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Introduction

The aim of these lecture notes is to provide an introduction to methods and
techniques used in the numerical solution of simple (non-relativistic) quantum-
mechanical problems, with special emphasis on atomic and condensed-matter
physics. The practical sessions are meant to be a sort of “computational lab-
oratory”, introducing the basic ingredients used in the calculation of materials
properties at a much larger scale. The latter is a very important field of today’s
computational physics, due to its technological interest and potential applica-
tions.

The codes provided during the course are little more than templates. Stu-
dents are expected to analyze them, to run them under various conditions, to
examine their behavior as a function of input data, and most important, to
interpret their output from a physical point of view. The students will be asked
to extend or modify those codes, by adding or modifying some functionalities.

For further insight on the theory of Quantum Mechanics, many excellent
textbooks are available (e.g. Griffiths, Schiff, or the ever-green Dirac and Lan-
dau). For further insight on the properly computational aspects of this course,
we refer to the specialized texts quotes in the Bibliography section, and in
particular to the book of Thijssen.

0.1 About Software

This course assumes some basic knowledge of how to write and execute simple
programs, and how to plot their results. All that is needed is a fortran or C
compiler and some visualization software. The target machine is a PC running
Linux, but other operating systems can be used as well (including Mac OS-X
and Windows), as long as the mentioned software is installed and working, and
if you know how to use it in oractise.

0.1.1 Compilers

In order to run a code written in any programming language, we must first
translate it into machine language, i.e. a language that the computer can
understand. The translation is done by an interpreter or by a compiler: the
former translates and immediately executes each instruction, the latter takes
the file, produces the so-called object code that together with other object codes
and with libraries is finally assembled into an executable file. Python, Java (or at
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an higher level, Matlab, Mathematica) are examples of “interpreted” language.
Fortran, C, C++ are “compiled” languages.

Our codes are written in Fortran 90. This is a sophisticated and com-
plex language offering dynamical memory management, arrays operations (e.g.
matrix-vector products), modular and object-based structure. Fortran 90 how-
ever can be as efficient as Fortran 77 and maintains a wide compatibility with
existing Fortran 77 codes. It is worth mentioning that the first applications
of computers to physics go back to well before the birth of modern computer
languages like C++, python, or even C: there is still a large number of codes
and libraries written in Fortran 77 (or even Fortran 66!) widely used in physics.

Fortran 90 (or even Fortran 77, in this respect) is not a well known language.
There are however many available resources (see for instance the web page
mentioned in the bibliography section) and the codes themselves are very simple
and make little usage of advanced language features. In any case, there are no
objections if a student prefers to use a more widespread language like C. A
version of all codes in C is also available (no warranty about the quality of the
C code in terms of elegance and good coding practice).

In all cases, we need a C or Fortran 90 compiler. In PCs running Linux, the
C compiler gcc is basically part of the operating system and is always present.
Recent versions of gcc also include a Fortran compiler, called gfortran. If this
is absent, or it is not easy to install it, one can download the free and rather
reliable compiler, g951. It is possible to install on Mac OS-X and on Windows
either gcc with gfortran or g95.

0.1.2 Visualization Tools

Visualization of data produced by the codes (wave functions, charge densities,
various other quantities) has a central role in the analysis and understanding
of the results. Code gnuplot can be used to make two-dimensional or three-
dimensional plots of data or of analytical expressions. gnuplot is open-source
software, available for all operating systems and usually found pre-installed on
Linux PCs. An introduction to gnuplot, with many links to more resources,
can be found here: http://www.gnuplot.info/help.html.

Another software that can be used is xmgrace2. This is also open-source
and highly portable, has a graphical user interface and thus it is easier to use
than gnuplot, whose syntax is not always easy to remember.

0.1.3 Mathematical Libraries

The usage of efficient mathematical libraries is crucial in “serious” calculations.
Some of the codes use routines from the BLAS3 (Basic Linear Algebra Sub-
programs) library and from LAPACK4 (Linear Algebra PACKage). The latter

1http://www.g95.org
2http://plasma-gate.weizmann.ac.il/Grace
3http://www.netlib.org/blas
4http://www.netlib.org/lapack

2

http://www.gnuplot.info/help.html
http://www.g95.org
http://plasma-gate.weizmann.ac.il/Grace
http://www.netlib.org/blas
http://www.netlib.org/lapack


is an important and well-known library for all kinds of linear algebra oper-
ations: solution of linear systems, eigenvalue problems, etc. LAPACK calls
BLAS routines for all CPU-intensive calculations. The latter are available in
highly optimized form for many different architectures.

BLAS and LAPACK routines are written in Fortran 77. BLAS and LA-
PACK are often available in many operating systems and can be linked directly
by the compiler by adding -llapack -lblas. In the case of C compiler, it
may be needed to add an underscore ( ) in the calling program, as in: dsyev ,
dgemm . This is due to different C-Fortran conventions for the naming of “sym-
bols” (i.e. compiled routines). Note that the C compiler may also need -lm to
link general mathematical libraries (i.e. operations like the square root).

0.1.4 Pitfalls in C-Fortran interlanguage calls

In addition to the above-mentioned potential mismatches between C and For-
tran naming conventions, there are a few more pitfalls one has to be aware of
when Fortran 77 routines are called by C (or vice versa).

• Fortran passes pointers to subroutines and functions; C passes values. In
order to call a Fortran routine from C, all C variables appearing in the
call must be either pointers or arrays.

• Indices of vectors and arrays start from 0 in C, from 1 in Fortran (unless
differently specified in array declaration or allocation).

• Matrices in C are stored in memory row-wise, that is: a[i][j+1] follows
a[i][j] in memory. In Fortran, they are stored column-wise (the other
way round!): a(i+1,j) follows a(i,j) in memory.

An additional problem is that C does not provide run-time allocatable matrices
like Fortran does, but only fixed-dimension matrices and arrays of pointers.
The former are impractical, the latter are not usable as arguments to pass to
Fortran. It would be possible, using either non-standard C syntax, or using
C++ and the new command, to define dynamically allocated matrices similar
to those used in Fortran. We have preferred for our simple C codes to “simulate”
Fortran-style matrices (i.e. stored in memory column-wise) by mapping them
onto one-dimensional C vectors.

We remark that Fortran 90 has a more advanced way of passing arrays to
subroutines using “array descriptors”. The codes used in this course however do
not make use of this possibility but use the old-style Fortran 77 way of passing
arrays via pointers.
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Chapter 1

One-dimensional Schrödinger
equation

In this chapter we will start from the harmonic oscillator to introduce a general
numerical methodology to solve the one-dimensional, time-independent Schrö-
dinger equation. The analytical solution of the harmonic oscillator will be first
derived and described. A specific integration algorithm (Numerov) will be used.
The extension of the numerical methodology to other, more general types of
potentials does not present any special difficulty.

For a particle of mass m under a potential V (x), the one-dimensional, time-
independent Schrödinger equation is given by:

− h̄2

2m

d2ψ

dx2
+ V (x)ψ(x) = Eψ(x), (1.1)

where ψ(x) is the wave function, in general complex, and h̄ is the Planck con-
stant h divided by 2π. In the following we are focusing on the discrete spectrum:
the set of isolated energy values for which Eq.(1.1) has normalizable solutions,
localized in space.

1.1 The harmonic oscillator

The harmonic oscillator is a fundamental problem in classical dynamics as well
as in quantum mechanics. It represents the simplest model system in which
attractive forces are present and is an important paradigm for all kinds of vi-
brational phenomena. For instance, the vibrations around equilibrium positions
of a system of interacting particles may be described, via an appropriate coor-
dinate transformation, in terms of independent harmonic oscillators known as
normal vibrational modes. The same holds in quantum mechanics. The study
of the quantum oscillator allows a deeper understanding of quantization and of
its effects and of wave functions of bound states.

In this chapter we will first remind the main results of the theory of the
harmonic oscillator, then we will show how to set up a computer code that
allows to numerically solve the Schrödinger equation for the harmonic oscillator.
The resulting code can be easily modified and adapted to a different (not simply
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quadratic) interaction potential. This will allow to study problems that, unlike
the harmonic oscillator, do not have a simple analytical solution.

1.1.1 Units

The Schrödinger equation for a one-dimensional harmonic oscillator is, in usual
notations:

d2ψ

dx2
= −2m

h̄2

(
E − 1

2
Kx2

)
ψ(x) (1.2)

whereK the force constant (the force on the mass being F = −Kx, proportional
to the displacement x and directed towards the origin). Classically such an
oscillator has a frequency (angular frequency)

ω =

√
K

m
. (1.3)

It is convenient to work in adimensional units. These are the units that will
be used by the codes presented at the end of this chapter. Let us introduce
adimensional variables ξ, defined as

ξ =

(
mK

h̄2

)1/4

x =

(
mω

h̄

)1/2

x (1.4)

(using Eq.(1.3) for ω), and ε, defined as

ε =
E

h̄ω
. (1.5)

By inserting these variables into the Schrödinger equation, we find

d2ψ

dξ2
= −2

(
ε− ξ2

2

)
ψ(ξ) (1.6)

which is written in adimensional units.

1.1.2 Exact solution

One can easily verify that for large ξ (such that ε can be neglected) the solutions
of Eq.(1.6) must have an asymptotic behavior like

ψ(ξ) ∼ ξne±ξ
2/2 (1.7)

where n is any finite value. The + sign in the exponent must however be
discarded: it would give raise to diverging, non-physical solutions (in which the
particle would tend to leave the ξ = 0 point, instead of being attracted towards
it by the elastic force). It is thus convenient to extract the asymptotic behavior
and assume

ψ(ξ) = H(ξ)e−ξ
2/2 (1.8)

where H(ξ) is a well-behaved function for large ξ (i.e. the asymptotic behavior
is determined by the second factor e−ξ

2/2). In particular, H(ξ) must not grow
like eξ

2
, or else we fall back into a undesirable non-physical solution.
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Under the assumption of Eq.(1.8), Eq.(1.6) becomes an equation for H(ξ):

H ′′(ξ)− 2ξH ′(ξ) + (2ε− 1)H(ξ) = 0. (1.9)

It is immediate to notice that ε0 = 1/2, H0(ξ) = 1 is the simplest solution.
This is the ground state, i.e. the lowest-energy solution, as will soon be clear.

In order to find all solutions, we expand H(ξ) into a series (in principle an
infinite one):

H(ξ) =
∞∑
n=0

Anξ
n, (1.10)

we derive the series to find H ′ and H ′′, plug the results into Eq.(1.9) and regroup
terms with the same power of ξ. We find an equation

∞∑
n=0

[(n+ 2)(n+ 1)An+2 + (2ε− 2n− 1)An] ξn = 0 (1.11)

that can be satisfied for any value of ξ only if the coefficients of all the orders
are zero:

(n+ 2)(n+ 1)An+2 + (2ε− 2n− 1)An = 0. (1.12)

Thus, once A0 and A1 are given, Eq.(1.12) allows to determine by recursion the
solution under the form of a power series.

Let us assume that the series contain an infinite number of terms. For large
n, the coefficient of the series behave like

An+2

An
→ 2

n
, that is: An+2 ∼

1

(n/2)!
. (1.13)

Remembering that exp(ξ2) =
∑
n ξ

2n/n!, whose coefficient also behave as in
Eq.(1.13), we see that recursion relation Eq.(1.12) between coefficients produces
a function H(ξ) that grows like exp(ξ2), that is, produces unphysical diverging
solutions.

The only way to prevent this from happening is to have in Eq.(1.12) all
coefficients beyond a given n vanish, so that the infinite series reduces to a
finite-degree polynomial. This happens if and only if

ε = n+
1

2
(1.14)

where n is a non-negative integer.
Allowed energies for the harmonic oscillator are thus quantized:

En =

(
n+

1

2

)
h̄ω n = 0, 1, 2, . . . (1.15)

The corresponding polynomialsHn(ξ) are known as Hermite polynomials. Hn(ξ)
is of degree n in ξ, has n nodes, is even [Hn(−ξ) = Hn(ξ)] for even n, odd
[Hn(−ξ) = −Hn(ξ)] for odd n. Since e−ξ

2/2 is node-less and even, the complete
wave function corresponding to the energy En:

ψn(ξ) = Hn(ξ)e−ξ
2/2 (1.16)
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Figure 1.1: Wave functions and probability density for the quantum harmonic
oscillator.

has n nodes and the same parity as n. The fact that all solutions of the
Schrödinger equation are either odd or even functions is a consequence of the
symmetry of the potential: V (−x) = V (x).

The lowest-order Hermite polynomials are

H0(ξ) = 1, H1(ξ) = 2ξ, H2(ξ) = 4ξ2 − 2, H3(ξ) = 8ξ3 − 12ξ. (1.17)

A graph of the corresponding wave functions and probability density is shown
in fig. 1.1.

1.1.3 Comparison with classical probability density

The probability density for wave functions ψn(x) of the harmonic oscillator
have in general n + 1 peaks, whose height increases while approaching the
corresponding classical inversion points (i.e. points where V (x) = E).

These probability density can be compared to that of the classical harmonic
oscillator, in which the mass moves according to x(t) = x0 sin(ωt). The proba-
bility ρ(x)dx to find the mass between x and x+ dx is proportional to the time
needed to cross such a region, i.e. it is inversely proportional to the speed as a
function of x:

ρ(x)dx ∝ dx

v(x)
. (1.18)

Since v(t) = x0ω cos(ωt) = ω
√
x2

0 − x2
0 sin2(ωt), we have

ρ(x) ∝ 1√
x2

0 − x2
. (1.19)

This probability density has a minimum for x = 0, diverges at inversion points,
is zero beyond inversion points.

The quantum probability density for the ground state is completely different:
has a maximum for x = 0, decreases for increasing x. At the classical inversion
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point its value is still ∼ 60% of the maximum value: the particle has a high
probability to be in the classically forbidden region (for which V (x) > E).

In the limit of large quantum numbers (i.e. large values of the index n),
the quantum density tends however to look similar to the quantum one, but it
still displays the oscillatory behavior in the allowed region, typical for quantum
systems.

1.2 Quantum mechanics and numerical codes: some
observations

1.2.1 Quantization

A first aspect to be considered in the numerical solution of quantum problems
is the presence of quantization of energy levels for bound states, such as for
instance Eq.(1.15) for the harmonic oscillator. The acceptable energy values
En are not in general known a priori. Thus in the Schrödinger equation (1.1)
the unknown is not just ψ(x) but also E. For each allowed energy level, or
eigenvalue, En, there will be a corresponding wave function, or eigenfunction,
ψn(x).

What happens if we try to solve the Schrödinger equation for an energy E
that does not correspond to an eigenvalue? In fact, a “solution” exists for any
value of E. We have however seen while studying the harmonic oscillator that
the quantization of energy originates from boundary conditions, requiring no
unphysical divergence of the wave function in the forbidden regions. Thus, if
E is not an eigenvalue, we will observe a divergence of ψ(x). Numerical codes
searching for allowed energies must be able to recognize when the energy is not
correct and search for a better energy, until it coincides – within numerical or
predetermined accuracy – with an eigenvalue. The first code presented at the
end of this chapter implements such a strategy.

1.2.2 A pitfall: pathological asymptotic behavior

An important aspect of quantum mechanics is the existence of “negative” ki-
netic energies: i.e., the wave function can be non zero (and thus the probability
to find a particle can be finite) in regions for which V (x) > E, forbidden ac-
cording to classical mechanics. Based on (1.1) and assuming the simple case in
which V is (or can be considered) constant, this means

d2ψ

dx2
= k2ψ(x) (1.20)

where k2 is a positive quantity. This in turns implies an exponential behavior,
with both ψ(x) ' exp(kx) and ψ(x) ' exp(−kx) satisfying (1.20). As a rule
only one of these two possibilities has a physical meaning: the one that gives
raise to a wave function that decreases exponentially at large |x|.

It is very easy to distinguish between the “good” and the “bad” solution for
a human. Numerical codes however are less good for such task: by their very
nature, they accept both solutions, as long as they fulfill the equations. If even
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a tiny amount of the “bad” solution (due to numerical noise, for instance) is
present, the integration algorithm will inexorably make it grow in the classically
forbidden region. As the integration goes on, the “bad” solution will sooner or
later dominate the “good” one and eventually produce crazy numbers (or crazy
NaN’s: Not a Number). Thus a nice-looking wave function in the classically
allowed region, smoothly decaying in the classically forbidden region, may sud-
denly start to diverge beyond some limit, unless some wise strategy is employed
to prevent it. The second code presented at the end of this chapter implements
such a strategy.

1.3 Numerov’s method

Let us consider now the numerical solution of the (time-independent) Schrö-
dinger equation in one dimension. The basic assumption is that the equation
can be discretized, i.e. written on a suitable finite grid of points, and integrated,
i.e. solved, the solution being also given on the grid of points.

There are many big thick books on this subject, describing old and new
methods, from the very simple to the very sophisticated, for all kinds of dif-
ferential equations and all kinds of discretizations and integration algorithms.
In the following, we will consider Numerov’s method (named after Russian as-
tronomer Boris Vasilyevich Numerov) as an example of a simple yet powerful
and accurate algorithm. Numerov’s method is useful to integrate second-order
differential equations of the general form

d2y

dx2
= −g(x)y(x) + s(x) (1.21)

where g(x) and s(x) are known functions. Initial conditions for second-order
differential equations are typically given as

y(x0) = y0, y′(x0) = y′0. (1.22)

The Schrödinger equation (1.1) has this form, with g(x) ≡ 2m
h̄2

[E − V (x)] and
s(x) = 0. We will see in the next chapter that also the radial Schrödinger
equations in three dimensions for systems having spherical symmetry belongs
to such class. Another important equation falling into this category is Poisson’s
equation of electromagnetism,

d2φ

dx2
= −4πρ(x) (1.23)

where ρ(x) is the charge density. In this case g(x) = 0 and s(x) = −4πρ(x).
Let us consider a finite box containing the system: for instance, −xmax ≤

x ≤ xmax, with xmax large enough for our solutions to decay to negligibly small
values. Let us divide our finite box into N small intervals of equal size, ∆x
wide. We call xi the points of the grid so obtained, yi = y(xi) the values of the
unknown function y(x) on grid points. In the same way we indicate by gi and
si the values of the (known) functions g(x) and s(x) in the same grid points. In
order to obtain a discretized version of the differential equation (i.e. to obtain

10



an equation involving finite differences), we expand y(x) into a Taylor series
around a point xn, up to fifth order:

yn−1 = yn − y′n∆x+ 1
2y
′′
n(∆x)2 − 1

6y
′′′
n (∆x)3 + 1

24y
′′′′
n (∆x)4 − 1

120y
′′′′′
n (∆x)5

+O[(∆x)6]
yn+1 = yn + y′n∆x+ 1

2y
′′
n(∆x)2 + 1

6y
′′′
n (∆x)3 + 1

24y
′′′′
n (∆x)4 + 1

120y
′′′′′
n (∆x)5

+O[(∆x)6].
(1.24)

If we sum the two equations, we obtain:

yn+1 + yn−1 = 2yn + y′′n(∆x)2 +
1

12
y′′′′n (∆x)4 +O[(∆x)6]. (1.25)

Eq.(1.21) tells us that
y′′n = −gnyn + sn ≡ zn. (1.26)

The quantity zn above is introduced to simplify the notations. The following
relation holds:

zn+1 + zn−1 = 2zn + z′′n(∆x)2 +O[(∆x)4] (1.27)

(this is the simple formula for discretized second derivative, that can be obtained
in a straightforward way by Taylor expansion up to third order) and thus

y′′′′n ≡ z′′n =
zn+1 + zn−1 − 2zn

(∆x)2
+O[(∆x)2]. (1.28)

By inserting back these results into Eq.(1.25) one finds

yn+1 = 2yn − yn−1 + (−gnyn + sn)(∆x)2

+ 1
12(−gn+1yn+1 + sn+1 − gn−1yn−1 + sn−1 + 2gnyn − 2sn)(∆x)2

+O[(∆x)6]
(1.29)

and finally the Numerov’s formula

yn+1

[
1 + gn+1

(∆x)2

12

]
= 2yn

[
1− 5gn

(∆x)2

12

]
− yn−1

[
1 + gn−1

(∆x)2

12

]
+(sn+1 + 10sn + sn−1) (∆x)2

12 +O[(∆x)6]
(1.30)

that allows to obtain yn+1 starting from yn and yn−1, and recursively the func-
tion in the entire box, as long as the value of the function is known in the first
two points (note the difference with “traditional” initial conditions, Eq.(1.22),
in which the value at one point and the derivative in the same point is speci-
fied). It is of course possible to integrate both in the direction of positive x and
in the direction of negative x. In the presence of inversion symmetry, it will be
sufficient to integrate in just one direction.

In our case—Schrödinger equation—the sn terms are absent. It is convenient
to introduce an auxiliary array fn, defined as

fn ≡ 1 + gn
(∆x)2

12
, where gn =

2m

h̄2 [E − V (xn)]. (1.31)

Within such assumption Numerov’s formula can be written as

yn+1 =
(12− 10fn)yn − fn−1yn−1

fn+1
. (1.32)
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1.3.1 Code: harmonic0

Code harmonic0.f901 (or harmonic0.c2) solves the Schrödinger equation for
the quantum harmonic oscillator, using the Numerov’s algorithm above de-
scribed for integration, and searching eigenvalues using the “shooting method”.
The code uses the adimensional units introduced in (1.4).

The shooting method is quite similar to the bisection procedure for the
search of the zero of a function. The code looks for a solution ψn(x) with a
pre-determined number n of nodes, at an energy E equal to the mid-point of the
energy range [Emin, Emax], i.e. E = (Emax + Emin)/2. The energy range must
contain the desired eigenvalue En. The wave function is integrated starting
from x = 0 in the direction of positive x; tt the same time, the number of nodes
(i.e. of changes of sign of the function) is counted. If the number of nodes is
larger than n, E is too high; if the number of nodes is smaller than n, E is too
low. We then choose the lower half-interval [Emin, Emax = E], or the upper half-
interval [Emin = E,Emax], respectively, select a new trial eigenvalue E in the
mid-point of the new interval, iterate the procedure. When the energy interval
is smaller than a pre-determined threshold, we assume that convergence has
been reached.

For negative x the function is constructed using symmetry, since ψn(−x) =
(−1)nψn(x). This is of course possible only because V (−x) = V (x), otherwise
integration would have been performed on the entire interval. The parity of the
wave function determines the choice of the starting points for the recursion. For
n odd, the two first points can be chosen as y0 = 0 and an arbitrary finite value
for y1. For n even, y0 is arbitrary and finite, y1 is determined by Numerov’s
formula, Eq.(1.32), with f1 = f−1 and y1 = y−1:

y1 =
(12− 10f0)y0

2f1
. (1.33)

The code prompts for some input data:

• the limit xmax for integration (typical values: 5÷ 10);

• the number N of grid points (typical values range from hundreds to a few
thousand); note that the grid point index actually runs from 0 to N , so
that ∆x = xmax/N ;

• the name of the file where output data is written;

• the required number n of nodes (the code will stop if you give a negative
number).

Finally the code prompts for a trial energy. You should answer 0 in order to
search for an eigenvalue with n nodes. The code will start iterating on the
energy, printing on standard output (i.e. at the terminal): iteration number,
number of nodes found (on the positive x axis only), the current energy eigen-
value estimate. It is however possible to specify an energy (not necessarily an

1http://www.fisica.uniud.it/%7Egiannozz/Corsi/MQ/Software/F90/harmonic0.f90
2http://www.fisica.uniud.it/%7Egiannozz/Corsi/MQ/Software/C/harmonic0.c
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eigenvalue) to force the code to perform an integration at fixed energy and see
the resulting wave function. It is useful for testing purposes and to better un-
derstand how the eigenvalue search works (or doesn’t work). Note that in this
case the required number of nodes will not be honored; however the integra-
tion will be different for odd or even number of nodes, because the parity of n
determines how the first two grid points are chosen.

The output file contains five columns: respectively, x, ψ(x), |ψ(x)|2, ρcl(x)
and V (x). ρcl(x) is the classical probability density (normalized to 1) of the
harmonic oscillator, given in Eq.(1.19). All these quantities can be plotted as a
function of x using any plotting program, such as gnuplot, shortly described in
the introduction. Note that the code will prompt for a new value of the number
of nodes after each calculation of the wave function: answer -1 to stop the code.
If you perform more than one calculation, the output file will contain the result
for all of them in sequence. Also note that the wave function are written for
the entire box, from −xmax to xmax.

It will become quickly evident that the code “sort of” works: the results
look good in the region where the wave function is not vanishingly small, but
invariably, the pathological behavior described in Sec.(1.2.2) sets up and wave
functions diverge at large |x|. As a consequence, it is impossible to normalize
the ψ(x). The code definitely needs to be improved. The proper way to deal
with such difficulty is to find an inherently stable algorithm.

1.3.2 Code: harmonic1

Code harmonic1.f903 (or harmonic1.c4) is the improved version of harmonic0
that does not suffer from the problem of divergence at large x.

Two integrations are performed: a forward recursion, starting from x = 0,
and a backward one, starting from xmax. The eigenvalue is fixed by the condition
that the two parts of the function match with continuous first derivative (as
required for a physical wave function, if the potential is finite). The matching
point is chosen in correspondence of the classical inversion point, xcl, i.e. where
V (xcl) = E. Such point depends upon the trial energy E. For a function
defined on a finite grid, the matching point is defined with an accuracy that is
limited by the interval between grid points. In practice, one finds the index icl

of the first grid point xc = icl∆x such that V (xc) > E; the classical inversion
point will be located somewhere between xc −∆x and xc.

The outward integration is performed until grid point icl, yielding a func-
tion ψL(x) defined in [0, xc]; the number n of changes of sign is counted in the
same way as in harmonic0. If n is not correct the energy is adjusted (lowered
if n too high, raised if n too low) as in harmonic0. We note that it is not
needed to look for changes of sign beyond xc: in fact we know a priori that in
the classically forbidden region there cannot be any nodes (no oscillations, just
decaying solution).

If the number of nodes is the expected one, the code starts to integrate
inward from the rightmost points. Note the statement y(mesh) = dx: its only

3http://www.fisica.uniud.it/%7Egiannozz/Corsi/MQ/Software/F90/harmonic1.f90
4http://www.fisica.uniud.it/%7Egiannozz/Corsi/MQ/Software/C/harmonic1.c

13

http://www.fisica.uniud.it/%7Egiannozz/Corsi/MQ/Software/F90/harmonic1.f90
http://www.fisica.uniud.it/%7Egiannozz/Corsi/MQ/Software/C/harmonic1.c


Thank You for previewing this eBook 
You can read the full version of this eBook in different formats: 

 HTML (Free /Available to everyone) 
 

 PDF / TXT (Available to V.I.P. members. Free Standard members can 
access up to 5 PDF/TXT eBooks per month each month) 
 

 Epub & Mobipocket (Exclusive to V.I.P. members) 

To download this full book, simply select the format you desire below 

 

 

 

http://www.free-ebooks.net/

