
Automatic Generation of Prime Length FFT
Programs

Collection Editor:
C. Sidney Burrus

Automatic Generation of Prime Length FFT
Programs

Collection Editor:
C. Sidney Burrus

Authors:
C. Sidney Burrus

Ivan Selesnick

Online:
< http://cnx.org/content/col10596/1.4/ >

C O N N E X I O N S

Rice University, Houston, Texas

This selection and arrangement of content as a collection is copyrighted by C. Sidney Burrus. It is licensed under the

Creative Commons Attribution 2.0 license (http://creativecommons.org/licenses/by/2.0/).

Collection structure revised: September 9, 2009

PDF generated: October 26, 2012

For copyright and attribution information for the modules contained in this collection, see p. 75.

Table of Contents

1 Introduction . 1
2 Preliminaries . 3
3 Bilinear Forms for Circular Convolution . 13
4 A Bilinear Form for the DFT . 19
5 Implementing Kronecker Products E�ciently . 23
6 Programs for Circular Convolution . 29
7 Programs for Prime Length FFTs . 33
8 Conclusion . 37
9 Appendix: Bilinear Forms for Linear Convolution . 39
10 Appendix: A 45 Point Circular Convolution Program . 45
11 Appendix: A 31 Point FFT Program . 47
12 Appendix: Matlab Functions For Circular Convolution and Prime Length

FFTs . 53
13 Appendix: A Matlab Program for Generating Prime Length FFT Pro-

grams 57
Bibliography . 70
Index . 74
Attributions . 75

iv

Available for free at Connexions <http://cnx.org/content/col10596/1.4>

Chapter 1

Introduction1

1.1 Introduction

The development of algorithms for the fast computation of the Discrete Fourier Transform in the last 30 years
originated with the radix 2 Cooley-Tukey FFT and the theory and variety of FFTs has grown signi�cantly
since then. Most of the work has focused on FFTs whose sizes are composite, for the algorithms depend
on the ability to factor the length of the data sequence, so that the transform can be found by taking the
transform of smaller lengths. For this reason, algorithms for prime length transforms are building blocks for
many composite length FFTs - the maximum length and the variety of lengths of a PFA or WFTA algorithm
depend upon the availability of prime length FFT modules. As such, prime length Fast Fourier Transforms
are a special, important and di�cult case.

Fast algorithms designed for speci�c short prime lengths have been developed and have been written as
straight line code [9], [13]. These dedicated programs rely upon an observation made in Rader's paper [24] in
which he shows that a prime p length DFT can be found by performing a p− 1 length circular convolution.
Since the publication of that paper, Winograd had developed a theory of multiplicative complexity for
transforms and designed algorithms for convolution that attain the minimum number of multiplications
[38]. Although Winograd's algorithms are very e�cient for small prime lengths, for longer lengths they
require a large number of additions and the algorithms become very cumbersome to design. This has
prevented the design of useful prime length FFT programs for lengths greater than 31. Although we have
previously reported the design of programs for prime lengths greater than 31 [27] those programs required
more additions than necessary and were long. Like the previously existing ones, they simply consisted of a
long list of instructions and did not take advantage of the attainable common structures.

In this paper we describe a set of programs for circular convolution and prime length FFTs that are are
short, possess great structure, share many computational procedures, and cover a large variety of lengths.
Because the underlying convolution is decomposed into a set of disjoint operations they can be performed in
parallel and this parallelism is made clear in the programs. Moreover, each of these independent operations
is made up of a sequence of sub-operations of the form I ⊗ A⊗ I where ⊗ denotes the Kronecker product.
These operations can be implemented as vector/parallel operations [34]. Previous programs for prime length
FFTs do not have these features: they consist of straight line code and are not amenable to vector/parallel
implementations.

We have also developed a program that automatically generates these programs for circular convolution
and prime length DFTs. This code generating program requires information only about a set of modules
for computing cyclotomic convolutions. We compute these non-circular convolutions by computing a linear
convolution and reducing the result. Furthermore, because these linear convolution algorithms can be built
from smaller ones, the only modules needed are ones for the linear convolution of prime length sequences.
It turns out that with linear convolution algorithms for only the lengths 2 and 3, we can generate a wide

1This content is available online at <http://cnx.org/content/m18131/1.5/>.

Available for free at Connexions <http://cnx.org/content/col10596/1.4>

1

2 CHAPTER 1. INTRODUCTION

variety of prime length FFT algorithms. In addition, the code we generate is made up of calls to a relatively
small set of functions. Accordingly, the subroutines can be designed and optimized to speci�cally suit a
given architecture.

The programs we describe use Rader's conversion of a prime point DFT into a circular convolution, but
this convolution we compute using the split nesting algorithm [20]. As Stasinski notes [31], this yields algo-
rithms possessing greater structure and simpler programs and doesn't generally require more computation.

1.1.1 On the Row-Column Method

In computing the DFT of an n = n1n2 point sequence where n1 and n2 are relatively prime, a row-column
method can be employed. That is, if an n1 × n2 array is appropriately formed from the n point sequence,
then its DFT can be computed by computing the DFT of the rows and by then computing the DFT of
the columns. The separability of the DFT makes this possible. It should be mentioned, however, that in
at least two papers [31], [15] it is mistakenly assumed that the row-column method can also be applied to
convolution. Unfortunately, the convolution of two sequences can not be found by forming two arrays, by
convolving their rows, and by then convolving their columns. This misunderstanding about the separability
of convolution also appears in [3] where the author incorrectly writes a diagonal matrix of a bilinear form as
a Kronecker product. If it were a Kronecker product, then there would indeed exist a row-column method
for convolution.

Earlier reports on this work were published in the conference proceedings [27], [28], [29] and a fairly
complete report was published in the IEEE Transaction on Signal Processing [30]. Some parts of this
approach appear in the Connexions book, Fast Fourier Transforms2. This work is built on and an extension
of that in [29] which is also in the Connexions Technical Report3.

2Fast Fourier Transforms <http://cnx.org/content/col10550/latest//latest/>
3Large DFT Modules: 11, 13, 16, 17, 19, and 25. Revised ECE Technical Report 8105

<http://cnx.org/content/col10569/latest//latest/>

Available for free at Connexions <http://cnx.org/content/col10596/1.4>

Chapter 2

Preliminaries1

2.1 Preliminaries

Because we compute prime point DFTs by converting them in to circular convolutions, most of this and
the next section is devoted to an explanation of the split nesting convolution algorithm. In this section we
introduce the various operations needed to carry out the split nesting algorithm. In particular, we describe
the prime factor permutation that is used to convert a one-dimensional circular convolution into a multi-
dimensional one. We also discuss the reduction operations needed when the Chinese Remainder Theorem
for polynomials is used in the computation of convolution. The reduction operations needed for the split
nesting algorithm are particularly well organized. We give an explicit matrix description of the reduction
operations and give a program that implements the action of these reduction operations.

The presentation relies upon the notions of similarity transformations, companion matrices and Kronecker
products. With them, we describe the split nesting algorithm in a manner that brings out its structure.
We �nd that when companion matrices are used to describe convolution, the reduction operations block
diagonalizes the circular shift matrix.

The companion matrix of a monic polynomial, M (s) = m0 +m1s+ · · ·+mn−1s
n−1 + sn is given by

CM =

−m01

1 −m1

. . .
...

1 −mn−1

 . (2.1)

Its usefulness in the following discussion comes from the following relation which permits a matrix formu-
lation of convolution. Let

X (s) = x0 + x1s+ · · ·xn−1s
n−1

H (s) = h0 + h1s+ · · ·hn−1s
n−1

Y (s) = y0 + y1s+ · · · yn−1s
n−1

M (s) = m0 +m1s+ · · ·mn−1s
n−1 + sn

(2.2)

Then

Y (s) = < H (s)X (s)>M(s) ⇔ y =

(
n−1∑
k=0

hkC
k
M

)
x (2.3)

1This content is available online at <http://cnx.org/content/m18132/1.5/>.

Available for free at Connexions <http://cnx.org/content/col10596/1.4>

3

4 CHAPTER 2. PRELIMINARIES

where y = (y0, · · · , yn−1)t, x = (x0, · · · , xn−1)t, and CM is the companion matrix of M (s). In (2.3), we say
y is the convolution of x and h with respect to M (s). In the case of circular convolution, M (s) = sn − 1
and Csn−1 is the circular shift matrix denoted by Sn,

Sn =

1

1
. . .

1

 (2.4)

Notice that any circulant matrix can be written as
∑
khkS

k
n.

Similarity transformations can be used to interpret the action of some convolution algorithms. If
CM = T−1AT for some matrix T (CM and A are similar, denoted CM ∼ A), then (2.3) becomes

y = T−1

(
n−1∑
k=0

hkA
k

)
Tx. (2.5)

That is, by employing the similarity transformation given by T in this way, the action of Skn is replaced
by that of Ak. Many circular convolution algorithms can be understood, in part, by understanding the
manipulations made to Sn and the resulting new matrix A. If the transformation T is to be useful, it must
satisfy two requirements: (1) Tx must be simple to compute, and (2) A must have some advantageous
structure. For example, by the convolution property of the DFT, the DFT matrix F diagonalizes Sn,

Sn = F−1

w0

w1

. . .

wn−1

F (2.6)

so that it diagonalizes every circulant matrix. In this case, Tx can be computed by using an FFT and the
structure of A is the simplest possible. So the two above mentioned conditions are met.

The Winograd Structure can be described in this manner also. Suppose M (s) can be factored as
M (s) = M1 (s)M2 (s) where M1 and M2 have no common roots, then CM ∼ (CM1 ⊕ CM2) where ⊕ denotes
the matrix direct sum. Using this similarity and recalling (2.3), the original convolution is decomposed
into disjoint convolutions. This is, in fact, a statement of the Chinese Remainder Theorem for polynomials
expressed in matrix notation. In the case of circular convolution, sn − 1 =

∏
d|nΦd (s), so that Sn can be

transformed to a block diagonal matrix,

Sn ∼

CΦ1

CΦd

. . .

CΦn

 =
(
⊕
d|n
CΦd

)
(2.7)

where Φd (s) is the dth cyclotomic polynomial. In this case, each block represents a convolution with respect
to a cyclotomic polynomial, or a `cyclotomic convolution'. Winograd's approach carries out these cyclotomic
convolutions using the Toom-Cook algorithm. Note that for each divisor, d, of n there is a corresponding
block on the diagonal of size φ (d), for the degree of Φd (s) is φ (d) where φ (·) is the Euler totient function.
This method is good for short lengths, but as n increases the cyclotomic convolutions become cumbersome,
for as the number of distinct prime divisors of d increases, the operation described by

∑
khk(CΦd

)k becomes
more di�cult to implement.

Available for free at Connexions <http://cnx.org/content/col10596/1.4>

5

The Agarwal-Cooley Algorithm utilizes the fact that

Sn = P t (Sn1 ⊗ Sn2)P (2.8)

where n = n1n2, (n1, n2) = 1 and P is an appropriate permutation [1]. This converts the one dimensional
circular convolution of length n to a two dimensional one of length n1 along one dimension and length n2

along the second. Then an n1-point and an n2-point circular convolution algorithm can be combined to
obtain an n-point algorithm. In polynomial notation, the mapping accomplished by this permutation P can
be informally indicated by

Y (s) = < X (s)H (s)>sn−1
P⇔ Y (s, t) = < X (s, t)H (s, t)>sn1−1,tn2−1. (2.9)

It should be noted that (2.8) implies that a circulant matrix of size n1n2 can be written as a block circulant
matrix with circulant blocks.

The Split-Nesting algorithm [21] combines the structures of the Winograd and Agarwal-Cooley meth-
ods, so that Sn is transformed to a block diagonal matrix as in (2.7),

Sn ∼ ⊕
d|n

Ψ (d) . (2.10)

Here Ψ (d) = ⊗p|d,p∈PCΦHd(p) where Hd (p) is the highest power of p dividing d, and P is the set of primes.

Example 2.1

S45 ∼

1

CΦ3

CΦ9

CΦ5

CΦ3 ⊗ CΦ5

CΦ9 ⊗ CΦ5

(2.11)

In this structure a multidimensional cyclotomic convolution, represented by Ψ (d), replaces each cyclotomic
convolution in Winograd's algorithm (represented by CΦd

in (2.7). Indeed, if the product of b1, · · · , bk is d
and they are pairwise relatively prime, then CΦd

∼ CΦb1
⊗ · · · ⊗ CΦbk

. This gives a method for combining
cyclotomic convolutions to compute a longer circular convolution. It is like the Agarwal-Cooley method but
requires fewer additions [21].

2.2 Prime Factor Permutations

One can obtain Sn1⊗Sn2 from Sn1n2 when (n1, n2) = 1, for in this case, Sn is similar to Sn1⊗Sn2 , n = n1n2.
Moreover, they are related by a permutation. This permutation is that of the prime factor FFT algorithms
and is employed in nesting algorithms for circular convolution [1], [18]. The permutation is described by
Zalcstein [40], among others, and it is his description we draw on in the following.

Let n = n1n2 where (n1, n2) = 1. De�ne ek, (0 ≤ k ≤ n − 1), to be the standard basis vector,
(0, · · · , 0, 1, 0, · · · , 0)t, where the 1 is in the kth position. Then, the circular shift matrix, Sn, can be described
by

Snek = e < k+1>n
. (2.12)

Note that, by inspection,

(Sn2 ⊗ Sn1) ea+n1b = e < a+1>n1+n1 < b+1>n2
(2.13)

Available for free at Connexions <http://cnx.org/content/col10596/1.4>

6 CHAPTER 2. PRELIMINARIES

where 0 ≤ a ≤ n1 − 1 and 0 ≤ b ≤ n2 − 1. Because n1 and n2 are relatively prime a permutation matrix P
can be de�ned by

Pek = e < k>n1+n1 < k>n2
. (2.14)

With this P ,

PSnek = Pe < k+1>n

= e < < k+1>n>n1+n1 < < k+1>n>n2

= e < k+1>n1+n1 < k+1>n2

(2.15)

and

(Sn2 ⊗ Sn1)Pek = (Sn2 ⊗ Sn1) e < k>n1+n1 < k>n2

= e < k+1>n1+n1 < k+1>n2
.

(2.16)

Since PSnek = (Sn2 ⊗ Sn1)Pek and P−1 = P t, one gets, in the multi-factor case, the following.

Lemma 2.1:

If n = n1 · · ·nk and n1, ..., nk are pairwise relatively prime, then Sn = P t (Snk
⊗ · · · ⊗ Sn1)P

where P is the permutation matrix given by Pek = e < k>n1+n1 < k>n2+···+n1···nk−1 < k>nk
.

This useful permutation will be denoted here as Pnk,··· ,n1 . If n = pe11 p
e2
2 · · · p

ek

k then this permutation

yields the matrix, Spe1
1
⊗ · · · ⊗ Spek

k
. This product can be written simply as

k
⊗
i=1
Spei

i
, so that one has

Sn = P tn1,··· ,nk

(
k
⊗
i=1
Spei

i

)
Pn1,··· ,nk

.

It is quite simple to show that

Pa,b,c = (Ia ⊗ Pb,c)Pa,bc = (Pa,b ⊗ Ic)Pab,c. (2.17)

In general, one has

Pn1,··· ,nk
=

k∏
i=2

(
Pn1···ni−1,ni ⊗ Ini+1···nk

)
. (2.18)

A Matlab function for Pa,b ⊗ Is is pfp2I() in one of the appendices. This program is a direct implemen-
tation of the de�nition. In a paper by Templeton [32], another method for implementing Pa,b, without `if'
statements, is given. That method requires some precalculations, however. A function for Pn1,··· ,nk

is pfp().
It uses (2.18) and calls pfp2I() with the appropriate arguments.

2.3 Reduction Operations

The Chinese Remainder Theorem for polynomials can be used to decompose a convolution of two sequences
(the polynomial product of two polynomials evaluated modulo a third polynomial) into smaller convolutions
(smaller polynomial products) [39]. The Winograd n point circular convolution algorithm requires that
polynomials are reduced modulo the cyclotomic polynomial factors of sn − 1, Φd (s) for each d dividing n.

When n has several prime divisors the reduction operations become quite complicated and writing a
program to implement them is di�cult. However, when n is a prime power, the reduction operations are
very structured and can be done in a straightforward manner. Therefore, by converting a one-dimensional
convolution to a multi-dimensional one, in which the length is a prime power along each dimension, the split
nesting algorithm avoids the need for complicated reductions operations. This is one advantage the split
nesting algorithm has over the Winograd algorithm.

Available for free at Connexions <http://cnx.org/content/col10596/1.4>

7

By applying the reduction operations appropriately to the circular shift matrix, we are able to obtain a
block diagonal form, just as in the Winograd convolution algorithm. However, in the split nesting algorithm,
each diagonal block represents multi-dimensional cyclotomic convolution rather than a one-dimensional one.
By forming multi-dimensional convolutions out of one-dimensional ones, it is possible to combine algorithms
for smaller convolutions (see the next section). This is a second advantage split nesting algorithm has over
the Winograd algorithm. The split nesting algorithm, however, generally uses more than the minimum
number of multiplications.

Below we give an explicit matrix description of the required reduction operations, give a program that
implements them, and give a formula for the number of additions required. (No multiplications are needed.)

First, consider n = p, a prime. Let

X (s) = x0 + x1s+ · · ·+ xp−1s
p−1 (2.19)

and recall sp−1 = (s− 1)
(
sp−1 + sp−2 + · · ·+ s+ 1

)
= Φ1 (s) Φp (s). The residue < X (s)>Φ1(s) is found

by summing the coe�cients of X (s). The residue < X (s)>Φp(s) is given by
∑p−2
k=0 (xk − xp−1) sk. De�ne

Rp to be the matrix that reduces X (s) modulo Φ1 (s) and Φp (s), such that if X0 (s) = < X (s)>Φ1(s)

and X1 (s) = < X (s)>Φp(s) then X0

X1

 = RpX (2.20)

where X, X0 and X1 are vectors formed from the coe�cients of X (s), X0 (s) and X1 (s). That is,

Rp =

1 1 1 1 1

1 −1

1 −1

1 −1

1 −1

(2.21)

so that Rp =

 1−1

Gp

 where Gp is the Φp (s) reduction matrix of size (p− 1) × p. Similarly, let X (s) =

x0 + x1s + · · · + xpe−1sp
e−1

and de�ne Rpe to be the matrix that reduces X (s) modulo Φ1 (s), Φp (s), ...,
Φpe (s) such that

X0

X1

...

Xe

 = RpeX, (2.22)

where as above, X, X0, ..., Xe are the coe�cients of X (s), < X (s)>Φ1(s) , ..., < X (s)>Φpe (s).

It turns out that Rpe can be written in terms of Rp. Consider the reduction of X (s) = x0 + · · ·+x8s
8 by

Φ1 (s) = s− 1, Φ3 (s) = s2 + s+ 1, and Φ9 (s) = s6 + s3 + 1. This is most e�ciently performed by reducing
X (s) in two steps. That is, calculate X ' (s) = < X (s)>s3−1 and X2 (s) = < X (s)>s6+s3+1. Then
calculate X0 (s) = < X ' (s)>s−1 and X1 (s) = < X ' (s)>s2+s+1. In matrix notation this becomes

 X '

X2

 =

I3 I3 I3

I3 −I3
I3 −I3

X and

 X0

X1

 =

1 1 1

1 −1

1 −1

X '. (2.23)

Available for free at Connexions <http://cnx.org/content/col10596/1.4>

8 CHAPTER 2. PRELIMINARIES

Together these become
X0

X1

X2

 =

R3

I3

I3

I3 I3 I3

I3 −I3
I3 −I3

X (2.24)

or
X0

X1

X2

 = (R3 ⊕ I6) (R3 ⊗ I3)X (2.25)

so that R9 = (R3 ⊕ I6) (R3 ⊗ I3) where ⊕ denotes the matrix direct sum. Similarly, one �nds that R27 =
(R3 ⊕ I24) ((R3 ⊗ I3)⊕ I18) (R3 ⊗ I9). In general, one has the following.

Lemma 2.2:

Rpe is a pe × pe matrix given by Rpe =
∏e−1
k=0

((
Rp ⊗ Ipk

)
⊕ Ipe−pk+1

)
and can be implemented

with 2 (pe − 1) additions.
The following formula gives the decomposition of a circular convolution into disjoint non-circular convo-

lutions when the number of points is a prime power.

Rpe Spe R−1
pe =

1

CΦp

. . .

CΦpe

=

e
⊕
i=0
CΦpi

(2.26)

Example 2.2

R9 S9R
−1
9 =

1

CΦ3

CΦ9

 (2.27)

It turns out that when n is not a prime power, the reduction of polynomials modulo the cyclotomic poly-
nomial Φn (s) becomes complicated, and with an increasing number of prime factors, the complication
increases. Recall, however, that a circular convolution of length pe11 · · · p

ek

k can be converted (by an appro-
priate permutation) into a k dimensional circular convolution of length pei

i along dimension i. By employing
this one-dimensional to multi-dimensional mapping technique, one can avoid having to perform polynomial
reductions modulo Φn (s) for non-prime-power n.

The prime factor permutation discussed previously is the permutation that converts a one-dimensional
circular convolution into a multi-dimensional one. Again, we can use the Kronecker product to represent
this. In this case, the reduction operations are applied to each matrix in the following way:

T
(
Spe1

1
⊗ · · · ⊗ Spek

k

)
T−1 =

(
⊕e1i=0CΦ

pi
1

)
⊗ · · · ⊗

(
⊕ek
i=0CΦ

pi
k

)
(2.28)

where

T = Rpe1
1
⊗ · · · ⊗Rpek

k
(2.29)

Available for free at Connexions <http://cnx.org/content/col10596/1.4>

9

Example 2.3

T (S9 ⊗ S5)T−1 =

1

CΦ3

CΦ9

⊗
 1

CΦ5

 (2.30)

where T = R9 ⊗R5.

The matrix Rpe1
1
⊗ · · · ⊗ Rpek

k
can be factored using a property of the Kronecker product. Notice that

(A⊗B) = (A⊗ I) (I ⊗B), and (A⊗B ⊗ C) = (A⊗ I) (I ⊗B ⊗ I) (I ⊗ C) (with appropriate dimensions)
so that one gets

k
⊗
i=1
Rpei

i
=

k∏
i=1

(
Imi ⊗Rpei

i
⊗ Ini

)
, (2.31)

where mi =
∏i−1
j=1 p

ej

j , ni =
∏k
j=i+1 p

ej

j and where the empty product is taken to be 1. This factorization
shows that T can be implemented basically by implementing copies of Rpe . There are many variations on
this factorization as explained in [35]. That the various factorization can be interpreted as vector or parallel
implementations is also explained in [35].

Example 2.4

R9 ⊗R5 = (R9 ⊗ I5) (I9 ⊗R5) (2.32)

and

R9 ⊗R25 ⊗R7 = (R9 ⊗ I175) (I9 ⊗R25 ⊗ I7) (I225 ⊗R7) (2.33)

When this factored form of ⊗Rni
or any of the variations alluded to above, is used, the number of additions

incurred is given by ∑k
i=1

N
p

ei
i

A
(
Rpei

i

)
=

∑k
i=1

N
p

ei
i

2 (pei
i − 1)

= 2N
∑k
i=1 1− 1

p
ei
i

= 2N
(
k −

∑k
i=1

1
p

ei
i

) (2.34)

where N = pe11 · · · p
ek

k .
Although the use of operations of the form Rpe1

1
⊗ · · · ⊗ Rpek

k
is simple, it does not exactly separate the

circular convolution into smaller disjoint convolutions. In other words, its use does not give rise in (2.28)
and (2.30) to block diagonal matrices whose diagonal blocks are the form ⊗iCΦpi

. However, by reorganizing
the arrangement of the operations we can obtain the block diagonal form we seek.

First, suppose A, B and C are matrices of sizes a× a, b× b and c× c respectively. If

TBT−1 =

 B1

B2

 (2.35)

where B1 and B2 are matrices of sizes b1 × b1 and b2 × b2, then

Q (A⊗B ⊗ C)Q−1 =

A⊗B1 ⊗ C

A⊗B2 ⊗ C

 (2.36)

Available for free at Connexions <http://cnx.org/content/col10596/1.4>

10 CHAPTER 2. PRELIMINARIES

where

Q =

 Ia ⊗ T (1 : b1, :)⊗ Ic
Ia ⊗ T (b1 + 1 : b, :)⊗ Ic

 . (2.37)

Here T (1 : b1, :) denotes the �rst b1 rows and all the columns of T and similarly for T (b1 + 1 : b, :). Note
that A⊗B1 ⊗ C

A⊗B2 ⊗ C

 6= A⊗

 B1

B2

⊗ C. (2.38)

That these two expressions are not equal explains why the arrangement of operations must be reorganized
in order to obtain the desired block diagonal form. The appropriate reorganization is described by the
expression in (2.37). Therefore, we must modify the transformation of (2.28) appropriately. It should be
noted that this reorganization of operations does not change their computational cost. It is still given by
(2.34).

For example, we can use this observation and the expression in (2.37) to arrive at the following similarity
transformation:

Q (Sp1 ⊗ Sp2)Q−1 =

1

CΦp1

CΦp2

CΦp1
⊗ CΦp2

 (2.39)

where

Q =

 Ip1 ⊗ 1t−p2

Ip1 ⊗Gp2

 (Rp1 ⊗ Ip2) (2.40)

1−p is a column vector of p 1's

1−p =
[

1 1 · · · 1
]t

(2.41)

and Gp is the (p− 1)× p matrix:

Gp =

1 −1

1 −1
. . .

...

1 −1

 =
[
Ip−1 − 1p−1

]
. (2.42)

In general we have

R
(
Spe1

1
⊗ · · · ⊗ Spek

k

)
R−1 = ⊕

d|n
Ψ (d) (2.43)

where R = Rpe1
1 ,··· ,pek

k
is given by

Rpe1
1 ,··· ,pek

k
=

1∏
i=k

Q (mi, p
ei
i , ni) (2.44)

Available for free at Connexions <http://cnx.org/content/col10596/1.4>

11

with mi =
∏i−1
j=1 p

ej

j , ni =
∏k
j=i+1 p

ej

j and

Q (a, pe, c) =
e−1∏
j=0

Ia ⊗ 1t−p ⊗ Icpj

Ia ⊗Gp ⊗ Icpj

Iac(pe−pj+1)

 . (2.45)

1−p and Gp are as given in (2.41) and (2.42).

Example 2.5

R (S9 ⊗ S5)R−1 =

1

CΦ3

CΦ9

CΦ5

CΦ3 ⊗ CΦ5

CΦ9 ⊗ CΦ5

(2.46)

where

R = R9,5

= Q (9, 5, 1)Q (1, 9, 5)
(2.47)

and R can be implemented with 152 additions.

Notice the distinction between this example and example "Reduction Operations" (Section 2.3: Reduction
Operations). In example "Reduction Operations" (Section 2.3: Reduction Operations) we obtained from
S9 ⊗ S5 a Kronecker product of two block diagonal matrices, but here we obtained a block diagonal matrix
whose diagonal blocks are the Kronecker product of cyclotomic companion matrices. Each block in (2.46)
represents a multi-dimensional cyclotomic convolution.

A Matlab program that carries out the operation Rpe1
1 ,··· ,pek

k
in (2.43) is KRED() .

function x = KRED(P,E,K,x)

% x = KRED(P,E,K,x);

% P : P = [P(1),...,P(K)];

% E : E = [E(K),...,E(K)];

for i = 1:K

a = prod(P(1:i-1).^E(1:i-1));

c = prod(P(i+1:K).^E(i+1:K));

p = P(i);

e = E(i);

for j = e-1:-1:0

x(1:a*c*(p^(j+1))) = RED(p,a,c*(p^j),x(1:a*c*(p^(j+1))));

end

end

It calls the Matlab program RED() .

function y = RED(p,a,c,x)

% y = RED(p,a,c,x);

y = zeros(a*c*p,1);

for i = 0:c:(a-1)*c

for j = 0:c-1

y(i+j+1) = x(i*p+j+1);

Available for free at Connexions <http://cnx.org/content/col10596/1.4>

Thank You for previewing this eBook
You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can
access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

