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Chapter 1

Thermodynamic Quantities

1. P = pressure of the system against the surroundings

2. U = internal energy of the system

3. Q = heat flow into the system

4. W = work delivery by the system

5. T = absolute temperature (sometimes called ✓)

6. F = Helmholtz free energy (sometimes called A)

7. G = Gibbs free energy (sometimes called F )

8. S = entropy

9. H = enthalpy

10. ⇠i = pseudothermodynamic potentials associated with the element of
the system of the mass mi

11. V = volume of the system
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Chapter 2

Types of Thermodynamic
Processes

1. Adiabatic: the energy may change without exchange of heat or matter
with the environment, only work

2. Diathermal : allows transfer of heat but not matter

3. Semipermeable partition: allows transfer heat and some matter

4. Permeable partition: allows transfer of both heat and matter

5. Quasistatic process : the process develops infinitely slowly and goes
from one equilibrium to the next–it is interpreted as a reversible process
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Chapter 3

The First Law of
Thermodynamics

The First Law expresses the conservation of energy concerning the three
quantities U , Q, W , and ni (the number of elements of type i with potential
ui):

U = Q�W + µini .

Thus, the variation of the internal energy of the system dU is equal to the
amount of heat supplied to the system dQ minus the energy delivered by
the system in the form of work, dW , plus the contribution of the chemical
potential per unit mass of the elements of the system ni:

dU = dQ� dW + µidni .

The last term was introduced by Gibbs; it is another extensive property that
we will later discuss in the relation to other properties of the system. We
will also see its relevance to open systems.

Thus, from state 1 to state 2

U2 � U1 =

Z
2

1

dQ�
Z

2

1

dW .

The internal energy U is a point function of the system and depends on the
parameters that define the state (for example, pressure and temperature).
For Q and W in the previous equation, we left the integration signs because
they may depend (for instance, in a non-reversible process) on the path that
takes the state from 1 to 2. In other words, Q and W are not, in those cases,
perfectly di↵erentiable functions.

At this point, we will try to o↵er some mathematical reasoning to clarify
these statements.
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4 CHAPTER 3. THE FIRST LAW OF THERMODYNAMICS

Assume a function F of two variables x and y, F = F (x, y), which has
an exact di↵erentiability such that

dF =
⇣@F
@x

⌘
dx+

⇣@F
@y

⌘
dy .

Geometrically, F represents a surface in the x,y,z space.
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In this case, we may go from 1 to 2 on a unique curve and come back on
the same one. However, if F (x, y) is such that

dF = A(x, y)dx+B(x, y)dy

and A and B are not the partial derivatives of F with respect to x and y,
respectively, then F (1)� F (2) will in general depend on the path that goes
from 1 to 2. Thus,

[F (2)� F (1)]C1 6= [F (2)� F (1)]C2 .

Now, there is a way to make F (x, y) an exact di↵erentiable function.
Let us work with a di↵erential equation in the variables y(x) and x.

y0 =
dy

dx
, or

y0g(x, y) + h(x, y) = 0 .

We would like to solve this equation and find a function F (x, y) such that

dF = g(x, y)dy + h(x, y)dx

or
d

dx
F (x, y) = y0g(x, y) + h(x, y) .
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The integrability of F implies that

dF

dx
=
@F

@x
+
@F

@y
y0 .

Comparing the two previous equations, we must have

g(x, y) =
@F

@y
and h(x, y) =

@F

@x
.

If F is integrable then

@

@x

@F

@y
=

@

@y

@F

@x
or

@

@x
g(x, y) =

@

@y
h(x, y) .

As an example, let us start with the equation

y0(xy � x2) + (y2 � 3xy � 2x2) = 0 .

So, g(x, y) = xy � x2 and h(x, y) = y2 � 3xy � 2x2. Obviously,

@

@x
g(x, y) 6= @

@y
h(x, y) .

Thus, the integrability condition is not fulfilled. But if we multiple g(x, y)
and h(x, y) by the function u(x, y) = 2x, and call G(x, y) = ug(x, y) and
H(x, y) = uh(x, y), then

@

@x
G(x, y) =

@

@y
H(x, y) .

Thus, the function F , such that

dF

dx
= y0G(x, y) +H(x, y)

is di↵erentiable. In other words,

dF =
@F

@x
dx+

@F

@y
dy ⌘ Hdx+Gdy .



Chapter 4

The Second Law of
Thermodynamics

Assume a function f(x, y) is non-integrable such that

d

dx
f(x, y) = h(x, y) + y0g(x, y)

or
df(x, y) = h(x, y)dx+ g(x, y)dy .

But also assume that F = f(x, y)u(x, y) is integrable. In other words, u(x, y)
makes f(x, y) integrable. If we identify the value of the heat supply to the

system Q with the function f and write it as dF =
dQ

T
, where

1

T
plays the

role of the function u, then F becomes an integrable function that we will
call S, the entropy of the system:

dS =
dQ

T
.

From the thermodynamical point of view, this equality holds only if the
process is reversible. The second law of thermodynamics says that in any
other case,

dS >
dQ

T
.

In particular, if the system is cooled by a reversible process, i.e., in a qua-
sistatic process at constant temperature, the entropy decreases. In an adia-
batic process the entropy remains constant, dS = 0.

Before we continue with defining the other thermodynamic quantities
and giving examples of their use, we should notice that besides the energy
supplied to the system by heat and by work, there are other chemical and
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8 CHAPTER 4. THE SECOND LAW OF THERMODYNAMICS

physical fields that may act on the element of the system of mass, say dmi,
that are represented by ⇠i: we call them pseudopotentials (per unit mass).
They could be of an electromagnetic nature or more complex chemical inter-
actions. Thus, the First Law can be rewritten as

dU = dQ� dW + ⇠idmi

and the Second Law as

dS =
dQ

T
= (dU + dW � ⇠idmi)

1

T
.

The repeated index i means summation on all possible potentials ⇠i and
elements of the system dmi.



Chapter 5

The Third Law of
Thermodynamics

The Third Law says that the entropy S is zero at the absolute temperature
T0 = 0 = �273 Celsius. That is,

ST0 = 0 .
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Chapter 6

The Carnot Cycle and the
Second and Third Laws

The second law says that S >
Q

T
in an irreversible process. The third law

says that S = 0 when T = 0. In a reversible process, S =
Q

T
. One such

reversible process is the Carnot cycle.

AA

BB

DD CC

The gas goes through

1. Thermal expansion from A to B as it gains heat QM .
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2. An adiabatic expansion (no heat exchanged) from B to C as it goes
from temperature TM to Tm.

3. A compression at constant temperature Tm from C to D in which it
loses heat Qm.

4. An adiabatic compression (no heat exchanged) from D back to A as it
goes back to temperature TM .

The work done from A to B is

WAB =

Z B

A

PdV = nRTM

Z B

A

dV

V
= nRTM [lnV ]BA

Also,
WAB = [Q(T )� U(T )]BA = QAB = QM .

Because U does not change, U depends only on the temperature in an ideal
gas. Thus,

QM = nRTM ln
VB

VA
.

Similarly,

Qm = nRTm ln
VC

VD
.

For the adiabatic paths B � C and D � A and an ideal gas,

PCV
�
C = PBV

�
B

where � =
CP

CV
.

The e�ciency ⌘ of the cycle is given by

⌘ =
W

QM
.

By energy conservation, W +Qm = QM , so

⌘ =
QM �Qm

QM
= 1� Qm

QM
.

In order to calculate
Qm

QM
, we observe that in an adiabatic process the fol-

lowing are true:

PBV
�
B = PCV

�
C and PDV

�
D = PAV

�
A . (6.1)
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But since we are dealing with an ideal gas,

PAVA = PBVB and PCVC = PDVD

and
PAVA

TM
=

PDVD

Tm
and

PBVB

TM
=

PCVC

Tm
. (6.2)

From (6.1) and (6.2),
V ��1

B TM = V ��1

C Tm

and
V ��1

A TM = V ��1

D Tm .

Eliminating temperature,

⇣VB

VA

⌘��1

=
⇣VC

VD

⌘��1

or
VB

VA
=

VC

VD
.

So from the expression of QM and Qm,

QM

TM
=

Qm

Tm

or

⌘ = 1� Qm

QM
= 1� Tm

TM
.

The Carnot engine e�ciency cannot be superseded by any engine that oper-
ates between two given temperatures TM and Tm. In other words, all engines

that convert heat into work will have ⌘  ⌘Carnot = 1 � Tm

TM
. This is called

the Carnot theorem.
As we have seen in the Carnot cycle,

QM

TM
=

Qm

Tm
.

Since the entropy S is defined as dS =
dQ

T
, and QM and Qm are delivered

at constant temperature, then

SM =
QM

TM
and Sm =

Qm

Tm
.
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This tells us that in a Carnot cycle the heat is delivered at the same entropy
found at the exhaust.

Kelvin and Planck expressed the second law of thermodynamics by saying
that Tm could not ever reach the value of absolute zero in any real machine.
In other words, there is no machine with 100% e�ciency.

The e�ciency of an irreversible process is always less than or equal to
that of a reversible process, ⌘irr  ⌘rev, which means that

⇣Qm

QM

⌘

irr
�
⇣Qm

QM

⌘

rev
=

Tm

TM
.

Thus, ⇣Qm

Tm

⌘

irr
�
⇣QM

TM

⌘

irr
.

Assuming the same working temperature for the irreversible process as the
reversible one,

(Sm)irr � (SM)irr .

In other words, the entropy at the exhaust point is greater than or equal to
the entropy at the high temperature reservoir. Making another assumption
that the reversible and irreversible cycles work with the same heat input and
the same temperatures Tm and TM , then

(Qm)irr > (Qm)rev .

Dividing both sides by Tm,

⇣Qm

Tm

⌘

irr
>
⇣Qm

Tm

⌘

rev

or
Sirr > Srev

which is another way to express the Second Law. This can be seen by calling
(Qm)rev just Q and (Tm)rev just T :

Sirr >
Q

T
.
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