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Preface to Analysis of Functions of a

Single Variable: A Detailed

Development1

For Christy My Light
I have written this book primarily for serious and talented mathematics scholars, seniors or �rst-year

graduate students, who by the time they �nish their schooling should have had the opportunity to study in
some detail the great discoveries of our subject. What did we know and how and when did we know it? I
hope this book is useful toward that goal, especially when it comes to the great achievements of that part
of mathematics known as analysis. I have tried to write a complete and thorough account of the elementary
theories of functions of a single real variable and functions of a single complex variable. Separating these
two subjects does not at all jive with their development historically, and to me it seems unnecessary and
potentially confusing to do so. On the other hand, functions of several variables seems to me to be a very
di�erent kettle of �sh, so I have decided to limit this book by concentrating on one variable at a time.

Everyone is taught (told) in school that the area of a circle is given by the formula A = πr2. We are also
told that the product of two negatives is a positive, that you cant trisect an angle, and that the square root of
2 is irrational. Students of natural sciences learn that eiπ = −1 and that sin2 +cos2 = 1. More sophisticated
students are taught the Fundamental Theorem of calculus and the Fundamental Theorem of Algebra. Some
are also told that it is impossible to solve a general �fth degree polynomial equation by radicals. On the
other hand, very few people indeed have the opportunity to �nd out precisely why these things are really
true, and at the same time to realize just how intellectually deep and profound these �facts� are. Indeed, we
mathematicians believe that these facts are among the most marvelous accomplishments of the human mind.
Engineers and scientists can and do commit such mathematical facts to memory, and quite often combine
them to useful purposes. However, it is left to us mathematicians to share the basic knowledge of why and
how, and happily to us this is more a privilege than a chore. A large part of what makes the veri�cation
of such simple sounding and elementary truths so di�cult is that we of necessity must spend quite a lot
of energy determining what the relevant words themselves really mean. That is, to be quite careful about
studying mathematics, we need to ask very basic questions: What is a circle? What are numbers? What
is the de�nition of the area of a set in the Euclidean plane? What is the precise de�nition of numbers like
π,i, and e? We surely cannot prove that eiπ = −1 without a clear de�nition of these particular numbers.
The mathematical analysis story is a long one, beginning with the early civilizations, and in some sense only
coming to a satisfactory completion in the late nineteenth century. It is a story of ideas, well worth learning.

There are many many fantastic mathematical truths (facts), and it seems to me that some of them are
so beautiful and fundamental to human intellectual development, that a student who wants to be called a
mathematician, ought to know how to explain them, or at the very least should have known how to explain
them at some point. Each professor might make up a slightly di�erent list of such truths. Here is mine:

1. The square root of 2 is a real number but is not a rational number.

1This content is available online at <http://cnx.org/content/m36084/1.3/>.
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2. The formula for the area of a circle of radius r is A = πr2.
3. The formula for the circumference of a circle of radius r is C = 2πr.
4. eiπ = −1.
5. The Fundamental Theorem of Calculus,

∫ b
a
f (t) dt = F (b)− F (a) .

6. The Fundamental Theorem of Algebra, every nonconstant polynomial has at least one root in the
complex numbers.

7. It is impossible to trisect an arbitrary angle using only a compass and straight edge.

Other mathematical marvels, such as the fact that there are more real numbers than there are rationals,
the set of all sets is not a set, an arbitrary �fth degree polynomial equation can not be solved in terms of
radicals, a simple closed curve divides the plain into exactly two components, there are an in�nite number
of primes, etc., are clearly wonderful results, but the seven in the list above are really of a more primary
nature to me, an analyst, for they stem from the work of ancient mathematicians and except for number 7,
which continues to this day to evoke so-called disproofs, have been accepted as true by most people even in
the absence of precise �arguments� for hundreds if not thousands of years. Perhaps one should ruminate on
why it took so long for us to formulate precise de�nitions of things like numbers and areas?

Only with the advent of calculus in the seventeenth century, together with the contributions of people
like Euler, Cauchy, and Weierstrass during the next two hundred years, were the �rst six items above really
proved, and only with the contributions of Galois in the early nineteenth century was the last one truly
understood.

This text, while including a traditional treatment of introductory analysis, speci�cally addresses, as kinds
of milestones, the �rst six of these truths and gives careful derivations of them. The seventh, which looks
like an assertion from geometry, turns out to be an algebraic result that is not appropriate for this course in
analysis, but in my opinion it should de�nitely be presented in an undergraduate algebra course. As for the
�rst six, I insist here on developing precise mathematical de�nitions of all the relevant notions, and moving
step by step through their derivations. Speci�cally, what are the de�nitions of

√
2, A, π, r, r2, C, 2, e, i, , and

−1? My feeling is that mathematicians should understand exactly where these concepts come from in precise
mathematical terms, why it took so long to discover these de�nitions, and why the various relations among
them hold.

The numbers −1, 2, and i can be disposed of fairly quickly by a discussion of what exactly is meant by
the real and complex number systems. Of course, this is in fact no trivial matter, having had to wait until
the end of the nineteenth century for a clear explanation, and in fact I leave the actual proof of the existence
of the real numbers to an appendix. However, a complete mathematics education ought to include a study
of this proof, and if one �nds the time in this analysis course, it really should be included here. Having a
de�nition of the real numbers to work with, i.e., having introduced the notion of least upper bound, one
can relatively easily prove that there is a real number whose square is 2, and that this number can not be
a rational number, thereby disposing of the �rst of our goals. All this is done in Section 1.1. Maintaining
the attitude that we should not distinguish between functions of a real variable and functions of a complex
variable, at least at the beginning of the development, Section 1.1 concludes with a careful introduction of
the basic properties of the �eld of complex numbers.

unlike the elementary numbers −1, 2, and i, the de�nitions of the real numbers e and π are quite a
di�erent story. In fact, one cannot make sense of either e or π until a substantial amount of analysis has
been developed, for they both are necessarily de�ned somehow in terms of a limit process. I have chosen
to de�ne e here as the limit of the rather intriguing sequence {

(
1 + 1

n

)n}, in some ways the �rst nontrivial
example of a convergent sequence, and this is presented in Section 2.1. Its relation to logarithms and
exponentials, whatever they are, has to be postponed to Section 4.1. Section 2.1 also contains a section on
the elementary topological properties (compactness, limit points, etc.) of the real and complex numbers as
well as a thorough development of in�nite series.

To de�ne π as the ratio of the circumference of a circle to its diameter is attractive, indeed was quite
acceptable to Euclid, but is dangerously imprecise unless we have at the outset a clear de�nition of what is
meant by the length of a curve, e.g., the circumference of a circle. That notion is by no means trivial, and
in fact it only can be carefully treated in a development of analysis well after other concepts. Rather, I have

Available for free at Connexions <http://cnx.org/content/col11249/1.1>
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chosen to de�ne π here as the smallest positive zero of the sine function. Of course, I have to de�ne the
sine function �rst, and this is itself quite deep. I do it using power series functions, choosing to avoid the
common de�nition of the trigonometric functions in terms of � wrapping� the real line around a circle, for
that notion again requires a precise de�nition of arc length before it would make sense. I get to arc length
eventually, but not until Section 6.1.

In Section 3.1 I introduce power series functions as generalizations of polynomials, speci�cally the three
power series functions that turn out to be the exponential, sine, and cosine functions. From these de�nitions
it follows directly that expiz = cosz+ isinz for every complex number z. Here is a place where allowing the
variable to be complex is critical, and it has cost us nothing. However, even after establishing that there is
in fact a smallest positive zero of the sine function (which we decide to call π, since we know how we want
things to work out), one cannot at this point deduce that cosπ = −1, so that the equality eiπ = −1 also has
to wait for its derivation until Section 4.1. In fact, more serious, we have no knowledge at all at this point
of the function ez for a complex exponent z. What does it mean to raise a real number, or even an integer,
to a complex exponent? The very de�nition of such a function has to wait.

Section 3.1 also contains all the standard theorems about continuous functions, culminating with a
lengthy section on uniform convergence, and �nally Abel's fantastic theorem on the continuity of a power
series function on the boundary of its disk of convergence.

The fourth chapter begins with all the usual theorems from calculus, Mean Value Theorem, Chain Rule,
First Derivative Test, and so on. Power series functions are shown to be di�erentiable, from which the
law of exponents emerges for the power series function exp. Immediately then, all of the trigonometric
and exponential identities are also derived. We observe that er = exp (r) for every rational number r, and
we at last can de�ne consistently ez to be the value of the power series function exp (z) for any complex
number z. From that, we establish the equation eiπ = −1. Careful proofs of Taylor's Remainder Theorem and
L'Hopital's Rule are given, as well as an initial approach to the general Binomial Theorem for non-integer
exponents.

It is in Section 4.1 that the �rst glimpse of a di�erence between functions of a real variable and functions
of a complex variable emerges. For example, one of the results in this chapter is that every di�erentiable,
real-valued function of a complex variable must be a constant function, something that is certainly not true
for functions of a real variable. At the end of this chapter, I brie�y slip into the realm of real-valued functions
of two real variables. I introduce the de�nition of di�erentiability of such a function of two real variables,
and then derive the initial relationships among the partial derivatives of such a function and the derivative
of that function thought of as a function of a complex variable. This is obviously done in preparation for
Chapter VII where holomorphic functions are central.

Perhaps most well-understood by math majors is that computing the area under a curve requires Newton's
calculus, i.e., integration theory. What is often overlooked by students is that the very de�nition of the
concept of area is intimately tied up with this integration theory. My treatment here of integration di�ers
from most others in that the class of functions de�ned as integrable are those that are uniform limits of
step functions. This is a smaller collection of functions than those that are Riemann-integrable, but they
su�ce for my purposes, and this approach serves to emphasize the importance of uniform convergence. In
particular, I include careful proofs of the Fundamental Theorem of Calculus, the integration by substitution
theorem, the integral form of Taylor's Remainder Theorem, and the complete proof of the general Binomial
Theorem.

Not wishing to delve into the set-theoretic complications of measure theory, I have chosen only to de�ne
the area for certain �geometric� subsets of the plane. These are those subsets bounded above and below
by graphs of continuous functions. Of course these su�ce for most purposes, and in particular circles are
examples of such geometric sets, so that the formula A = πr2 can be established for the area of a circle
of radius r. Section 5.1 concludes with a development of integration over geometric subsets of the plane.
Once again, anticipating later needs, we have again strayed into some investigations of functions of two real
variables.

Having developed the notions of arc length in the early part of Section 6.1, including the derivation of
the formula for the circumference of a circle, I introduce the idea of a contour integral, i.e., integrating a
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function around a curve in the complex plane. The Fundamental Theorem of Calculus has generalizations
to higher dimensions, and it becomes Green's Theorem in 2 dimensions. I give a careful proof in Section 6.1,
just over geometric sets, of this rather complicated theorem.

Perhaps the main application of Green's Theorem is the Cauchy Integral Theorem, a result about
complex-valued functions of a complex variable, that is often called the Fundamental Theorem of Analysis. I
prove this theorem in Section 7.1. From this Cauchy theorem one can deduce the usual marvelous theorems
of a �rst course in complex variables, e.g., the Identity Theorem, Liouville's Theorem, the Maximum Mod-
ulus Principle, the Open Mapping Theorem, the Residue Theorem, and last but not least our mathematical
truth number 6, the Fundamental Theorem of Algebra. That so much mathematical analysis is used to prove
the fundamental theorem of algebra does make me smile. I will leave it to my algebraist colleagues to point
out how some of the fundamental results in analysis require substantial algebraic arguments.

The overriding philosophical point of this book is that many analytic assertions in mathematics are
intellectually very deep; they require years of study for most people to understand; they demonstrate how
intricate mathematical thought is and how far it has come over the years. Graduates in mathematics should
be proud of the degree they have earned, and they should be proud of the depth of their understanding and
the extremes to which they have pushed their own intellect. I love teaching these students, that is to say, I
love sharing this marvelous material with them.
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Chapter 1

The Real and Complex Numbers

1.1 De�nition of the Numbers 1, i, and the square root of 21

In order to make precise sense out of the concepts we study in mathematical analysis, we must �rst come to
terms with what the "real numbers" are. Everything in mathematical analysis is based on these numbers,
and their very de�nition and existence is quite deep. We will, in fact, not attempt to demonstrate (prove) the
existence of the real numbers in the body of this text, but will content ourselves with a careful delineation
of their properties, referring the interested reader to an appendix for the existence and uniqueness proofs.

Although people may always have had an intuitive idea of what these real numbers were, it was not until
the nineteenth century that mathematically precise de�nitions were given. The history of how mathemati-
cians came to realize the necessity for such precision in their de�nitions is fascinating from a philosophical
point of view as much as from a mathematical one. However, we will not pursue the philosophical aspects
of the subject in this book, but will be content to concentrate our attention just on the mathematical facts.
These precise de�nitions are quite complicated, but the powerful possibilities within mathematical analysis
rely heavily on this precision, so we must pursue them. Toward our primary goals, we will in this chapter
give de�nitions of the symbols (numbers) −1, i, and

√
2.

The main points of this chapter are the following:

1. The notions of least upper bound (supremum) and greatest lower bound (in�mum) of a set of
numbers,

2. The de�nition of the real numbersR,
3. the formula for the sum of a geometric progression (Theorem 1.9, Geometric Progression, p. 19),
4. the Binomial Theorem (Theorem 1.10, p. 20), and
5. the triangle inequality for complex numbers (Theorem 1.15, Triangle Inequality, p. 26).

1.2 The Natural Numbers and the Integers2

We will take for granted that we understand the existence of what we call the natural numbers, i.e., the
set N whose elements are the numbers 1, 2, 3, 4, .... Indeed, the two salient properties of this set are that
(a) there is a frist element (the natural number 1), and (b) for each element n of this set there is a �very
next� one, i.e., an immediate successor. We assume that the algebraic notions of sum and product of natural
numbers is well-de�ned and familiar. These operations satisfy three basic relations:

Basic Algebraic Relations.

1. (Commutativity) n+m = m+ n and n×m = m× n for all n,m ∈ N.
1This content is available online at <http://cnx.org/content/m36082/1.3/>.
2This content is available online at <http://cnx.org/content/m36075/1.2/>.
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6 CHAPTER 1. THE REAL AND COMPLEX NUMBERS

2. (Associativity) n+ (m+ k) = (n+m) + k and n× (m× k) = (n×m)× k for all n,m, k ∈ N.
3. (Distributivity) n× (m+ k) = n×m+ n× k for all n,m, k ∈ N.

We also take as given the notion of one natural number being larger than another one. 2 > 1,5 > 3,n+1 > n,
etc. We will accept as true the axiom of mathematical induction, that is, the following statement:

1.1:

AXIOM OF MATHEMATICAL INDUCTION. Let S be a subset of the set N of natural
numbers. Suppose that

1. 1 ∈ S.
2. If a natural number k is in S, then the natural number k + 1 also is in S.

Then S = N.

That is, every natural number n belongs to S.

1.2:

REMARK The axiom of mathematical induction is for our purposes frequently employed as
a method of proof. That is, if we wish to show that a certain proposition holds for all natural
numbers, then we let S denote the set of numbers for which the proposition is true, and then, using
the axiom of mathematical induction, we verify that S is all of N by showing that S satis�es both of
the above conditions. Mathematical induction can also be used as a method of de�nition. That is,
using it, we can de�ne an in�nite number of objects {On} that are indexed by the natural numbers.
Think of S as the set of natural numbers for which the object On is de�ned. We check �rst to
see that the object O1 is de�ned. We check next that, if the object Ok is de�ned for a natural
number k, then there is a prescribed procedure for de�ning the object Ok+1. So, by the axiom of
mathematical induction, the object is de�ned for all natural numbers. This method of de�ning an
in�nite set of objects is often referred to as sl recursive de�nition, or de�nition by recursion.

As an example of recursive de�nition, let us carefully de�ne exponentiation.

De�nition 1.1:

Let a be a natural number. We de�ne inductively natural numbers an as follows: a1 = a, and,
whenever ak is de�ned, then ak+1 is de�ned to be a× ak.
The set S of all natural numbers for which an is de�ned is therefore all of N. For, a1 is de�ned, and if

ak is de�ned there is a prescription for de�ning ak+1. This �careful� de�nition of an may seem unnecessarily
detailed. Why not simply de�ne an as a×a×a×a...×an times? The answer is that the ..., though suggestive
enough, is just not mathematically precise. After all, how would you explain what ... means? The answer to
that is that you invent a recursive de�nition to make the intuitive meaning of the ... mathematically precise.
We will of course use the symbol ... to simplify and shorten our notation, but keep in mind that, if pressed,
we should be able to provide a careful de�nition.

Exercise 1.2.1

a. Derive the three laws of exponents for the natural numbers: an+m = an × am. HINT: Fix a
and m and use the axiom of mathematical induction. an×m = (am)n. HINT: Fix a and m
and use the axiom of mathematical induction. (a× b)n = an × bn. HINT: Fix a and b and
use the axiom of mathematical induction.

b. De�ne inductively numbers {Si} as follows: S1 = 1, and if Sk is de�ned, then Sk+1 is de�ned
to be Sk+k+1. Prove, by induction, that Sn = n (n+ 1) /2. Note that we could have de�ned
Sn using the ... notation by Sn = 1 + 2 + 3 + ...+ n.

c. Prove that

1 + 4 + 9 + 16 + ...+ n2 =
n (n+ 1) (2n+ 1)

6
. (1.1)

d. Make a recursive de�nition of n! = 1× 2× 3× ...× n.n! is called n factorial.
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There is a slightly more general statement of the axiom of mathematical induction, which is sometimes of
use.

1.3:

GENERAL AXIOM OF MATHEMATICAL INDUCTION Let S be a subset of the set
N of natural numbers, and suppose that S satis�es the following conditions

1. There exists a natural number k0 such that k0 ∈ S.
2. If S contains a natural number k, then S contains the natural number k + 1.

Then S contains every natural number n that is larger than or equal to k0.

From the fundamental set N of natural numbers, we construct the set Z of all integers. First, we simply
create an additional number called 0 that satis�es the equations 0+n = n for all n ∈ N and 0×n = 0 for all
n ∈ N. The word �create� is, for some mathematicians, a little unsettling. In fact, the idea of zero did not
appear in mathematics until around the year 900. It is easy to see how the so-called natural numbers came
by their name. Fingers, toes, trees, �sh, etc., can all be counted, and the very concept of counting is what
the natural numbers are about. On the other hand, one never needed to count zero �ngers or �sh, so that
the notion of zero as a number easily could have only come into mathematics at a later time, a time when
arithmetic was becoming more sophisticated. In any case, from our twenty-�rst century viewpoint, 0 seems
very understandable, and we won't belabor the fundamental question of its existence any further here.

Next, we introduce the so-called negative numbers. This is again quite reasonable from our point of view.
For every natural number n, we let −n be a number which, when added to n, give 0. Again, the question of
whether or not such negative numbers exist will not concern us here. We simply create them.

In short, we will take as given the existence of a set Z, called the integers, which comprises the set N of
natural numbers, the additional number 0, and the set −N of all negative numbers. We assume that addition
and multiplication of integers satisfy the three basic algebraic relations of commutativity, associativity, and
distributivity stated above. We also assume that the following additional relations hold:

(−n)× (−k) = n× k, and (−n)× k = n× (−k) = − (n× k) (1.2)

for all natural numbers n and k.

1.3 The Rational Numbers3

Next, we discuss the set Q of rational numbers, which we ordinarily think of as quotients k/n of integers. Of
course, we do not allow the �second� element n of the quotient k/n to be 0. Also, we must remember that
there isn't a 1-1 correspondence between the set Q of all rational numbers and the set of all such quotients
k/n. Indeed, the two distinct quotients 2/3 and 6/9 represent the same rational number. To be precise, the
set Q is a collection of equivalence classes of ordered pairs (k, n) of integers, for which the second component
of the pair is not 0. The equivalence relation among these ordered pairs is this:

(k, n) ≡
(
k', n'

)
if k × n' = n× k'. (1.3)

We will not dwell on this possibly subtle de�nition, but will rather accept the usual understanding of the
rational numbers and their arithmetic properties. In particular, we will represent them as quotients rather
than as ordered pairs, and, if r is a rational number, we will write r = k/n, instead of writing r as the
equivalence class containing the ordered pair (k, n) . As usual, we refer to the �rst integer in the quotient
k/n as the numerator and the second (nonzero) integer in the quotient k/n as the denominator of the
quotient. The familiar de�nitions of sum and product for rational numbers are these:

k

n
+
k'

n'
=
kn' + nk'

nn'
(1.4)

3This content is available online at <http://cnx.org/content/m36061/1.2/>.
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8 CHAPTER 1. THE REAL AND COMPLEX NUMBERS

and

k

n
× k'

n'
=
kk'

nn'
. (1.5)

Addition and multiplication of rational numbers satisfy the three basic algebraic relations of commutativity,
associativity and distributivity stated earlier.

We note that the integers Z can be identi�ed in an obvious way as a subset of the rational numbers
Q. Indeed, we identify the integer k with the quotient k/1. In this way, we note that Q contains the two
numbers 0 ≡ 0/1 and 1 ≡ 1/1. Notice that any other quotient k/n that is equivalent to 0/1 must satisfy
k = 0, and any other quotient k/n that is equivalent to 1/1 must satisfy k = n. Remember, k/n ≡ k'/n' if
and only if kn' = k'n.

The set Q has an additional property not shared by the set of integers Z. It is this: For each nonzero
element r ∈ Q, there exists an element r' ∈ Q for which r × r' = 1. Indeed, if r = k/n 6= 0, then k 6= 0, and
we may de�ne r' = n/k. Consequently, the set Q of all rational numbers is what is known in mathematics
as a �eld.

De�nition 1.2:

A �eld is a nonempty set F on which there are de�ned two binary operations, addition (+) and
multiplication (×), such that the following six axioms hold:

1. Both addition and multiplication are commutative and associative.
2. Multiplication is distributive over addition; i.e.,

x× (y + z) = x× y + x× z (1.6)

for all x, y, z ∈ F.
3. There exists an element in F, which we will denote by 0, that is an identity for addition; i.e.,
x+ 0 = x for all x ∈ F.

4. There exists a nonzero element in F, which we will denote by 1, that is an identity for
multiplication; i.e., x× 1 = x for all x ∈ F.

5. If x ∈ F, then there exists a unique element y ∈ F such that x + y = 0. This element y is
called the additive inverse of x and is denoted by −x.

6. If x ∈ F and x 6= 0, then there exists a unique element y ∈ F such that x × y = 1. This
element y is called the multiplicative inverse of x and is denoted by x−1.

1.4:

REMARK. There are many examples of �elds. (See Exercise 1.3.1.) They all share certain
arithmetic properties, which can be derived from the axioms above. If x is an element of a �eld
F, then according to one of the axioms above, we have that 1 × x = x. (Note that this �1� is the
multiplicative identity of the �eld F and not the natural number 1.) However, it is tempting to
write x+x = 2×x in the �eld F. The �2� here is not à priori an element of F, so that the equation
x + x = 2 × x is not really justi�ed. This is an example of a situation where a careful recursive
de�nition can be useful.

De�nition 1.3:

If x is an element of a �eld F, de�ne inductively elements n · x ≡ nx of F by 1 · x = x, and, if k · x
is de�ned, set (k + 1) · x = x+ k · x. The set S of all natural numbers n for which n · x is de�ned is
therefore, by the axiom of mathematical induction, all of N.

Usually we will write nx instead of n · x. Of course, nx is just the element of F obtained by adding x to
itself n times: nx = x+ x+ x+ ...+ x.

Exercise 1.3.1

a. Justify for yourself that the set Q of all rational numbers is a �eld. That is, carefully verify
that all six of the axioms hold.
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b. Let F7 denote the seven elements {0, 1, 2, 3, 4, 5, 6}. De�ne addition and multiplication on F7

as ordinary addition and multiplication mod 7. Prove that F7 is a �eld. (You may assume
that axioms (1) and (2) hold. Check only conditions (3)�(6).) Show in addition that 7x = 0
for every x ∈ F7.

c. Let F9 denote the set consisting of the nine elements {0, 1, 2, 3, 4, 5, 6, 7, 8}. De�ne addition
and multiplication on F9 to be ordinary addition and multiplication mod 9. Show that F9 is
not a �eld. Which of the axioms fail to hold?

d. Show that the set N of natural numbers is not a �eld. Which of the �eld axioms fail to hold?
Show that the set Z of all integers is not a �eld. Which of the �eld axioms fail to hold?

Exercise 1.3.2

Let F be any �eld. Verify that the following arithmetic properties hold in F.

a. 0× x = 0 for all x ∈ F. HINT: Use the distributive law and the fact that 0 = 0 + 0.
b. If x and y are nonzero elements of F, then x × y is nonzero. And, the multiplicative inverse

of x× y satis�es (x× y)−1 = x−1 × y−1.
c. (−1)× x = (−x) for all x ∈ F.
d. (−x)× (−y) = x× y for all x, y ∈ F.
e. x× x− y × y = (x− y)× (x+ y) .
f. (x+ y)× (x+ y) = x× x+ 2 · x× y + y × y.

De�nition 1.4:

Let F be a �eld, and let x be a nonzero element of F.
For each natural number n, we de�ne inductively an element xn in F as follows: x1 = x, and,

if xk is de�ned, set xk+1 = x× xk. Of course, xn is just the product of nx's.
De�ne x0 to be 1.
For each natural number n, de�ne x−n to be the multiplicative inverse (xn)−1

of the element
xn.

Finally, we de�ne 0m to be 0 for every positive integer m, and we leave 0−n and 00 unde�ned.

We have therefore de�ned xm for every nonzero x and every integer m ∈ Z.
Exercise 1.3.3

Let F be a �eld. Derive the following laws of exponents:

a. xn+m = xn × xm for all nonzero elements x ∈ F and all integers n and m. HINT: Fix x ∈ F
and m ∈ Z and use induction to derive this law for all natural numbers n. Then use the fact
that in any �eld (x× y)−1 = x−1 × y−1.

b. xn×m = (xm)n for all nonzero x ∈ F and all n,m ∈ Z.
c. (x× y)n = xn × yn for all nonzero x, y ∈ F and all n ∈ Z.

From now on, we will indicate multiplication in a �eld by juxtaposition; i.e., x× y will be denoted simply as
xy. Also, we will use the standard fractional notation to indicate multiplicative inverses. For instance,

xy−1 = x
1
y

=
x

y
. (1.7)

1.4 The Real Numbers4

What are the real numbers? From a geometric point of view (and a historical one as well) real numbers
are quantities, i.e., lengths of segments, areas of surfaces, volumes of solids, etc. For example, once we have

4This content is available online at <http://cnx.org/content/m36069/1.2/>.
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10 CHAPTER 1. THE REAL AND COMPLEX NUMBERS

settled on a unit of length, i.e., a segment whose length we call 1, we can, using a compass and straightedge,
construct segments of any rational length k/n. In some obvious sense then, the rational numbers are real
numbers. Apparently it was an intellectual shock to the Pythagoreans to discover that there are some other
real numbers, the so-called irrational ones. Indeed, the square root of 2 is a real number, since we can
construct a segment the square of whose length is 2 by making a right triangle each of whose legs has length
1. (By the Pythagorean Theorem of plane geometry, the square of the hypotenuse of this triangle must equal
2.) And, Pythagoras proved that there is no rational number whose square is 2, thereby establishing that
there are real numbers tha are not rational. See part (c) of Exercise 1.4.5.

Similarly, the area of a circle of radius 1 should be a real number; i.e., π should be a real number. It
wasn't until the late 1800's that Hermite showed that π is not a rational number. One di�culty is that to
de�ne π as the area of a circle of radius 1 we must �rst de�ne what is meant by the � area" of a circle,
and this turns out to be no easy task. In fact, this naive, geometric approach to the de�nition of the real
numbers turns out to be unsatisfactory in the sense that we are not able to prove or derive from these �rst
principles certain intuitively obvious arithmetic results. For instance, how can we multiply or divide an area
by a volume? How can we construct a segment of length the cube root of 2? And, what about negative
numbers?

Let us begin by presenting two properties we expect any set that we call the real numbers ought to
possess.
Algebraic Properties

We should be able to add, multiply, divide, etc., real numbers. In short, we require the set of real numbers
to be a �eld.
Positivity Properties

The second aspect of any set we think of as the real numbers is that it has some notion of direction, some
notion of positivity. It is this aspect that will allow us to �compare� numbers, e.g., one number is larger than
another. The mathematically precise way to discuss this notion is the following.

De�nition 1.5:

A �eld F is called an ordered �eld if there exists a subset P ⊆ F that satis�es the following two
properties:

1. If x, y ∈ P, then x+ y and xy are in P.
2. If x ∈ F, then one and only one of the following three statements is true.

i. x ∈ P,
ii. −x ∈ P, and
iii. x = 0. (This property is known as the law of tricotomy.)

The elements of the set P are called positive elements of F, and the elements x for which −x belong to
P are called negative elements of F.

As a consequence of these properties of P, we may introduce in F a notion of order.

De�nition 1.6:

If F is an ordered �eld, and x and y are elements of F, we say that x < y if y − x ∈ P. We say
that x ≤ y if either x < y or x = y.

We say that x > y if y < x, and x ≥ y if y ≤ x.
An ordered �eld satis�es the familiar laws of inequalities. They are consequences of the two properties

of the set P.

Exercise 1.4.1

Using the positivity properties above for an ordered �eld F, together with the axioms for a �eld,
derive the familiar laws of inequalities:

a. (Transitivity) If x < y and y < z, then x < z.
b. (Adding like inequalities) If x < y and z < w, then x+ z < y + w.
c. If x < y and a > 0, then ax < ay.
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d. If x < y and a < 0, then ay < ax.
e. If 0 < a < b and 0 < c < d, then ac < bd.
f. Verify parts (a) through (e) with < replaced by ≤ .
g. If x and y are elements of F, show that one and only one of the following three relations can

hold: (i) x < y, (ii) x > y, (iii) x = y.
h. Suppose x and y are elements of F, and assume that x ≤ y and y ≤ x. Prove that x = y.

Exercise 1.4.2

a. If F is an ordered �eld, show that 1 ∈ P ; i.e., that 0 < 1. HINT: By the law of tricotomy,
only one of the three possibilities holds for 1. Rule out the last two.

b. Show that F7 of Exercise 1.3.1 is not an ordered �eld; i.e., there is no subset P ⊆ F7 such
that the two positivity properties can hold. HINT: Use part (a) and positivity property (1).

c. Prove that Q is an ordered �eld, where the set P is taken to be the usual set of positive
rational numbers. That is, P consists of those rational numbers a/b for which both a and b
are natural numbers.

d. Suppose F is an ordered �eld and that x is a nonzero element of F. Show that for all natural
numbers nnx 6= 0.

e. (e) Show that, in an ordered �eld, every nonzero square is positive; i.e., if x 6= 0, then x2 ∈ P.

We remarked earlier that there are many di�erent examples of �elds, and many of these are also ordered �elds.
Some �elds, though technically di�erent from each other, are really indistinguishable from the algebraic point
of view, and we make this mathematically precise with the following de�nition.

De�nition 1.7:

Let F1 and F2 be two ordered �elds, and write P1 and P2 for the set of positive elements in F1

and F2 respectively. A 1-1 correspondence J between F1 and F2 is called an isomorphism if

1. J (x+ y) = J (x) + J (y) for all x, y ∈ F1.
2. J (xy) = J (x) J (y) for all x, y ∈ F1.
3. x ∈ P1 if and only if J (x) ∈ P2.

1.5:

REMARK. In general, if A1 and A2 are two algebraic systems, then a 1-1 correspondence
between A1 and A2 is called an isomorphism if it converts the algebraic structure on A1 into the
corresponding algebraic structure on A2.

Exercise 1.4.3

a. Let F be an ordered �eld. De�ne a function J : N → F by J (n) = n · 1. Prove that J is an
isomorphism of N onto a subset Ñ of F. That is, show that this correspondence is one-to-one
and converts addition and multiplication in N into addition and multiplication in F. Give an
example to show that this result is not true if F is merely a �eld and not an ordered �eld.

b. Let F be an ordered �eld. De�ne a function J : Q → F by J (k/n) = k · 1 × (n · 1)−1
.

Prove that J is an isomorphism of the ordered �eld Q onto a subset Q̃ of the ordered �eld F.
Conclude that every ordered �eld F contains a subset that is isomorphic to the ordered �eld
Q.

1.6:

REMARK. Part (b) of list, p. 11 shows that the ordered �eld Q is the smallest possible ordered
�eld, in the sense that every other ordered �eld contains an isomorphic copy of Q. However, as
mentioned earlier, the ordered �eld Q cannot su�ce as the set of real numbers. There is no rational
number whose square is 2, and we want the square root of 2 to be a real number. See Exercise 1.4.5
below. What extra property is there about an ordered �eld F that will allow us to prove that
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