. The normal reaction passes through the center of
the sphere at any point on the thread. So, the plane containing
the normal is the oscular plane, which cuts the sphere into a grand
circle. The grand circle through the equator and prime meridian is
the geodesic of the sphere. If the arc of that circle is greater than
180 degrees, then the distance between two point A and B on this
arc is not the shortest distance, because the shortest distance is the
supplement arc. So, in this case we have a geodesic which is not
necessarily the shortest distance between two points.
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0.1.2 Connecting Functions
As in the case of Frenet frames, when the frame moves, the deriva-
tives of ~T , ~N , and ~B give the intrinsic properties of the curve – its
curvature (k) and its torsion (τ). These derivatives with respect to
the curve parameter are called “covariant derivatives.”

It’s interesting to note that those derivatives ( ~T ′, ~N ′, and ~B′) can
be expressed as functions of the frame itself (~T , ~N , and ~B). We can
think of these spatially as the variation from some point P to some
point P + δP .

We can define this variation a bit more formally if we start in
some general frame: ~e1, ~e2, . . . , ~en such that ~ei · ~ej = gij. In this
frame, we can define the variation of the vector d~ei as

d~ei = Wij · ~ej .

Here, Wij is a function that depends on the point P in our gener-
alized coordinate space (q1, q2, . . . , qn) where the frame ~e1, ~e2, . . . , ~en
is located. It is closely related to the matrix form for Frenet’s for-
mulas previously shown: in the simple case of the Frenet frame, the
derivatives of ~T , ~N , and ~B with respect to the parameter s which
varies along the tangent ~T are the covariant derivatives. As such,
~e1 ≡ ~T , ~e2 ≡ ~N , ~e3 ≡ ~B, and

d~e1 = Wij~ej .

The matrix Wij is

Wij ∝


T ′

N ′

B′




0 k 0
−k 0 τ

0 −τ 0


Considering the special case of an orthogonal frame (~ei ·~ej = δij,

where δij is the Kronecker-Delta Function), we can use the product
rule to expand that relation to (d~ei)~ej + ~ei(d~ej) = 0. Using this, we
can determine

Wij = −Wji , and Wkk = 0 .
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Wij is a connection function which depends on point P and it
expresses the differential variation of ~ei in the direction of ~ej. If
we act under the assumption that Wij is a linear combination of
coordinate differentials dq1, dq2, . . . , dqi, . . . , dqj then it can be re-
written as

Wij = d(γij) = Γkij · dqk ,

where the coefficient Γkij was first introduced by (and is named after)
E.B. Christoffel in 1869.
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0.2 Lecture 2

0.2.1 Metric Tensor

A point M is determined in the Euclidian space by its coordinates
with respect to a reference point 0. The vector #     »

OM in rectilinear
coordinates is fixed by the n coordinates M(x1, x2, . . . , xn).

The idea is to find a set of curvilinear coordinates with center
in M that allows us to describe the geometry of the space around
M. Let us call y1, y2, . . . , yn these coordinates. The n yi coordinates
are called “normal” or “natural” coordinates at M. At # »

M + δ
# »

M this
system may be different.

As M moves by δM it generates a set of n vectors #»e 1,
#»e 2, . . . ,

#»e n,
such that

#»e i = ∂
# »

M

∂ #»y i
.

When introducing a metric gij in the space, the “surface” where
M exists becomes a “geometric surface”. The differential length
ds2 = (δ # »

M)
2

is given by

ds2 = gijdyidyj ,

where gij now may depend on the coordinates yis.
If the curve described by M is parametrized with parameter t,

then the length between two points a and b is

δM =
∫ b

a

√
gij

dyi
dt

dyj
dt dt ,

and the volume dv formed by #»e idyi with origin at M is

dV =
√
|g| dy1, . . . , dyn .
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Example 1

The curvilinear coordinates at M are the spherical one with the
vectors #»e r along the #     »

OM direction, #»e ψ on the parallel around the
x3 axis and #»e θ in the meridian passing by M . Thus, if r̂, ψ̂ and θ̂

are the unit vectors in these three orthogonal directions, then
#»e r = r̂ #»e ψ = r sin(θ) #»

ψ #»e θ = rθ̂ .

The matrix element is then associated with the differential length
ds2 = dM × dM by its Pythagoric form

ds2 = (dr)2 + (r sin θ)2(dψ)2 + r2(dθ)2 .

So

M =


r̂ ψ̂ θ̂

r̂ 1 0 0
ψ̂ 0 (r sin θ)2 0
θ̂ 0 0 r2

 .

The change in variables from the rectilinear coordinates to the
curvilinear ones and viceversa are:

(x1, x2, x3) −→ (y1, y2, y3)

r =
√
x2

1 + x2
2 + x2

3 ψ = tan−1
(
x2

x1

)
θ = tan−1


√
x2

1 + x2
2

x3


(y1, y2, y3) −→ (x1, x2, x3)

x = r sin(θ) cos(ψ) y = r sin(θ) sin(ψ) z = r cos(θ)

(Where the yi are understood to be, in this context, r, θ, ψ).

0.2.2 Euclidian Space
Assume a Euclidian Space with coordinates p1, p2, . . . , pn. A point
M(p1, . . . , pn) in the space moves in the direction of pi generating a
vector

#»e i = ∂M

∂pi
.
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