

DSPA

Collection edited by: Janko Calic

Content authors: Douglas Jones, Don Johnson, Ricardo Radaelli-Sanchez, Richard Baraniuk,
Stephen Kruzick, Catherine Elder, Melissa Selik, Robert Nowak, Anders Gjendemsjø, Michael
Haag, Benjamin Fite, Ivan Selesnick, and Phil Schniter

Online: <http://cnx.org/content/col10599/1.5>

This selection and arrangement of content as a collection is copyrighted by Janko Calic.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/2.0/
Collection structure revised: 2010/05/18
For copyright and attribution information for the modules contained in this collection, see the "Attributions" section at the end of the
collection.

http://cnx.org/content/col10599/1.5
http://creativecommons.org/licenses/by/2.0/

DSPA

Table of Contents

Preface for Digital Signal Processing: A User's Guide
1.

Chapter 1. Background, Review, and Reference
1.1. Discrete-Time Signals and Systems

Real- and Complex-valued Signals
Complex Exponentials
Sinusoids
Unit Sample
Unit Step
Symbolic Signals
Discrete-Time Systems

1.2. Systems in the Time-Domain
1.3. Discrete Time Convolution

Introduction
Convolution and Circular Convolution

Convolution
Operation Definition
Definition Motivation
Graphical Intuition

Circular Convolution
Definition Motivation
Graphical Intuition

Interactive Element
Convolution Summary

1.4. Introduction to Fourier Analysis
Fourier's Daring Leap

1.5. Continuous Time Fourier Transform (CTFT)
Introduction
Fourier Transform Synthesis

Equations
CTFT Definition Demonstration
Example Problems
Fourier Transform Summary

1.6. Discrete-Time Fourier Transform (DTFT)
1.7. DFT as a Matrix Operation

Matrix Review

Representing DFT as Matrix Operation
1.8. Sampling theory

Introduction
Why sample?
Claude E. Shannon
Notation
The Sampling Theorem

Proof
Introduction
Proof part 1 - Spectral considerations
Proof part II - Signal reconstruction
Summary

Illustrations
Basic examples
The process of sampling

Sampling fast enough
Sampling too slowly

Reconstruction
Conclusions

Systems view of sampling and reconstruction
Ideal reconstruction system
Ideal system including anti-aliasing
Reconstruction with hold operation

Sampling CT Signals: A Frequency Domain Perspective
Understanding Sampling in the Frequency Domain

Sampling
Relating x[n] to sampled x(t)

The DFT: Frequency Domain with a Computer Analysis
Introduction

Sampling DTFT
Choosing M

Case 1
Case 2

Discrete Fourier Transform (DFT)
Interpretation

Remark 1
Remark 2

Periodicity of the DFT
A Sampling Perspective

Inverse DTFT of S(ω)
Connections

Discrete-Time Processing of CT Signals
DT Processing of CT Signals

Analysis
Summary

Note
Application: 60Hz Noise Removal

DSP Solution
Sampling Period/Rate
Digital Filter

1.9. Z-Transform
Difference Equation

Introduction
General Formulas for the Difference Equation

Difference Equation
Conversion to Z-Transform
Conversion to Frequency Response

Example
Solving a LCCDE

Direct Method
Homogeneous Solution
Particular Solution

Indirect Method
The Z Transform: Definition

Basic Definition of the Z-Transform
The Complex Plane
Region of Convergence

Table of Common z-Transforms
Understanding Pole/Zero Plots on the Z-Plane

Introduction to Poles and Zeros of the Z-Transform
The Z-Plane
Examples of Pole/Zero Plots
Interactive Demonstration of Poles and Zeros
Applications for pole-zero plots

Stability and Control theory
Pole/Zero Plots and the Region of Convergence
Frequency Response and Pole/Zero Plots

Chapter 2. Digital Filter Design
2.1. Overview of Digital Filter Design

Perspective on FIR filtering
2.2. FIR Filter Design

Linear Phase Filters

Restrictions on h(n) to get linear phase
Window Design Method

L2 optimization criterion
Window Design Method

Frequency Sampling Design Method for FIR filters
Important Special Case
Important Special Case #2

Special Case 2a
Comments on frequency-sampled design
Extended frequency sample design

Parks-McClellan FIR Filter Design
Formal Statement of the L-∞ (Minimax) Design Problem
Outline of L-∞ Filter Design
Conditions for L-∞ Optimality of a Linear-phase FIR Filter

Alternation Theorem
Optimality Conditions for Even-length Symmetric Linear-phase Filters
L-∞ Optimal Lowpass Filter Design Lemma
Computational Cost

2.3. IIR Filter Design
Overview of IIR Filter Design

IIR Filter
IIR Filter Design Problem
Outline of IIR Filter Design Material
Comments on IIR Filter Design Methods

Prototype Analog Filter Design
Analog Filter Design
Traditional Filter Designs

Butterworth
Chebyshev
Inverse Chebyshev
Elliptic Function Filter (Cauer Filter)

IIR Digital Filter Design via the Bilinear Transform
Bilinear Transformation
Prewarping

Impulse-Invariant Design
Digital-to-Digital Frequency Transformations
Prony's Method

Shank's Method
Linear Prediction

Statistical Linear Prediction
Chapter 3. The DFT, FFT, and Practical Spectral Analysis

3.1. The Discrete Fourier Transform
DFT Definition and Properties

DFT
IDFT
DFT and IDFT properties

Periodicity
Circular Shift
Time Reversal
Complex Conjugate
Circular Convolution Property
Multiplication Property
Parseval's Theorem
Symmetry

3.2. Spectrum Analysis
Spectrum Analysis Using the Discrete Fourier Transform

Discrete-Time Fourier Transform
Discrete Fourier Transform
Relationships Between DFT and DTFT

DFT and Discrete Fourier Series
DFT and DTFT of finite-length data
DFT as a DTFT approximation

Relationship between continuous-time FT and DFT
Zero-Padding
Effects of Windowing

Classical Statistical Spectral Estimation
Periodogram method
Auto-correlation-based approach

Short Time Fourier Transform
Short Time Fourier Transform

Sampled STFT
Spectrogram Example
Effect of window length R
Effect of L and N
Effect of R and L

3.3. Fast Fourier Transform Algorithms
Overview of Fast Fourier Transform (FFT) Algorithms

History of the FFT
Summary of FFT algorithms

Running FFT
Goertzel's Algorithm

References
Power-of-Two FFTs

Power-of-two FFTs
Radix-2 Algorithms

Decimation-in-time (DIT) Radix-2 FFT

Decimation in time
Additional Simplification
Radix-2 decimation-in-time FFT
Example FFT Code

Decimation-in-Frequency (DIF) Radix-2 FFT
Decimation in frequency
Radix-2 decimation-in-frequency algorithm

Alternate FFT Structures
Radix-4 FFT Algorithms

References
Split-radix FFT Algorithms

References
Efficient FFT Algorithm and Programming Tricks

Precompute twiddle factors
Compiler-friendly programming
Program in assembly language
Special hardware
Effective memory management
Real-valued FFTs
Special cases
Higher-radix algorithms
Fast bit-reversal
Trade additions for multiplications
Special butterflies
Practical Perspective
References

3.4. Fast Convolution
Fast Circular Convolution
Fast Linear Convolution
Running Convolution

Overlap-Save (OLS) Method
Overlap-Add (OLA) Method

3.5. Chirp-z Transform
3.6. FFTs of prime length and Rader's conversion

Rader's Conversion
Fact from number theory
Another fact from number theory
Rader's Conversion

Winograd minimum-multiply convolution and DFT algorithms
Winograd Fourier Transform Algorithm (WFTA)
References

3.7. Choosing the Best FFT Algorithm
Choosing an FFT length

Selecting a power-of-two-length algorithm
Multi-dimensional FFTs
Few time or frequency samples
References

Chapter 4. Wavelets
4.1. Time Frequency Analysis and Continuous Wavelet Transform

Why Transforms?
Limitations of Fourier Analysis
Time-Frequency Uncertainty Principle
Short-time Fourier Transform
Continuous Wavelet Transform

4.2. Hilbert Space Theory
Hilbert Space Theory
Vector Space
Normed Vector Space
Inner Product Space
Hilbert Spaces

4.3. Discrete Wavelet Transform
Discrete Wavelet Transform: Main Concepts

Main Concepts
The Haar System as an Example of DWT
A Hierarchy of Detail in the Haar System
Haar Approximation at the kth Coarseness Level
The Scaling Equation
The Wavelet Scaling Equation
Conditions on h[n] and g[n]
Values of g[n] and h[n] for the Haar System
Wavelets: A Countable Orthonormal Basis for the Space of Square-Integrable
Functions
Filterbanks Interpretation of the Discrete Wavelet Transform
Initialization of the Wavelet Transform
Regularity Conditions, Compact Support, and Daubechies' Wavelets

References
Computing the Scaling Function: The Cascade Algorithm
Finite-Length Sequences and the DWT Matrix
DWT Implementation using FFTs
DWT Applications - Choice of phi(t)
DWT Application - De-noising

Chapter 5. Multirate Signal Processing
5.1. Overview of Multirate Signal Processing

Applications
Outline of Multirate DSP material
General Rate-Changing Procedure

References
5.2. Interpolation, Decimation, and Rate Changing by Integer Fractions

Interpolation: by an integer factor L
Decimation: sampling rate reduction (by an integer factor M)
Rate-Changing by a Rational Fraction L/M

5.3. Efficient Multirate Filter Structures
Interpolation
Efficient Decimation Structures
Efficient L/M rate changers

5.4. Filter Design for Multirate Systems
Direct polyphase filter design

5.5. Multistage Multirate Systems
Filter design for Multi-stage Structures
L-infinity Tolerances on the Pass and Stopbands
Interpolation
Efficient Narrowband Lowpass Filtering

5.6. DFT-Based Filterbanks
Uniform DFT Filter Banks

5.7. Quadrature Mirror Filterbanks (QMF)
5.8. M-Channel Filter Banks

Tree-structured filter banks
Wavelet decomposition

Chapter 6. Digital Filter Structures and Quantization Error Analysis
6.1. Filter Structures

Filter Structures
FIR Filter Structures

Transpose-form FIR filter structures
Cascade structures
Lattice Structure

IIR Filter Structures
Direct-form I IIR Filter Structure
Direct-Form II IIR Filter Structure
Transpose-Form IIR Filter Structure
IIR Cascade Form
Parallel form
Other forms

State-Variable Representation of Discrete-Time Systems
State and the State-Variable Representation
State-Variable Transformation
Transfer Function and the State-Variable Description

6.2. Fixed-Point Numbers
Fixed-Point Number Representation

Two's-Complement Integer Representation

Fractional Fixed-Point Number Representation
Truncation Error
Overflow Error

Fixed-Point Quantization
6.3. Quantization Error Analysis

Finite-Precision Error Analysis
Fundamental Assumptions in finite-precision error analysis

Assumption #1
Assumption #2

Summary of Useful Statistical Facts
Input Quantization Noise Analysis
Quantization Error in FIR Filters

Data Quantization
Direct-form Structures
Transpose-form

Coefficient Quantization
Data Quantization in IIR Filters

Roundoff noise analysis in IIR filters
IIR Coefficient Quantization Analysis

Sensitivity analysis
Solution

Quantized Pole Locations
6.4. Overflow Problems and Solutions

Limit Cycles
Large-scale limit cycles
Small-scale limit cycles

Scaling
FIR Filter Scaling
IIR Filter Scaling
References

Index

Preface for Digital Signal Processing: A User's Guide

Digital signal processing (DSP) has matured in the past few decades from an obscure research
discipline to a large body of practical methods with very broad application. Both practicing
engineers and students specializing in signal processing need a clear exposition of the ideas and
methods comprising the core signal processing "toolkit" so widely used today.

This text reflects my belief that the skilled practitioner must understand the key ideas underlying
the algorithms to select, apply, debug, extend, and innovate most effectively; only with real
insight can the engineer make novel use of these methods in the seemingly infinite range of new
problems and applications. It also reflects my belief that the needs of the typical student and the
practicing engineer have converged in recent years; as the discipline of signal processing has
matured, these core topics have become less a subject of active research and more a set of tools
applied in the course of other research. The modern student thus has less need for exhaustive
coverage of the research literature and detailed derivations and proofs as preparation for their own
research on these topics, but greater need for intuition and practical guidance in their most
effective use. The majority of students eventually become practicing engineers themselves and
benefit from the best preparation for their future careers.

This text both explains the principles of classical signal processing methods and describes how
they are used in engineering practice. It is thus much more than a recipe book; it describes the
ideas behind the algorithms, gives analyses when they enhance that understanding, and includes
derivations that the practitioner may need to extend when applying these methods to new
situations. Analyses or derivations that are only of research interest or that do not increase
intuitive understanding are left to the references. It is also much more than a theory book; it
contains more description of common applications, discussion of actual implementation issues,
comments on what really works in the real world, and practical "know-how" than found in the
typical academic textbook. The choice of material emphasizes those methods that have found
widespread practical use; techniques that have been the subject of intense research but which are
rarely used in practice (for example, RLS adaptive filter algorithms) often receive only limited
coverage.

The text assumes a familiarity with basic signal processing concepts such as ideal sampling
theory, continuous and discrete Fourier transforms, convolution and filtering. It evolved from a
set of notes for a second signal processing course, ECE 451: Digital Signal Processing II, in
Electrical and Computer Engineering at the University of Illinois at Urbana-Champaign, aimed at
second-semester seniors or first-semester graduate students in signal processing. Over the years, it
has been enhanced substantially to include descriptions of common applications, sometimes hard-
won knowledge about what actually works and what doesn't, useful tricks, important extensions
known to experienced engineers but rarely discussed in academic texts, and other relevant "know-
how" to aid the real-world user. This is necessarily an ongoing process, and I continue to expand

and refine this component as my own practical knowledge and experience grows. The topics are
the core signal processing methods that are used in the majority of signal processing applications;
discrete Fourier analysis and FFTs, digital filter design, adaptive filtering, multirate signal
processing, and efficient algorithm implementation and finite-precision issues. While many of
these topics are covered at an introductory level in a first course, this text aspires to cover all of
the methods, both basic and advanced, in these areas which see widespread use in practice. I have
also attempted to make the individual modules and sections somewhat self-sufficient, so that
those who seek specific information on a single topic can quickly find what they need. Hopefully
these aspirations will eventually be achieved; in the meantime, I welcome your comments,
corrections, and feedback so that I can continue to improve this text.

As of August 2006, the majority of modules are unedited transcriptions of handwritten notes and
may contain typographical errors and insufficient descriptive text for documents unaccompanied
by an oral lecture; I hope to have all of the modules in at least presentable shape by the end of the
year.

Publication of this text in Connexions would have been impossible without the help of many
people. A huge thanks to the various permanent and temporary staff at Connexions is due, in
particular to those who converted the text and equations from my original handwritten notes into
CNXML and MathML. My former and current faculty colleagues at the University of Illinois who
have taught the second DSP course over the years have had a substantial influence on the
evolution of the content, as have the students who have inspired this work and given me feedback.
I am very grateful to my teachers, mentors, colleagues, collaborators, and fellow engineers who
have taught me the art and practice of signal processing; this work is dedicated to you.

()

Chapter 1. Background, Review, and Reference

1.1. Discrete-Time Signals and Systems*

Mathematically, analog signals are functions having as their independent variables continuous
quantities, such as space and time. Discrete-time signals are functions defined on the integers;
they are sequences. As with analog signals, we seek ways of decomposing discrete-time signals
into simpler components. Because this approach leading to a better understanding of signal
structure, we can exploit that structure to represent information (create ways of representing
information with signals) and to extract information (retrieve the information thus represented).
For symbolic-valued signals, the approach is different: We develop a common representation of
all symbolic-valued signals so that we can embody the information they contain in a unified way.
From an information representation perspective, the most important issue becomes, for both real-
valued and symbolic-valued signals, efficiency: what is the most parsimonious and compact way
to represent information so that it can be extracted later.

Real- and Complex-valued Signals

A discrete-time signal is represented symbolically as s(n) , where n={…, -1, 0, 1, …} .

Figure 1.1. Cosine
The discrete-time cosine signal is plotted as a stem plot. Can you find the formula for this signal?

We usually draw discrete-time signals as stem plots to emphasize the fact they are functions
defined only on the integers. We can delay a discrete-time signal by an integer just as with analog
ones. A signal delayed by m samples has the expression s(n−m) .

Complex Exponentials
The most important signal is, of course, the complex exponential sequence.

s(n)=ⅇⅈ2πfn

()

()

()

Note that the frequency variable f is dimensionless and that adding an integer to the frequency of
the discrete-time complex exponential has no effect on the signal's value.

This derivation follows because the complex exponential evaluated at an integer multiple of
2π equals one. Thus, we need only consider frequency to have a value in some unit-length interval.

Sinusoids

Discrete-time sinusoids have the obvious form s(n)=Acos(2πfn+φ) . As opposed to analog
complex exponentials and sinusoids that can have their frequencies be any real value, frequencies
of their discrete-time counterparts yield unique waveforms only when f lies in the interval .
This choice of frequency interval is arbitrary; we can also choose the frequency to lie in the
interval [0, 1) . How to choose a unit-length interval for a sinusoid's frequency will become
evident later.

Unit Sample
The second-most important discrete-time signal is the unit sample, which is defined to be

Figure 1.2. Unit sample
The unit sample.

Examination of a discrete-time signal's plot, like that of the cosine signal shown in Figure 1.1,
reveals that all signals consist of a sequence of delayed and scaled unit samples. Because the value
of a sequence at each integer m is denoted by s(m) and the unit sample delayed to occur at m is
written δ(n−m) , we can decompose any signal as a sum of unit samples delayed to the appropriate
location and scaled by the signal value.

This kind of decomposition is unique to discrete-time signals, and will prove useful subsequently.

Unit Step

()

The unit sample in discrete-time is well-defined at the origin, as opposed to the situation with
analog signals.

Symbolic Signals
An interesting aspect of discrete-time signals is that their values do not need to be real numbers.
We do have real-valued discrete-time signals like the sinusoid, but we also have signals that
denote the sequence of characters typed on the keyboard. Such characters certainly aren't real
numbers, and as a collection of possible signal values, they have little mathematical structure
other than that they are members of a set. More formally, each element of the symbolic-valued
signal s(n) takes on one of the values {a1, …, aK} which comprise the alphabet A . This technical
terminology does not mean we restrict symbols to being members of the English or Greek
alphabet. They could represent keyboard characters, bytes (8-bit quantities), integers that convey
daily temperature. Whether controlled by software or not, discrete-time systems are ultimately
constructed from digital circuits, which consist entirely of analog circuit elements. Furthermore,
the transmission and reception of discrete-time signals, like e-mail, is accomplished with analog
signals and systems. Understanding how discrete-time and analog signals and systems intertwine
is perhaps the main goal of this course.

Discrete-Time Systems
Discrete-time systems can act on discrete-time signals in ways similar to those found in analog
signals and systems. Because of the role of software in discrete-time systems, many more
different systems can be envisioned and "constructed" with programs than can be with analog
signals. In fact, a special class of analog signals can be converted into discrete-time signals,
processed with software, and converted back into an analog signal, all without the incursion of
error. For such signals, systems can be easily produced in software, with equivalent analog
realizations difficult, if not impossible, to design.

1.2. Systems in the Time-Domain*

A discrete-time signal s(n) is delayed by n0 samples when we write s(n−n0) , with n0>0 .
Choosing n0 to be negative advances the signal along the integers. As opposed to analog delays,
discrete-time delays can only be integer valued. In the frequency domain, delaying a signal

http://cnx.org/content/m0006/latest/#delay

(1.1)

(1.2)

(1.3)

corresponds to a linear phase shift of the signal's discrete-time Fourier transform:
(s(n−n0) ↔ ⅇ–(ⅈ2πfn0)S(ⅇⅈ2πf)) .

Linear discrete-time systems have the superposition property.

Superposition
S(a1x1(n)+a2x2(n))=a1S(x1(n))+a2S(x2(n))

A discrete-time system is called shift-invariant (analogous to time-invariant analog systems) if
delaying the input delays the corresponding output.

Shift-Invariant
If S(x(n))=y(n) , Then S(x(n−n0))=y(n−n0)

We use the term shift-invariant to emphasize that delays can only have integer values in discrete-
time, while in analog signals, delays can be arbitrarily valued.

We want to concentrate on systems that are both linear and shift-invariant. It will be these that
allow us the full power of frequency-domain analysis and implementations. Because we have no
physical constraints in "constructing" such systems, we need only a mathematical specification. In
analog systems, the differential equation specifies the input-output relationship in the time-
domain. The corresponding discrete-time specification is the difference equation.

The Difference Equation
y(n)=a1y(n−1)+…+apy(n−p)+b0x(n)+b1x(n−1)+…+bqx(n−q)

Here, the output signal y(n) is related to its past values y(n−l) , l={1, …, p} , and to the current
and past values of the input signal x(n) . The system's characteristics are determined by the
choices for the number of coefficients p and q and the coefficients' values {a1, …, ap} and
{b0, b1, …, bq} .

There is an asymmetry in the coefficients: where is a0 ? This coefficient would multiply the
y(n) term in the difference equation. We have essentially divided the equation by it, which
does not change the input-output relationship. We have thus created the convention that a0 is
always one.

As opposed to differential equations, which only provide an implicit description of a system (we
must somehow solve the differential equation), difference equations provide an explicit way of
computing the output for any input. We simply express the difference equation by a program that
calculates each output from the previous output values, and the current and previous inputs.

http://cnx.org/content/m0007/latest/#timeinv

Thank You for previewing this eBook
You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can
access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

