REASONABLE BASIC ALGEBRA

Reasonable Basic Algebra

A. Schremmer

01/13/2008

Copyright ©2006, 2007 A. Schremmer. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Section¹, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

iv

¹Educologists who deem the footnotes "inflammatory" need only turn them off by uncommenting "renewcommand-footnote" in the ADJUSTMENTS TO DOCUMENT.

To Françoise, Bruno and Serge.

vi

Contents

Preface

Ι	El€	ements of Arithmetic	1
1	Counting Number-Phrases		
	1.1	What Arithmetic and Algebra are About	3
	1.2	Specialized Languages	4
	1.3	Real-World	5
	1.4	Number-Phrases	5
	1.5	Representing Large Collections	7
	1.6	Graphic Illustrations	12
	1.7	Combinations	14
	1.8	About Number-Phrases	15
	1.9	Decimal Number-Phrases	17
2	Equalities and Inequalities		19
	2.1	Counting From A Counting Number-Phrase To Another	19
	2.2	Comparing Collections	21
	2.3	Language For Comparisons	25
	2.4	Procedures For Comparing Number-Phrases	29
	2.5	Truth Versus Falsehood	30
	2.6	Duality Versus Symmetry	31
3	Addition		33
	3.1	Attaching A Collection To Another	33
	3.2	Language For Addition	34
	3.3	Procedure For Adding A Number-Phrase	36

 \mathbf{xi}

4	\mathbf{Sub}	otraction	39
	4.1	Detaching A Collection From Another	39
	4.2	Language For Subtraction	40
	4.3	Procedure For Subtracting A Number-Phrase	42
	4.4	Subtraction As Correction	43
5	Sig	ned Number-Phrases	45
	5.1	Actions and States	45
	5.2	Signed Number-Phrases	47
	5.3	Size And Sign	49
	5.4	Graphic Illustrations	50
	5.5	Comparing Signed Number-Phrases	51
	5.6	Adding a Signed Number-Phrase	54
	5.7	Subtracting a Signed Number-Phrase	57
	5.8	Effect Of An Action On A State	59
	5.9	From Plain To Positive	61
6	Co-	Multiplication and Values	65
	6.1	Co-Multiplication	65
	6.2	Signed-Co-multiplication	67
II	In	equations & Equations Problems	71
II 7	In	equations & Equations Problems	71
II 7	In Bas	equations & Equations Problems ic Problems 1 Counting Numerators	71 73
II 7	In Bas 7.1	equations & Equations Problems ic Problems 1 Counting Numerators Forms, Data Sets And Solution Subsets	71 73 73
II 7	In Bas 7.1 7.2 7.2	equations & Equations Problems ic Problems 1 Counting Numerators Forms, Data Sets And Solution Subsets	71 73 73 75 78
II 7	In Bas 7.1 7.2 7.3 7.4	equations & Equations Problems ic Problems 1 Counting Numerators Forms, Data Sets And Solution Subsets	71 73 73 75 78
11 7	In Bass 7.1 7.2 7.3 7.4	equations & Equations Problems ic Problems 1 Counting Numerators Forms, Data Sets And Solution Subsets	71 73 73 75 78 83
II 7 8	In Bas 7.1 7.2 7.3 7.4 Bas	equations & Equations Problems ic Problems 1 Counting Numerators Forms, Data Sets And Solution Subsets	 71 73 73 75 78 83 89
II 7 8	In Bas 7.1 7.2 7.3 7.4 Bas 8.1	equations & Equations Problems ic Problems 1 Counting Numerators Forms, Data Sets And Solution Subsets Collections Meeting A Requirement Basic Formulas Basic Problems ic Problems 2 (Decimal Numerators) Basic Equation Problems	 71 73 73 75 78 83 89 90
II 7 8	In Bas 7.1 7.2 7.3 7.4 Bas 8.1 8.2	equations & Equations Problems ic Problems 1 Counting Numerators Forms, Data Sets And Solution Subsets Collections Meeting A Requirement Basic Formulas Basic Problems ic Problems 2 (Decimal Numerators) Basic Inequation Problems	 71 73 75 78 83 89 90 90 90
II 7 8	In Bas 7.1 7.2 7.3 7.4 Bas 8.1 8.2 8.3	equations & Equations Problems ic Problems 1 Counting Numerators Forms, Data Sets And Solution Subsets Collections Meeting A Requirement Basic Formulas Basic Problems ic Problems 2 (Decimal Numerators) Basic Inequation Problems Basic Inequation Problems	 71 73 73 75 78 83 89 90 90 90 94
II 7 8 9	In Bas 7.1 7.2 7.3 7.4 Bas 8.1 8.2 8.3 Tra	equations & Equations Problems ic Problems 1 Counting Numerators Forms, Data Sets And Solution Subsets Collections Meeting A Requirement Basic Formulas Basic Problems ic Problems 2 (Decimal Numerators) Basic Inequation Problems Basic Inequation Problems Basic Inequation Problems Four Basic Inequation Problems Four Basic Inequation Problems	71 73 73 75 78 83 89 90 90 90 94 101
II 7 8 9	In Bas 7.1 7.2 7.3 7.4 Bas 8.1 8.2 8.3 Tra 9.1	equations & Equations Problems ic Problems 1 Counting Numerators Forms, Data Sets And Solution Subsets Collections Meeting A Requirement Basic Formulas Basic Problems Ic Problems 2 (Decimal Numerators) Basic Inequation Problems Basic Inequation Problems The Four Basic Inequation Problems Translation & Dilation Problems	71 73 73 75 78 83 89 90 90 90 94 101 102
II 7 8 9	In Bas 7.1 7.2 7.3 7.4 Bas 8.1 8.2 8.3 Tra 9.1 9.2	equations & Equations Problems ic Problems 1 Counting Numerators Forms, Data Sets And Solution Subsets Collections Meeting A Requirement Basic Formulas Basic Problems Basic Problems 2 (Decimal Numerators) Basic Inequation Problems Basic Inequation Problems The Four Basic Inequation Problems Solving Translation Problems	71 73 73 75 78 83 89 90 90 90 94 101 102 104
II 7 8 9	In Bas 7.1 7.2 7.3 7.4 Bas 8.1 8.2 8.3 Tra 9.1 9.2 9.3	equations & Equations Problems ic Problems 1 Counting Numerators Forms, Data Sets And Solution Subsets Collections Meeting A Requirement Basic Formulas Basic Problems Basic Problems 2 (Decimal Numerators) Basic Inequation Problems Basic Inequation Problems The Four Basic Inequation Problems Solving Translation Problems Solving Translation Problems	71 73 75 78 83 89 90 90 90 94 101 102 104 108

viii

CON	VTE	NTS
001	· エ エ ノ	· · ·

10 Affine Problems 10.1 Introduction	115 115
10.2 Solving Affine Problems	116
11 Double Basic Problems	119
11.1 Double Basic Equation Problems	119
11.2 Problems of Type BETWEEN	120
11.3 Problems of Type BEYOND	130
11.4 Other Double Basic Problems	139
12 Double Affine Problems	145
III Laurent Polynomial Algebra	149
13 Repeated Multiplications and Divisions	151
13.1 A Problem With English	151
13.2 Templates	152
13.3 The Order of Operations	156
13.4 The Way to Powers \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	159
13.5 Power Language	162
14 Laurent Monomials	165
14.1 Multiplying Monomial Specifying-Phrases	165
14.2 Dividing Monomial Specifying-Phrases	168
14.3 Terms	172
14.4 Monomials	174
15 Polynomials 1: Addition, Subtraction	181
15.1 Monomials and Addition	181
15.2 Laurent Polynomials	183
15.3 Plain Polynomials	186
15.4 Addition	188
15.5 Subtraction \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	190
16 Polynomials 2: Multiplication	191
16.1 Multiplication in Arithmetic	191
16.2 Multiplication of Polynomials	193

 $\mathbf{i}\mathbf{x}$

17 Polynomials 3: Powers of $x_0 + h$ 19	7
17.1 The Second Power: $(x_0 + h)^2$)8
17.2 The Third Power: $(x_0 + h)^3$)2
17.3 Higher Powers: $(x_0 + h)^n$ when $n > 3$)5
17.4 Approximations $\ldots \ldots 20$)8
18 Polynomials 4: Division 20	9
18.1 Division In Arithmetic)9
18.2 Elementary School Procedure	.1
18.3 Efficient Division Procedure	2
18.4 Division of Polynomials	21
18.5 Default Rules for Division	25
18.6 Division in Ascending Powers	29
Epilogue 23	1
1. Functions \ldots \ldots \ldots 23	61
2. Local Problems	3
3. Global Problems $\ldots \ldots 23$	57
4. Conclusion $\ldots \ldots 23$	8
GNU Free Documentation License 24	1
1. Applicability And Definitions	1
2. Verbatim Copying	3
3. Copying In Quantity	3
4. Modificatons	4
5. Combining Documents	6
6. Collections Of Documents	6
7. Aggregation With Independent Works	6
8. Translation	17
9. Termination $\ldots \ldots 24$	17
10. Future Revisions Of This License	17
ADDENDUM: How to use this License for your documents $\ .$ 24	17

х

Preface

The prospect facing students still in need of BASIC ALGEBRA as they enter two-year colleges² is a discouraging one inasmuch as it usually takes at the very least two semesters before they can arrive at the course(s) that they are interested in—or required to take, not to dwell on the fact that their chances of *overall* success tend to be extremely low³.

REASONABLE BASIC ALGEBRA (RBA) is a standalone version of part of FROM ARITHMETIC TO DIFFERENTIAL CALCULUS (A2DC), a *course of study* developed to allow a significantly higher percentage of students to complete DIFFERENTIAL CALCULUS in three semesters. As it is intended for a one-semester course, though, RBA may serve in a similar manner students with different goals.

The general intention is to get the students to change from being "answer oriented", the inevitable result of "show and tell, drill and test", to being "question oriented⁴" and thus, rather than try to "remember" things, be able to "reconstruct" them as needed. The specific means by which RBA hopes to accomplish this goal are presented at some length below but, briefly, they include:

• An *expositional approach*, based on what is known in mathematics as MODEL THEORY, which carefully distinguishes "real-world" situations from their "paper-world" representations⁵. A bit more precisely, we start with processes involving "real-world" collections that yield either a relationship between these collections or some new collection and the students then have to develop a paper procedure that will yield the sentence representing the relationship or the number-phrase representing the new

²Otherwise known, these days, as "developmental" students.

 $^{^{3}}$ For instance, students who wish eventually to learn DIFFERENTIAL CALCULUS, the "mathematics of change", face five or six semesters with chances of overall success of no more than one percent.

⁴See John Holt's classic *How Chidren Fail*, Delacorte Press, 1982.

⁵See Zoltan P. Dienes, for instance *Building Up Mathematics*.

collection.

EXAMPLE 1. Given that, in the real-world, when we attach to a collection of three apples to a collection of two apples we get a collection of five apples, the question for the students is to develop a paper procedure that, from 3 **Apples** and 2 **Apples**, the number-phrases representing on paper these real-world collections, will yield the number-phrase 5 **Apples**.

In other words, the students are meant to abstract the necessary concepts from a familiar "real-world" since, indeed, "We are usually more easily convinced by reasons we have found ourselves than by those which have occurred to others." (Blaise Pascal).

- A very carefully structured *contents architecture*—in total contrast to the usual more or less haphazard string of "topics"—to create systematic reinforcement and foster an exponential learning curve based on a Coherent View of Mathematics and thus help students acquire a Profound Understanding of Fundamental Mathematics⁶.
- A systematic attention to *linguistic issues* that often prevent students from being able to focus on the *mathematical concepts* themselves.
- An insistence on *convincing* the students that the reason things mathematical are the way they are is not because "experts say so" but because *common sense* says they *cannot* be otherwise.

The *contents architecture* was designed in terms of three major requirements.

· .

1. From the *students*' viewpoint, each and every mathematical issue should:

- flow "naturally" from what just precedes it,
- be developed only as far as *needed* for what will follow "naturally",
- be dealt with in sufficient "natural" *generality* to support further developments without having first to be recast.

EXAMPLE 2. After counting dollars sitting on a counter, it is "natural" to count dollars changing hands over the counter and thus to develop signed numbers. In contrast, multiplication, division or fractions all involve a complete change of venue.

2. Only a very few very simple but very powerful *ideas* should be used to underpin all the presentations and discussions even if this may be at the cost of some additional length. After they have *familiarized* themselves with such an idea, in its simplest possible embodiment, later, in more complicated situations, the students can then focus on the *technical* aspects of getting

xii

⁶See Liping Ma's Knowing and Teaching Elementary School Mathematics.

the idea to *work* in the situation at hand. In this manner, the students eventually get to feel that they can *cope* with "anything".

EXAMPLE 3. The concept of *combination-phrase* is introduced with 3 Quarters + 7 Dimes in which Quarters and Dimes are *denominators* and where + does *not* denote addition as it does in 3 Quarters + 7 Quarters but stands for "and". (In fact, for a while, we write 3 Quarters & 7 Dimes.) The concept then comes up again and again: with 3 HUNDREDS + 7 TENS, with $\frac{3}{4} + \frac{7}{10}$, with $3x^2 + 7x^5$, with 3x + 7y, etc, culminating, if much later, with $3\vec{i} + 7\vec{j}$.

EXAMPLE 4. If we can change, say, 1 Quarter for 5 Nickels and 1 Dime for 2 Nickels, we can then change the *combination-phrase* 3 Quarters + 7 Dimes for 3 Quarters × $\frac{5 \text{ Nickels}}{\text{Quarter}}$ + 7 Dimes × $\frac{2 \text{ Nickels}}{\text{Dime}}$ that is for the *specifying-phrase* 15 Nickels + 14 Nickels which we *identify* as 29 Nickels. (Note by the way that here × is a very particular type of multiplication, as also found in 3 DeHars × $\frac{7 \text{ Cents}}{\text{DeHar}}$ = 21 Cents.) Later, when having to "add" $\frac{3}{4} + \frac{7}{10}$, the students will then need only to concentrate on the *technical* issue of developing a procedure to find the denominators that Fourth and Tenth can *both* be changed for, e.g. Twentieths, Hundredths, etc.

3. The issue of "undoing" whatever has been done should always be, if not always resolved, at least always discussed.

EXAMPLE 5. Counting *backward* is introduced by the need to undo counting *forward* and both *subtracting* and *signed* numbers are introduced by the need to *undo* adding, that is by the need to solve the *equation* a + x = b.

÷.

As a result of these requirements, the *contents* had to be stripped of the various "kitchen sinks" to be found in current BASIC ALGEBRA courses and the two essential themes RBA focuses on are *affine inequations* \mathcal{C} equations and *Laurent polynomials*. This focus *empowers* the students in that, once they have mastered these subjects, they will be able both: **i.** to investigate the CALCULUS OF FUNCTIONS as in A2DC and **ii.** to acquire in a similar manner whatever other algebraic tools they may need for other purposes.

However, a problem arose in that the background necessary for a treatment that would make solid sense to the students was not likely to have been acquired in any course the students might have taken previously while, for lack of time, a full treatment of ARITHMETIC, such as can be found in A2DC, was out of the question here.

Following is the "three PARTS compromise" that was eventually reached. PART I consists of a treatment of ARITHMETIC, taken from A2DC but minimal in two respects: i. It is limited to what is strictly necessary to make sense of *inequations* & *equations* in Part II and *Laurent polynomials* in Part III, that is to the ways in which number-phrases are *compared* and *operated* with. ii. It is developed only in the case of *counting* number-phrases with the extension to *decimal* number-phrases to be taken for granted even though the latter are really of primary importance—and fully dealt with in A2DC.

- Chapter 1 introduces and discusses the general model theoretic concepts that are at the very core of RBA: *real-world collections* versus *paper-world number-phrases, combinations, graphic representations.*
- Chapter 2 discusses *comparisons*, with real-world collections compared *cardinally*, that is by way of one-to-one matching, while paper-world number-phrases are compared *ordinally*, that is by way of counting. The six *verbs*, <, >, \leq , \geq , =, \neq , together with their interrelationships, are carefully discussed in the context of *sentences*, namely *inequalities* and *equalities* that can be TRUE or FALSE.
- Chapter 3 discusses the *effect* of an *action* on a *state* and introduces *addition* as a *unary* operator representing the real-world *action* of attaching a collection to a collection.
- Chapter 4 introduces *subtraction* as a *unary* operator meant to "undo" addition, that is as representing the real-world *action* of detaching a collection from a collection.
- Chapter 5 considers collections of "two-way" items which we represent by *signed number-phrases*.

EXAMPLE 6. Collections of steps forward versus collections of steps backward, Collections of steps up versus collections of steps down, Collections of dollars gained versus collections of dollars lost, etc

In order to deal with *signed* number-phrases, the *verbs*, <, >, etc, are extended to \otimes , \otimes , etc and the *operators* + and - to \oplus and \ominus .

• Chapter 6 introduces *co-multiplication* between number-phrases and *unit-value* number-phrases as a way to find the *value* that represents the *worth* of a collection.

EXAMPLE 7. 3 Apples $\times 2\frac{\text{Cents}}{\text{Apple}} = 6$ Cents as well as 3 Dollars $\times 7\frac{\text{Cents}}{\text{Dollar}} = 21$ Cents We continue to distinguish between *plain* number-phrases and *signed* number-phrases with \times and \otimes .

PART II then deals with number-phrases specified as solution of problems.

- Chapter 7 introduces the idea of real-world collections selected from a set of selectable collections by a requirement and, in the paper-world, of nouns specified from a data set by a form. Letting the data set then consist of *counting* numerators, we discuss *locating* and *representing* the solution subset (of the data set) specified by a *basic* formula, i.e. of type $x = x_0, x < x_0$, etc where x_0 is a given gauge.
- Chapter 8 extends the previous ideas to the case of *decimal* numerators by introducing a general procedure, to be systematically used henceforth, in

which we locate separately the *boundary* and the *interior* of the solution subset. Particular attention is given to the representation of the solution subset, both by graph and by name.

- Chapter 9 begins the focus on the computations necessary to *locate* the boundary in the particular case of "special affine" problems, namely *translation* problems and *dilation* problems, which are solved by *reducing* them to *basic* problems.
- Chapter 10 then solves *affine* problems by *reducing* them to *dilation* problems and hence to *basic* problems. It concludes with the consideration of some *affine-reducible* problems.
- Chapter 11 discusses the *connectors* AND, AND/OR, EITHER/OR, in the context of *double* basic problems, that is problems involving two *basic* inequations/equations (in the same unknown). Here again, particular attention is given to the representation of the solution subset, both by *graph* and by *name*.
- Chapter 12 wraps up the discussion of how to select collections with the investigation of *double* affine problems, that is problems involving two affine inequations/equations (in the same unknown).

PART III investigates *plain polynomials* as a particular case of *Laurent polynomials*.

- Chapter 13 discusses what is involved in *repeated multiplications* and *repeated divisions* of a number-phrase by a *numerator* and introduces the notion of *signed* power.
- Chapter 14 extends this notion to *Laurent monomials*, namely signed powers of x. Multiplication and division or *Laurent monomials* are carefully discussed.
- Chapter 15 extends the fact that *decimal* numerators are *combinations* of signed powers of TEN to the introduction of *Laurent* polynomials as combinations of *signed* powers of x. Addition and subtraction of polynomials are then defined in the obvious manner.
- Chapter 16 continues the investigation of Laurent polynomials with the investigation of multiplication.
- Chapter 17 discusses a particular case of multiplication, namely the successive powers of $x_0 + u$.
- Chapter 18 closes the book with a discussion of the division of polynomials both in descending and ascending powers

This is probably the place where it should be disclosed that, as the development of this text was coming to an end, the author came across a 1905 text⁷ that gave him the impression that, in his many deviations from the current praxis, he had often reinvented the wheel. While rather reassuring, this was also, if perhaps surprisingly, somewhat disheartening.

· · .

Some of the *linguistic issues* affecting the students's progress are very specific and are directly addressed *as such*. The concept of *duality*, for instance, is a very powerful one and occurs in very many guises.

• When it occurs as "passive voice", *duality* is almost invariably confused with *symmetry*, a more familiar concept⁸. But, in particular, while duality preserves *truth*, symmetry may or may not.

EXAMPLE 8. "Jack is a *child* of **Sue**" is the *dual* of "**Sue** is a *parent* of **Jack**" and, since both refer to the same real-world relationship, they are either both TRUE or both FALSE.

On the other hand, "Jack is a *child* of Sue" is the *symmetrical* of "Sue is a *child* of Jack" and, *here*, the truth of one forces the falsehood of the other. But compare with what would happen with "brother" or "sibling" instead of "child".

• When it occurs as *indirect* definition, *duality* is quite foreign to most students but absolutely indispensable in certain situations.

EXAMPLE 9. While Dollar can be defined *directly* in terms of Quarters by saying that 1 Dollar is equal to 4 Quarters, the definition of Quarter in terms of Dollar is an *indirect* one in that we must say that a Quarter is *that* kind of coin of which we need 4 to change for 1 Dollar and students first need to be reconciled with this syntactic form. The same stumbling block occurs in dealing with roots since $\sqrt{9}$ is to be understood as "*that* number the square of which is 9"⁹.

Other linguistic issues, even though more diffuse, are nevertheless systematically taken into account. For instance:

- While mathematicians are used to all sorts of things "going without saying", students feel more comfortable when everything is made *explicit* as, for instance, when & is distinguished from +. Hence, in particular, the *explicit* use in this text of *default rules*.
- The meaning of mathematical symbols usually depends on the context while students generally feel more comfortable with *context-free* termi-

 $^{^7\}mathrm{H.}$ B. Fine, College Algebra, reprinted by American Mathematical Society Chelsea, 2005.

⁸The inability to use the "passive voice" is a most important *linguistic* stumbling block for students and one that Educologists have yet to acknowledge.

⁹Educologists will surely agree that, for instance, these particular "reverse" problems would in fact be better dealt with in an *algebraic* context, i.e. as the investigation of 4x = 1 and $x^2 = 9$. Incidentally, this is the point of view adopted in A2DC where arithmetic and algebra are systematically "integrated".

nology, that is in the case of a *one-to-one* correspondence between *terms* and *concepts*.

• Even small linguistic variations in *parallel* cases disturb the students who take these variations as having to be significant and therefore as implying in fact an unsaid but actual lack of parallelism.

In general, being aware of what *needs* to be said versus what can go without saying is part of what makes one a mathematician and, as such, requires learning and getting used to. Thus, although being pedantic is not the goal here, RBA tries very hard to be as pedestrian as possible and, if only for the purpose of "discussing matters", to make sure that *everything* is *named* and that every term is "explained" even if usually not *formally* defined.

· .

The standard way of establishing truth in *mathematics* is by way of proof but the capacity of being *convinced* by a proof is another part of what makes one a mathematician. And indeed, since the students for whom RBA was written are used only to drill based on "template examples", they tend to behave as in the joke about Socrates' slave who, when led through the proof of the Pythagorean Theorem, answers "Yes" when asked if he agrees with the current step and "No" when asked at the end if he agrees with the truth of the Theorem. So, to try to be *convincing*, we use a mode of *arguing* somewhat like that used by lawyers in front of a *court*¹⁰.

Another reason for using a mode of reasoning more akin to everyday argumentation is that even people unlikely to become prospective mathematicians ought to realize the similarities between having to establish the truth in *mathematics* and having to establish the truth in *real-life*. Yet, as Philip Ross wrote recently, "American psychologist Edward Thorndike first noted this lack of transference over a century ago, when he showed that [...] geometric proofs do not teach the use of logic in daily life."¹¹.

. .

Finally, it is perhaps worth mentioning that this text came out of the author's conviction that it is not good for a society to have a huge majority of its citizens saying they were "never good in math". To quote Colin McGinn at some length:

"Democratic States are constitutively committed to ensuring and furthering the intellectual health of the citizens who compose them: indeed, they are

 ¹⁰See Stephen E. Toulmin, *The Uses of Argument* Cambridge University Press, 1958
 ¹¹Philip E. Ross, *The Expert Mind.* Scientific American, August 2006.

Thank You for previewing this eBook

You can read the full version of this eBook in different formats:

- HTML (Free /Available to everyone)
- PDF / TXT (Available to V.I.P. members. Free Standard members can access up to 5 PDF/TXT eBooks per month each month)
- > Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

