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Preface to Pfei�er Applied Probability1

The course

This is a "�rst course" in the sense that it presumes no previous course in probability. The units are
modules taken from the unpublished text: Paul E. Pfei�er, ELEMENTS OF APPLIED PROBABILITY,
USING MATLAB. The units are numbered as they appear in the text, although of course they may be used
in any desired order. For those who wish to use the order of the text, an outline is provided, with indication
of which modules contain the material.

The mathematical prerequisites are ordinary calculus and the elements of matrix algebra. A few standard
series and integrals are used, and double integrals are evaluated as iterated integrals. The reader who can
evaluate simple integrals can learn quickly from the examples how to deal with the iterated integrals used
in the theory of expectation and conditional expectation. Appendix B (Section 17.2) provides a convenient
compendium of mathematical facts used frequently in this work. And the symbolic toolbox, implementing
MAPLE, may be used to evaluate integrals, if desired.

In addition to an introduction to the essential features of basic probability in terms of a precise mathe-
matical model, the work describes and employs user de�ned MATLAB procedures and functions (which we
refer to as m-programs, or simply programs) to solve many important problems in basic probability. This
should make the work useful as a stand alone exposition as well as a supplement to any of several current
textbooks.

Most of the programs developed here were written in earlier versions of MATLAB, but have been revised
slightly to make them quite compatible with MATLAB 7. In a few cases, alternate implementations are
available in the Statistics Toolbox, but are implemented here directly from the basic MATLAB program,
so that students need only that program (and the symbolic mathematics toolbox, if they desire its aid in
evaluating integrals).

Since machine methods require precise formulation of problems in appropriate mathematical form, it
is necessary to provide some supplementary analytical material, principally the so-called minterm analysis.
This material is not only important for computational purposes, but is also useful in displaying some of the
structure of the relationships among events.

A probability model

Much of "real world" probabilistic thinking is an amalgam of intuitive, plausible reasoning and of statistical
knowledge and insight. Mathematical probability attempts to to lend precision to such probability analysis
by employing a suitablemathematical model, which embodies the central underlying principles and structure.
A successful model serves as an aid (and sometimes corrective) to this type of thinking.

Certain concepts and patterns have emerged from experience and intuition. The mathematical formu-
lation (the mathematical model) which has most successfully captured these essential ideas is rooted in
measure theory, and is known as the Kolmogorov model, after the brilliant Russian mathematician A.N.
Kolmogorov (1903-1987).

1This content is available online at <http://cnx.org/content/m23242/1.8/>.
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One cannot prove that a model is correct. Only experience may show whether it is useful (and not
incorrect). The usefulness of the Kolmogorov model is established by examining its structure and show-
ing that patterns of uncertainty and likelihood in any practical situation can be represented adequately.
Developments, such as in this course, have given ample evidence of such usefulness.

The most fruitful approach is characterized by an interplay of

• A formulation of the problem in precise terms of the model and careful mathematical analysis of the
problem so formulated.

• A grasp of the problem based on experience and insight. This underlies both problem formulation
and interpretation of analytical results of the model. Often such insight suggests approaches to the
analytical solution process.

MATLAB: A tool for learning

In this work, we make extensive use of MATLAB as an aid to analysis. I have tried to write the MATLAB
programs in such a way that they constitute useful, ready-made tools for problem solving. Once the user
understands the problems they are designed to solve, the solution strategies used, and the manner in which
these strategies are implemented, the collection of programs should provide a useful resource.

However, my primary aim in exposition and illustration is to aid the learning process and to deepen
insight into the structure of the problems considered and the strategies employed in their solution. Several
features contribute to that end.

1. Application of machine methods of solution requires precise formulation. The data available and the
fundamental assumptions must be organized in an appropriate fashion. The requisite discipline for
such formulation often contributes to enhanced understanding of the problem.

2. The development of a MATLAB program for solution requires careful attention to possible solution
strategies. One cannot instruct the machine without a clear grasp of what is to be done.

3. I give attention to the tasks performed by a program, with a general description of how MATLAB
carries out the tasks. The reader is not required to trace out all the programming details. However,
it is often the case that available MATLAB resources suggest alternative solution strategies. Hence,
for those so inclined, attention to the details may be fruitful. I have included, as a separate collection,
the m-�les written for this work. These may be used as patterns for extensions as well as programs in
MATLAB for computations. Appendix A (Section 17.1) provides a directory of these m-�les.

4. Some of the details in the MATLAB script are presentation details. These are re�nements which are
not essential to the solution of the problem. But they make the programs more readily usable. And
they provide illustrations of MATLAB techniques for those who may wish to write their own programs.
I hope many will be inclined to go beyond this work, modifying current programs or writing new ones.

An Invitation to Experiment and Explore

Because the programs provide considerable freedom from the burden of computation and the tyranny of
tables (with their limited ranges and parameter values), standard problems may be approached with a new
spirit of experiment and discovery. When a program is selected (or written), it embodies one method of
solution. There may be others which are readily implemented. The reader is invited, even urged, to explore!
The user may experiment to whatever degree he or she �nds useful and interesting. The possibilities are
endless.

Acknowledgments

After many years of teaching probability, I have long since lost track of all those authors and books which
have contributed to the treatment of probability in this work. I am aware of those contributions and am

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



3

most eager to acknowledge my indebtedness, although necessarily without speci�c attribution.
The power and utility of MATLAB must be attributed to to the long-time commitment of Cleve Moler,

who made the package available in the public domain for several years. The appearance of the professional
versions, with extended power and improved documentation, led to further appreciation and utilization of
its potential in applied probability.

The Mathworks continues to develop MATLAB and many powerful "tool boxes," and to provide leader-
ship in many phases of modern computation. They have generously made available MATLAB 7 to aid in
checking for compatibility the programs written with earlier versions. I have not utilized the full potential
of this version for developing professional quality user interfaces, since I believe the simpler implementations
used herein bring the student closer to the formulation and solution of the problems studied.
CONNEXIONS
The development and organization of the CONNEXIONS modules has been achieved principally by two
people: C.S.(Sid) Burrus a former student and later a faculty colleague, then Dean of Engineering, and most
importantly a long time friend; and Daniel Williamson, a music major whose keyboard skills have enabled
him to set up the text (especially the mathematical expressions) with great accuracy, and whose dedication
to the task has led to improvements in presentation. I thank them and others of the CONNEXIONS team
who have contributed to the publication of this work.

Paul E. Pfei�er
Rice University

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



4

Available for free at Connexions <http://cnx.org/content/col10708/1.6>



Chapter 1

Probability Systems

1.1 Likelihood1

1.1.1 Introduction

Probability models and techniques permeate many important areas of modern life. A variety of types of
random processes, reliability models and techniques, and statistical considerations in experimental work play
a signi�cant role in engineering and the physical sciences. The solutions of management decision problems
use as aids decision analysis, waiting line theory, inventory theory, time series, cost analysis under uncertainty
� all rooted in applied probability theory. Methods of statistical analysis employ probability analysis as an
underlying discipline.

Modern probability developments are increasingly sophisticated mathematically. To utilize these, the
practitioner needs a sound conceptual basis which, fortunately, can be attained at a moderate level of
mathematical sophistication. There is need to develop a feel for the structure of the underlying mathematical
model, for the role of various types of assumptions, and for the principal strategies of problem formulation
and solution.

Probability has roots that extend far back into antiquity. The notion of �chance� played a central role in
the ubiquitous practice of gambling. But chance acts were often related to magic or religion. For example,
there are numerous instances in the Hebrew Bible in which decisions were made �by lot� or some other
chance mechanism, with the understanding that the outcome was determined by the will of God. In the
New Testament, the book of Acts describes the selection of a successor to Judas Iscariot as one of �the
Twelve.� Two names, Joseph Barsabbas and Matthias, were put forward. The group prayed, then drew lots,
which fell on Matthias.

Early developments of probability as a mathematical discipline, freeing it from its religious and magical
overtones, came as a response to questions about games of chance played repeatedly. The mathematical
formulation owes much to the work of Pierre de Fermat and Blaise Pascal in the seventeenth century. The
game is described in terms of a well de�ned trial (a play); the result of any trial is one of a speci�c set of
distinguishable outcomes. Although the result of any play is not predictable, certain �statistical regularities�
of results are observed. The possible results are described in ways that make each result seem equally likely.
If there are N such possible �equally likely� results, each is assigned a probability 1/N .

The developers of mathematical probability also took cues from early work on the analysis of statistical
data. The pioneering work of John Graunt in the seventeenth century was directed to the study of �vital
statistics,� such as records of births, deaths, and various diseases. Graunt determined the fractions of people
in London who died from various diseases during a period in the early seventeenth century. Some thirty
years later, in 1693, Edmond Halley (for whom the comet is named) published the �rst life insurance tables.
To apply these results, one considers the selection of a member of the population on a chance basis. One

1This content is available online at <http://cnx.org/content/m23243/1.8/>.
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then assigns the probability that such a person will have a given disease. The trial here is the selection of
a person, but the interest is in certain characteristics. We may speak of the event that the person selected
will die of a certain disease� say �consumption.� Although it is a person who is selected, it is death from
consumption which is of interest. Out of this statistical formulation came an interest not only in probabilities
as fractions or relative frequencies but also in averages or expectatons. These averages play an essential role
in modern probability.

We do not attempt to trace this history, which was long and halting, though marked by �ashes of
brilliance. Certain concepts and patterns which emerged from experience and intuition called for clari�ca-
tion. We move rather directly to the mathematical formulation (the �mathematical model�) which has most
successfully captured these essential ideas. This is the model, rooted in the mathematical system known as
measure theory, is called the Kolmogorov model, after the brilliant Russian mathematician A.N. Kolmogorov
(1903-1987). Kolmogorov succeeded in bringing together various developments begun at the turn of the cen-
tury, principally in the work of E. Borel and H. Lebesgue on measure theory. Kolmogorov published his
epochal work in German in 1933. It was translated into English and published in 1956 by Chelsea Publishing
Company.

1.1.2 Outcomes and events

Probability applies to situations in which there is a well de�ned trial whose possible outcomes are found
among those in a given basic set. The following are typical.

• A pair of dice is rolled; the outcome is viewed in terms of the numbers of spots appearing on the top
faces of the two dice. If the outcome is viewed as an ordered pair, there are thirty six equally likely
outcomes. If the outcome is characterized by the total number of spots on the two die, then there are
eleven possible outcomes (not equally likely).

• A poll of a voting population is taken. Outcomes are characterized by responses to a question. For
example, the responses may be categorized as positive (or favorable), negative (or unfavorable), or
uncertain (or no opinion).

• A measurement is made. The outcome is described by a number representing the magnitude of the
quantity in appropriate units. In some cases, the possible values fall among a �nite set of integers. In
other cases, the possible values may be any real number (usually in some speci�ed interval).

• Much more sophisticated notions of outcomes are encountered in modern theory. For example, in
communication or control theory, a communication system experiences only one signal stream in its
life. But a communication system is not designed for a single signal stream. It is designed for one of
an in�nite set of possible signals. The likelihood of encountering a certain kind of signal is important
in the design. Such signals constitute a subset of the larger set of all possible signals.

These considerations show that our probability model must deal with

• A trial which results in (selects) an outcome from a set of conceptually possible outcomes. The trial
is not successfully completed until one of the outcomes is realized.

• Associated with each outcome is a certain characteristic (or combination of characteristics) pertinent
to the problem at hand. In polling for political opinions, it is a person who is selected. That person
has many features and characteristics (race, age, gender, occupation, religious preference, preferences
for food, etc.). But the primary feature, which characterizes the outcome, is the political opinion on
the question asked. Of course, some of the other features may be of interest for analysis of the poll.

Inherent in informal thought, as well as in precise analysis, is the notion of an event to which a probability
may be assigned as a measure of the likelihood the event will occur on any trial. A successful mathematical
model must formulate these notions with precision. An event is identi�ed in terms of the characteristic of
the outcome observed. The event �a favorable response� to a polling question occurs if the outcome observed
has that characteristic; i.e., i� (if and only if) the respondent replies in the a�rmative. A hand of �ve cards
is drawn. The event �one or more aces� occurs i� the hand actually drawn has at least one ace. If that same
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hand has two cards of the suit of clubs, then the event �two clubs� has occurred. These considerations lead
to the following de�nition.

De�nition. The event determined by some characteristic of the possible outcomes is the set of those
outcomes having this characteristic. The event occurs i� the outcome of the trial is a member of that set
(i.e., has the characteristic determining the event).

• The event of throwing a �seven� with a pair of dice (which we call the event SEVEN) consists of the
set of those possible outcomes with a total of seven spots turned up. The event SEVEN occurs i� the
outcome is one of those combinations with a total of seven spots (i.e., belongs to the event SEVEN).
This could be represented as follows. Suppose the two dice are distinguished (say by color) and a
picture is taken of each of the thirty six possible combinations. On the back of each picture, write the
number of spots. Now the event SEVEN consists of the set of all those pictures with seven on the
back. Throwing the dice is equivalent to selecting randomly one of the thirty six pictures. The event
SEVEN occurs i� the picture selected is one of the set of those pictures with seven on the back.

• Observing for a very long (theoretically in�nite) time the signal passing through a communication
channel is equivalent to selecting one of the conceptually possible signals. Now such signals have many
characteristics: the maximum peak value, the frequency spectrum, the degree of di�erentibility, the
average value over a given time period, etc. If the signal has a peak absolute value less than ten volts,
a frequency spectrum essentially limited from 60 herz to 10,000 herz, with peak rate of change 10,000
volts per second, then it is one of the set of signals with those characteristics. The event "the signal has
these characteristics" has occured. This set (event) consists of an uncountable in�nity of such signals.

One of the advantages of this formulation of an event as a subset of the basic set of possible outcomes is that
we can use elementary set theory as an aid to formulation. And tools, such as Venn diagrams and indicator
functions (Section 1.3) for studying event combinations, provide powerful aids to establishing and visualizing
relationships between events. We formalize these ideas as follows:

• Let Ω be the set of all possible outcomes of the basic trial or experiment. We call this the basic space
or the sure event, since if the trial is carried out successfully the outcome will be in Ω; hence, the event
Ω is sure to occur on any trial. We must specify unambiguously what outcomes are �possible.� In
�ipping a coin, the only accepted outcomes are �heads� and �tails.� Should the coin stand on its edge,
say by leaning against a wall, we would ordinarily consider that to be the result of an improper trial.

• As we note above, each outcome may have several characteristics which are the basis for describing
events. Suppose we are drawing a single card from an ordinary deck of playing cards. Each card is
characterized by a �face value� (two through ten, jack, queen, king, ace) and a �suit� (clubs, hearts,
diamonds, spades). An ace is drawn (the event ACE occurs) i� the outcome (card) belongs to the
set (event) of four cards with ace as face value. A heart is drawn i� the card belongs to the set of
thirteen cards with heart as suit. Now it may be desirable to specify events which involve various
logical combinations of the characteristics. Thus, we may be interested in the event the face value
is jack or king and the suit is heart or spade. The set for jack or king is represented by the union
J ∪K and the set for heart or spade is the union H ∪S. The occurrence of both conditions means the
outcome is in the intersection (common part) designated by ∩. Thus the event referred to is

E = (J ∪K) ∩ (H ∪ S) (1.1)

The notation of set theory thus makes possible a precise formulation of the event E.
• Sometimes we are interested in the situation in which the outcome does not have one of the charac-

teristics. Thus the set of cards which does not have suit heart is the set of all those outcomes not in
event H. In set theory, this is the complementary set (event) Hc.

• Events are mutually exclusive i� not more than one can occur on any trial. This is the condition that
the sets representing the events are disjoint (i.e., have no members in common).

• The notion of the impossible event is useful. The impossible event is, in set terminology, the empty
set∅. Event ∅ cannot occur, since it has no members (contains no outcomes). One use of ∅ is to
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provide a simple way of indicating that two sets are mutually exclusive. To say AB = ∅ (here we
use the alternate AB for A ∩B) is to assert that events A and B have no outcome in common, hence
cannot both occur on any given trial.

• Set inclusion provides a convenient way to designate the fact that event A implies event B, in the sense
that the occurrence of A requires the occurrence of B. The set relation A ⊂ B signi�es that every
element (outcome) in A is also in B. If a trial results in an outcome in A (event A occurs), then that
outcome is also in B (so that event B has occurred).

The language and notaton of sets provide a precise language and notation for events and their combinations.
We collect below some useful facts about logical (often called Boolean) combinations of events (as sets). The
notion of Boolean combinations may be applied to arbitrary classes of sets. For this reason, it is sometimes
useful to use an index set to designate membership. We say the index J is countable if it is �nite or countably
in�nite; otherwise it is uncountable. In the following it may be arbitrary.

{Ai : i ∈ J} is the class of sets Ai, one for each index i in the index set J (1.2)

For example, if J = {1, 2, 3} then {Ai : i ∈ J} is the class {A1, A2, A3}, and⋃
i∈J

Ai = A1 ∪A2 ∪A3,
⋂
i∈J

Ai = A1 ∩A2 ∩A3, (1.3)

If J = {1, 2, · · · } then {Ai : i ∈ J} is the sequence {A1 : 1 ≤ i}. and

⋃
i∈J

Ai =
∞⋃
i=1

Ai,
⋂
i∈J

Ai =
∞⋂
i=1

Ai (1.4)

If event E is the union of a class of events, then event E occurs i� at least one event in the class occurs. If
F is the intersection of a class of events, then event F occurs i� all events in the class occur on the trial.

The role of disjoint unions is so important in probability that it is useful to have a symbol indicating
the union of a disjoint class. We use the big V to indicate that the sets combined in the union are disjoint.
Thus, for example, we write

A =
n∨
i=1

Ai to signify A =
n⋃
i=1

Ai with the proviso that the Ai form a disjoint class (1.5)

Example 1.1: Events derived from a class
Consider the class {E1, E2, E3} of events. Let Ak be the event that exactly k occur on a trial and
Bk be the event that k or more occur on a trial. Then

A0 = Ec
1E

c
2E

c
3, A1 = E1E

c
2E

c
3

∨
Ec

1E2E
c
3

∨
Ec

1E
c
2E3 A2 =

E1E2E
c
3

∨
E1E

c
2E3

∨
Ec

1E2E3, A3 = E1E2E3

(1.6)

The unions are disjoint since each pair of terms has Ei in one and Ei
c in the other, for at least

one i. Now the Bk can be expressed in terms of the Ak. For example

B2 = A2

∨
A3 (1.7)

The union in this expression for B2 is disjoint since we cannot have exactly two of the Ei occur
and exactly three of them occur on the same trial. We may express B2 directly in terms of the Ei
as follows:

B2 = E1E2 ∪ E1E3 ∪ E2E3 (1.8)
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Here the union is not disjoint, in general. However, if one pair, say {E1, E3} is disjoint, then
E1E3 = ∅ and the pair {E1E2, E2E3} is disjoint (draw a Venn diagram). Suppose C is the event
the �rst two occur or the last two occur but no other combination. Then

C = E1E2E
c
3

∨
Ec1E2E3 (1.9)

Let D be the event that one or three of the events occur.

D = A1

∨
A3 = E1E

c
2E

c
3

∨
Ec1E2E

c
3

∨
Ec1E

c
2E3

∨
E1E2E3 (1.10)

Two important patterns in set theory known as DeMorgan's rules are useful in the handling of events. For
an arbitrary class {Ai : i ∈ J} of events,[⋃

i∈J
Ai

]c
=
⋂
i∈J

Aci and

[⋂
i∈J

Ai

]c
=
⋃
i∈J

Aci (1.11)

An outcome is not in the union (i.e., not in at least one) of the Ai i� it fails to be in all Ai, and it is not in
the intersection (i.e. not in all) i� it fails to be in at least one of the Ai.

Example 1.2: Continuation of Example 1.1 (Events derived from a class)
Express the event of no more than one occurrence of the events in {E1, E2, E3} as B2c.

Bc2 = [E1E2 ∪ E1E3 ∪ E2E3]c = (Ec1 ∪ Ec2) (Ec1 ∪ Ec3)
(
E3

2E
c
3

)
= Ec1E

c
2 ∪ Ec1Ec3 ∪ Ec2Ec3 (1.12)

The last expression shows that not more than one of the Ei occurs i� at least two of them fail to
occur.

1.2 Probability Systems2

1.2.1 Probability measures

In the module "Likelihood" (Section 1.1) we introduce the notion of a basic space Ω of all possible outcomes
of a trial or experiment, events as subsets of the basic space determined by appropriate characteristics of
the outcomes, and logical or Boolean combinations of the events (unions, intersections, and complements)
corresponding to logical combinations of the de�ning characteristics.

Occurrence or nonoccurrence of an event is determined by characteristics or attributes of the outcome
observed on a trial. Performing the trial is visualized as selecting an outcome from the basic set. An
event occurs whenever the selected outcome is a member of the subset representing the event. As described
so far, the selection process could be quite deliberate, with a prescribed outcome, or it could involve the
uncertainties associated with �chance.� Probability enters the picture only in the latter situation. Before the
trial is performed, there is uncertainty about which of these latent possibilities will be realized. Probability
traditionally is a number assigned to an event indicating the likelihood of the occurrence of that event on
any trial.

We begin by looking at the classical model which �rst successfully formulated probability ideas in math-
ematical form. We use modern terminology and notation to describe it.

Classical probability

1. The basic space Ω consists of a �nite number N of possible outcomes.

- There are thirty six possible outcomes of throwing two dice.

2This content is available online at <http://cnx.org/content/m23244/1.8/>.
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