Siyavula textbooks: Grade 12 Maths

Collection Editor:
Free High School Science Texts Project

Siyavula textbooks: Grade 12 Maths

Collection Editor:

Free High School Science Texts Project
Authors:
Free High School Science Texts Project
Rory Adams
Mark Horner
Heather Williams

Online:
< http://siyavula.cnx.org/content/col11242/1.2/ >

C O N N EXIONS

Rice University, Houston, Texas

This selection and arrangement of content as a collection is copyrighted by Free High School Science Texts Project. It is licensed under the Creative Commons Attribution 3.0 license (http://creativecommons.org/licenses/by/3.0/). Collection structure revised: August 3, 2011
PDF generated: August 3, 2011
For copyright and attribution information for the modules contained in this collection, see p. 157.

Table of Contents

Logarithms 1
1 Sequences and series
1.1 Arithmetic \& Geometric Sequences, Recursive Formulae 11
1.2 Sigma notation, Finite \& Infinite Series 17
2 Finance
2.1 Introduction, Sequences \& Series, Future Value of Payments 29
2.2 Investments \& Loans, Loan Schedules, Capital Outstanding, Formulae 35
Solutions 41
3 Factorising cubic polynomials
3.1 Introduction, Factor Theorem, Factorising Cubic Polynomials 45
3.2 Factor Theorem Exercises, Solving Cubic Equations 47
Solutions 49
4 Functions and graphs
4.1 Introduction, Definition, Notation 53
4.2 Graphs of Inverse Functions 54
5 Differential calculus
5.1 Introduction, Limits, Average Gradient 61
5.2 Differentiation (First Principles, Rules) and Sketching Graphs 67
5.3 Solving Problems 72
Solutions 77
6 Linear programming
6.1 Introduction, Terminology, The Feasible Region 85
6.2 Method, Exercises 88
Solutions 91
7 Geometry
7.1 Introduction, Circle Geometry 93
7.2 Coordinate Geometry, Equation of Tangent, Transformations 103
Solutions 111
8 Trigonometry
8.1 Compound Identities, Problem Solving Strategies 115
8.2 Applications of Trig Functions (2D \& 3D), Other Geometries 119
Solutions 125
9 Statistics
9.1 Normal Distribution, Sampling, Function Fitting \& Regression Analysis 129
9.2 Least Squares, Calculator Work, Correlation Coefficients 134
Solutions 141
10 Combinations and permutations
10.1 Introduction and Notation 145
10.2 Fundamental Counting Principle and Combinations 147
10.3 Permutations and Applications 149
Solutions 153
Glossary 155
Index 156
Attributions 157

Logarithms

Introduction

In mathematics many ideas are related. We saw that addition and subtraction are related and that multiplication and division are related. Similarly, exponentials and logarithms are related.

Logarithms are commonly refered to as logs, are the "opposite" of exponentials, just as subtraction is the opposite of addition and division is the opposite of multiplication. Logs "undo" exponentials. Technically speaking, logs are the inverses of exponentials. The logarithm of a number x in the base a is defined as the number n such that $a^{n}=x$.

So, if $a^{n}=x$, then:

$$
\begin{equation*}
\log _{a}(x)=n \tag{1}
\end{equation*}
$$

ASIDE: When we say "inverse function" we mean that the answer becomes the question and the question becomes the answer. For example, in the equation $a^{b}=x$ the "question" is "what is a raised to the power b ?" The answer is " x." The inverse function would be $\log _{a} x=b$ or "by what power must we raise a to obtain x ?" The answer is " b."

The mathematical symbol for $\operatorname{logarithm}$ is $\log _{a}(x)$ and it is read "log to the base a of x ". For example, $\log _{10}(100)$ is "log to the base 10 of $100 . "$

Logarithm Symbols :

Write the following out in words. The first one is done for you.

1. $\log _{2}(4)$ is \log to the base 2 of 4
2. $\log _{10}(14)$
3. $\log _{16}(4)$
4. $\log _{x}(8)$
5. $\log _{y}(x)$

Definition of Logarithms

The logarithm of a number is the value to which the base must be raised to give that number i.e. the exponent. From the first example of the activity $\log _{2}(4)$ means the power of 2 that will give 4 . As $2^{2}=4$, we see that

$$
\begin{equation*}
\log _{2}(4)=2 \tag{2}
\end{equation*}
$$

The exponential-form is then $2^{2}=4$ and the logarithmic-form is $\log _{2} 4=2$.

[^0]
Definition 1: Logarithms

If $a^{n}=x$, then: $\log _{a}(x)=n$, where $a>0 ; a \neq 1$ and $x>0$.

Applying the definition :

Find the value of:

1. $\log _{7} 343$

Reasoning :

$$
\begin{equation*}
7^{3}=343 \tag{3}
\end{equation*}
$$

therefore, $\log _{7} 343=3$
2. $\log _{2} 8$
3. $\log _{4} \frac{1}{64}$
4. $\log _{10} 1000$

Logarithm Bases

Logarithms, like exponentials, also have a base and $\log _{2}(2)$ is not the same as $\log _{10}(2)$.
We generally use the "common" base, 10, or the natural base, e.
The number e is an irrational number between 2.71 and 2.72. It comes up surprisingly often in Mathematics, but for now suffice it to say that it is one of the two common bases.

Natural Logarithm

The natural logarithm (symbol $l n$) is widely used in the sciences. The natural logarithm is to the base e which is approximately $2.71828183 \ldots . e$ is like π and is another example of an irrational number.

While the notation $\log _{10}(x)$ and $\log _{e}(x)$ may be used, $\log _{10}(x)$ is often written $\log (x)$ in Science and $\log _{e}(x)$ is normally written as $\ln (x)$ in both Science and Mathematics. So, if you see the log symbol without a base, it means $\log _{10}$.

It is often necessary or convenient to convert a log from one base to another. An engineer might need an approximate solution to a \log in a base for which he does not have a table or calculator function, or it may be algebraically convenient to have two logs in the same base.

Logarithms can be changed from one base to another, by using the change of base formula:

$$
\begin{equation*}
\log _{a} x=\frac{\log _{b} x}{\log _{b} a} \tag{4}
\end{equation*}
$$

where b is any base you find convenient. Normally a and b are known, therefore $\log _{b} a$ is normally a known, if irrational, number.

For example, change $\log _{2} 12$ in base 10 is:

$$
\begin{equation*}
\log _{2} 12=\frac{\log _{10} 12}{\log _{10} 2} \tag{5}
\end{equation*}
$$

Change of Base : Change the following to the indicated base:

1. $\log _{2}(4)$ to base 8
2. $\log _{10}(14)$ to base 2
3. $\log _{16}(4)$ to base 10
4. $\log _{x}(8)$ to base y
5. $\log _{y}(x)$ to base x

Khan academy video on logarithms - 1
This media object is a Flash object. Please view or download it at
$<$ http://www.youtube.com/v/mQTWzLpCcW0\&rel=0\&hl=en_US\&feature=player_embedded\&version=3>

Figure 1

Laws of Logarithms

Just as for the exponents, logarithms have some laws which make working with them easier. These laws are based on the exponential laws and are summarised first and then explained in detail.

$$
\begin{array}{rlc}
\log _{a}(1) & = & 0 \\
\log _{a}(a) & = & 1 \\
\log _{a}(x \cdot y) & = & \log _{a}(x)+\log _{a}(y) \\
\log _{a}\left(\frac{x}{y}\right) & = & \log _{a}(x)-\log _{a}(y) \tag{6}\\
\log _{a}\left(x^{b}\right) & = & \operatorname{blog}_{a}(x) \\
\log _{a}(\sqrt[b]{x}) & = & \frac{\log _{a}(x)}{b}
\end{array}
$$

Logarithm Law 1: $\log _{a} 1=0$

$$
\begin{array}{rllc}
\text { Since } a^{0} & = & 1 \\
\text { Then, } \quad \log _{a}(1) & = & \log _{a}\left(a^{0}\right) \tag{7}\\
& = & 0 & \text { by definition of logarithm }
\end{array}
$$

For example,

$$
\begin{equation*}
\log _{2} 1=0 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\log _{25} 1=0 \tag{9}
\end{equation*}
$$

Logarithm Law 1: $\log _{a} 1=0$:
Simplify the following:

1. $\log _{2}(1)+5$
2. $\log _{10}(1) \times 100$
3. $3 \times \log _{16}(1)$
4. $\log _{x}(1)+2 x y$
5. $\frac{\log _{y}(1)}{x}$

Logarithm Law 2: $\log _{a}(a)=1$

$$
\begin{array}{rlrl}
\text { Since } a^{1} & = & a \\
\text { Then, } \quad \log _{a}(a) & = & \log _{a}\left(a^{1}\right) \tag{10}\\
& = & 1 & \text { by definition of logarithm }
\end{array}
$$

For example,

$$
\begin{equation*}
\log _{2} 2=1 \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\log _{25} 25=1 \tag{12}
\end{equation*}
$$

Logarithm Law 2: $\log _{a}(a)=1$:
Simplify the following:

1. $\log _{2}(2)+5$
2. $\log _{10}(10) \times 100$
3. $3 \times \log _{16}(16)$
4. $\log _{x}(x)+2 x y$
5. $\frac{\log _{y}(y)}{x}$

TIP: Useful to know and remember
When the base is 10, we do not need to state it. From the work done up to now, it is also useful to summarise the following facts:

1. $\log 1=0$
2. $\log 10=1$
3. $\log 100=2$
4. $\log 1000=3$

Logarithm Law 3: $\log _{a}(x \cdot y)=\log _{a}(x)+\log _{a}(y)$

The derivation of this law is a bit trickier than the first two. Firstly, we need to relate x and y to the base a. So, assume that $x=a^{m}$ and $y=a^{n}$. Then from Equation (1), we have that:

$$
\begin{align*}
\log _{a}(x) & =m \tag{13}\\
\text { and } \log _{a}(y) & =n
\end{align*}
$$

This means that we can write:

$$
\begin{array}{rlc}
\log _{a}(x \cdot y) & = & \log _{a}\left(a^{m} \cdot a^{n}\right) \\
& = & \log _{a}\left(a^{m+n}\right) \quad \text { Exponential laws } \\
& = & \log _{a}\left(a^{\log _{a}(x)+\log _{a}(y)}\right) \tag{14}\\
& = & \log _{a}(x)+\log _{a}(y)
\end{array}
$$

For example, show that $\log (10 \cdot 100)=\log 10+\log 100$. Start with calculating the left hand side:

$$
\begin{array}{rlc}
\log (10 \cdot 100) & =\log (1000) \\
& =\log \left(10^{3}\right) \tag{15}\\
& =3
\end{array}
$$

The right hand side:

$$
\begin{align*}
\log 10+\log 100 & =1+2 \tag{16}\\
& =3
\end{align*}
$$

Both sides are equal. Therefore, $\log (10 \cdot 100)=\log 10+\log 100$.

Logarithm Law 3: $\log _{a}(x \cdot y)=\log _{a}(x)+\log _{a}(y):$
Write as seperate logs:

1. $\log _{2}(8 \times 4)$
2. $\log _{8}(10 \times 10)$
3. $\log _{16}(x y)$
4. $\log _{z}(2 x y)$
5. $\log _{x}\left(y^{2}\right)$

Logarithm Law 4: $\log _{a}\left(\frac{x}{y}\right)=\log _{a}(x)-\log _{a}(y)$
The derivation of this law is identical to the derivation of Logarithm Law 3 and is left as an exercise.
For example, show that $\log \left(\frac{10}{100}\right)=\log 10-\log 100$. Start with calculating the left hand side:

$$
\begin{array}{rlc}
\log \left(\frac{10}{100}\right) & = & \log \left(\frac{1}{10}\right) \\
& = & \log \left(10^{-1}\right) \tag{17}\\
& = & -1
\end{array}
$$

The right hand side:

$$
\begin{align*}
\log 10-\log 100 & =1-2 \tag{18}\\
& =-1
\end{align*}
$$

Both sides are equal. Therefore, $\log \left(\frac{10}{100}\right)=\log 10-\log 100$.

Logarithm Law 4: $\log _{a}\left(\frac{x}{y}\right)=\log _{a}(x)-\log _{a}(y):$
Write as seperate logs:

1. $\log _{2}\left(\frac{8}{5}\right)$
2. $\log _{8}\left(\frac{100}{3}\right)$
3. $\log _{16}\left(\frac{x}{y}\right)$
4. $\log _{z}\left(\frac{2}{y}\right)$
5. $\log _{x}\left(\frac{y}{2}\right)$

Logarithm Law 5: $\log _{a}\left(x^{b}\right)=b \log _{a}(x)$
Once again, we need to relate x to the base a. So, we let $x=a^{m}$. Then,

$$
\begin{array}{rlc}
\log _{a}\left(x^{b}\right) & = & \log _{a}\left(\left(a^{m}\right)^{b}\right) \\
& =\log _{a}\left(a^{m \cdot b}\right) \quad \text { (exponential laws } \\
\text { But, } m & \left.=\log _{a}(x) \quad \text { (Assumption that } x=a^{m}\right) \tag{19}\\
\therefore \quad \log _{a}\left(x^{b}\right) & = & \log _{a}\left(a^{b \cdot \log _{a}(x)}\right) \\
& =b \cdot \log _{a}(x) \quad \text { (Definition of logarithm) }
\end{array}
$$

For example, we can show that $\log _{2}\left(5^{3}\right)=3 \log _{2}(5)$.

$$
\begin{align*}
\log _{2}\left(5^{3}\right) & = \\
& \log _{2}(5 \cdot 5 \cdot 5) \tag{20}\\
& =\log _{2} 5+\log _{2} 5+\log _{2} 5 \quad\left(\because \log _{a}(x \cdot y)=\log _{a}\left(a^{m} \cdot a^{n}\right)\right) \\
& =\quad 3 \log _{2} 5
\end{align*}
$$

Therefore, $\log _{2}\left(5^{3}\right)=3 \log _{2}(5)$.
Logarithm Law 5: $\log _{a}\left(x^{b}\right)=\operatorname{blog}_{a}(x)$:
Simplify the following:

1. $\log _{2}\left(8^{4}\right)$
2. $\log _{8}\left(10^{10}\right)$
3. $\log _{16}\left(x^{y}\right)$
4. $\log _{z}\left(y^{x}\right)$
5. $\log _{x}\left(y^{2 x}\right)$

Logarithm Law 6: $\log _{a}(\sqrt[b]{x})=\frac{\log _{a}(x)}{b}$
The derivation of this law is identical to the derivation of Logarithm Law 5 and is left as an exercise.
For example, we can show that $\log _{2}(\sqrt[3]{5})=\frac{\log _{2} 5}{3}$.

$$
\begin{array}{rlc}
\log _{2}(\sqrt[3]{5}) & = & \log _{2}\left(5^{\frac{1}{3}}\right) \\
& =\frac{1}{3} \log _{2} 5 & \left(\because \log _{a}\left(x^{b}\right)=b \log _{a}(x)\right) \tag{21}\\
& = & \frac{\log _{2} 5}{3}
\end{array}
$$

Therefore, $\log _{2}(\sqrt[3]{5})=\frac{\log _{2} 5}{3}$.

Logarithm Law 6: $\log _{a}(\sqrt[b]{x})=\frac{\log _{a}(x)}{b}$:
Simplify the following:

1. $\log _{2}(\sqrt[4]{8})$
2. $\log _{8}(\sqrt[10]{10})$
3. $\log _{16}(\sqrt[3]{x})$
4. $\log _{z}(\sqrt[x]{y})$
5. $\log _{x}(\sqrt[2 x]{y})$

TIP: The final answer doesn't have to look simple.

Khan academy video on logarithms - 2

This media object is a Flash object. Please view or download it at
[http://www.youtube.com/v/PupNgv49_WY\&rel=0\&hl=en_US\&feature=player_embedded\&version=3](http://www.youtube.com/v/PupNgv49_WY%5C&rel=0%5C&hl=en_US%5C&feature=player_embedded%5C&version=3)

Figure 2

Khan academy video on logarithms - 3

This media object is a Flash object. Please view or download it at
[http://www.youtube.com/v/TMmxKZaCqe0\&rel=0\&hl=en_US\&feature=player_embedded\&version=3](http://www.youtube.com/v/TMmxKZaCqe0%5C&rel=0%5C&hl=en_US%5C&feature=player_embedded%5C&version=3)

Figure 3

Exercise 1: Simplification of Logs

Simplify, without use of a calculator:

$$
\begin{equation*}
3 \log 3+\log 125 \tag{22}
\end{equation*}
$$

Exercise 2: Simplification of Logs
Simplify, without use of a calculator:

$$
\begin{equation*}
8^{\frac{2}{3}}+\log _{2} 32 \tag{23}
\end{equation*}
$$

Exercise 3: Simplify to one \log

Write $2 \log 3+\log 2-\log 5$ as the logarithm of a single number.

TIP: Exponent rule: $\left(x^{b}\right)^{a}=x^{a b}$

Solving simple log equations

In grade 10 you solved some exponential equations by trial and error, because you did not know the great power of logarithms yet. Now it is much easier to solve these equations by using logarithms.

For example to solve x in $25^{x}=50$ correct to two decimal places you simply apply the following reasoning. If the LHS = RHS then the logarithm of the LHS must be equal to the logarithm of the RHS. By applying Law 5 , you will be able to use your calculator to solve for x.

Exercise 4: Solving Log equations

Solve for $x: \quad 25^{x}=50$ correct to two decimal places.
In general, the exponential equation should be simplified as much as possible. Then the aim is to make the unknown quantity (i.e. x) the subject of the equation.

For example, the equation

$$
\begin{equation*}
2^{(x+2)}=1 \tag{24}
\end{equation*}
$$

is solved by moving all terms with the unknown to one side of the equation and taking all constants to the other side of the equation

$$
\begin{align*}
2^{x} \cdot 2^{2} & =1 \\
2^{x} & =\frac{1}{2^{2}} \tag{25}
\end{align*}
$$

Then, take the logarithm of each side.

$$
\left.\left.\begin{array}{rlc}
\log \left(2^{x}\right) & = & \log \left(\frac{1}{2^{2}}\right) \\
x \log (2) & = & -\log \left(2^{2}\right) \tag{26}\\
x \log (2) & = & -2 \log (2)
\end{array}\right) \text { Divide both sides by } \log (2)\right)
$$

Substituting into the original equation, yields

$$
\begin{equation*}
2^{-2+2}=2^{0}=1 \tag{27}
\end{equation*}
$$

Similarly, $9^{(1-2 x)}=3^{4}$ is solved as follows:

$$
\begin{array}{rlc}
9^{(1-2 x)} & = & 3^{4} \\
3^{2(1-2 x)} & = & 3^{4} \\
3^{2-4 x} & = & 3^{4}
\end{array} \text { take the logarithm of both sides }
$$

Substituting into the original equation, yields

$$
\begin{equation*}
9^{\left(1-2\left(\frac{-1}{2}\right)\right)}=9^{(1+1)}=3^{2(2)}=3^{4} \tag{29}
\end{equation*}
$$

Exercise 5: Exponential Equation

Solve for x in $7 \cdot 5^{(3 x+3)}=35$

Exercises

Solve for x :

1. $\log _{3} x=2$
2. $10^{\log 27}=x$
3. $3^{2 x-1}=27^{2 x-1}$

Logarithmic applications in the Real World

Logarithms are part of a number of formulae used in the Physical Sciences. There are formulae that deal with earthquakes, with sound, and pH -levels to mention a few. To work out time periods is growth or decay, logs are used to solve the particular equation.

Exercise 6: Using the growth formula

A city grows 5% every 2 years. How long will it take for the city to triple its size?

Exercise 7: Logs in Compound Interest

I have R12 000 to invest. I need the money to grow to at least R30 000. If it is invested at a compound interest rate of 13% per annum, for how long (in full years) does my investment need to grow?

Exercises

1. The population of a certain bacteria is expected to grow exponentially at a rate of 15% every hour. If the initial population is 5000 , how long will it take for the population to reach 100000 ?
2. Plus Bank is offering a savings account with an interest rate if 10% per annum compounded monthly. You can afford to save R 300 per month. How long will it take you to save R 20000 ? (Give your answer in years and months)

End of Chapter Exercises

1. Show that

$$
\begin{equation*}
\log _{a}\left(\frac{x}{y}\right)=\log _{a}(x)-\log _{a}(y) \tag{30}
\end{equation*}
$$

2. Show that

$$
\begin{equation*}
\log _{a}(\sqrt[b]{x})=\frac{\log _{a}(x)}{b} \tag{31}
\end{equation*}
$$

3. Without using a calculator show that:

$$
\begin{equation*}
\log \frac{75}{16}-2 \log \frac{5}{9}+\log \frac{32}{243}=\log 2 \tag{32}
\end{equation*}
$$

4. Given that $5^{n}=x$ and $n=\log _{2} y$
a. Write y in terms of n
b. Express $\log _{8} 4 y$ in terms of n
c. Express 50^{n+1} in terms of x and y
5. Simplify, without the use of a calculator:
a. $8^{\frac{2}{3}}+\log _{2} 32$
b. $\log _{3} 9-\log _{5} \sqrt{5}$
c. $\left(\frac{5}{4^{-1}-9^{-1}}\right)^{\frac{1}{2}}+\log _{3} 9^{2,12}$
6. Simplify to a single number, without use of a calculator:
a. $\log _{5} 125+\frac{\log 32-\log 8}{\log 8}$
b. $\log 3-\log 0,3$
7. Given: $\quad \log _{3} 6=a$ and $\log _{6} 5=b$
a. Express $\log _{3} 2$ in terms of a.
b. Hence, or otherwise, find $\log _{3} 10$ in terms of a and b.
8. Given: $\quad p q^{k}=q p^{-1}$ Prove: $\quad k=1-2 \log _{q} p$
9. Evaluate without using a calculator: $\left(\log _{7} 49\right)^{5}+\log _{5}\left(\frac{1}{125}\right)-13 \log _{9} 1$
10. If $\log 5=0,7$, determine, without using a calculator:
a. $\log _{2} 5$
b. $10^{-1,4}$
11. Given: $\quad M=\log _{2}(x+3)+\log _{2}(x-3)$
a. Determine the values of x for which M is defined.
b. Solve for x if $M=4$.
12. Solve: $\quad\left(x^{3}\right)^{\log x}=10 x^{2}$ (Answer(s) may be left in surd form, if necessary.)
13. Find the value of $\left(\log _{27} 3\right)^{3}$ without the use of a calculator.
14. Simplify By using a calculator: $\log _{4} 8+2 \log _{3} \sqrt{27}$
15. Write $\log 4500$ in terms of a and b if $2=10^{a}$ and $9=10^{b}$.
16. Calculate: $\frac{5^{2006}-5^{2004}+24}{5^{2004}+1}$
17. Solve the following equation for x without the use of a calculator and using the fact that $\sqrt{10} \approx 3,16$:

$$
\begin{equation*}
2 \log (x+1)=\frac{6}{\log (x+1)}-1 \tag{33}
\end{equation*}
$$

18. Solve the following equation for $x: 6^{6 x}=66$ (Give answer correct to 2 decimal places.)

Chapter 1

Sequences and series

1.1 Arithmetic \& Geometric Sequences, Recursive Formulae ${ }^{1}$

1.1.1 Introduction

In this chapter we extend the arithmetic and quadratic sequences studied in earlier grades, to geometric sequences. We also look at series, which is the summing of the terms in a sequence.

1.1.2 Arithmetic Sequences

The simplest type of numerical sequence is an arithmetic sequence.

Definition 1.1: Arithmetic Sequence

An arithmetic (or linear) sequence is a sequence of numbers in which each new term is calculated
by adding a constant value to the previous term
For example, $1,2,3,4,5,6, \ldots$ is an arithmetic sequence because you add 1 to the current term to get the next term:

first term:	1
second term:	$2=1+1$
third term:	$3=2+1$
\vdots	
$n^{\text {th }}$ term:	$n=(n-1)+1$

Table 1.1

1.1.2.1 Common Difference :

Find the constant value that is added to get the following sequences and write out the next 5 terms.

1. $2,6,10,14,18,22, \ldots$
2. $-5,-3,-1,1,3, \ldots$
3. $1,4,7,10,13,16, \ldots$
4. $-1,10,21,32,43,54, \ldots$
5. $3,0,-3,-6,-9,-12, \ldots$
[^1]
Thank You for previewing this eBook

You can read the full version of this eBook in different formats:
> HTML (Free /Available to everyone)
$>$ PDF / TXT (Available to V.I.P. members. Free Standard members can access up to 5 PDF/TXT eBooks per month each month)
> Epub \& Mobipocket (Exclusive to V.I.P. members)
To download this full book, simply select the format you desire below

[^0]: ${ }^{1}$ This content is available online at http://siyavula.cnx.org/content/m31883/1.4/.

[^1]: ${ }^{1}$ This content is available online at http://siyavula.cnx.org/content/m39302/1.1/.

